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Abstract 

We review pre-eruptive dynamics and evidence of open-system behavior in the volcanic plumbing system beneath 
Campi Flegrei Caldera, together with estimates of magma residence time, magma ascent, and mixing-to-eruption 
timescales. In detail, we compile pre- and syn-eruptive dynamics reported in the literature for (a) the Campanian Ign-
imbrite ~ 40 ka, (b) the Neapolitan Yellow Tuff (~ 15 ka), and (c) the recent activity within the Phlegrean area. We first 
summarize geochemical and textural evidence (e.g., magma mixing, crystal disequilibria, vertical zonings, and isotopic 
records) of open-system behavior for the pyroclasts erupted in the last 40 ky at Campi Flegrei Caldera. We show that 
the fingerprint of open-system dynamics is ubiquitous in the deposits associated with the volcanic activity at the 
Campi Flegrei Caldera in the last 40 ky. Then, we describe the results of geophysical and petrological investigations 
that allow us to hypothesize the structure of the magma feeding system. We point to a trans-crustal magmatic feed-
ing system characterized by a main storage reservoir hosted at ~ 9 km that feeds and interacts with shallow reservoirs, 
mainly placed at 2–4 km. Finally, we define a scenario depicting pre-eruptive dynamics of a possible future eruption 
and provide new constraints on timescales of magma ascent with a physical model based on magma-driven ascend-
ing dyke theory. Results show that considerably fast ascent velocities (i.e., of the order of m/s) can be easily achieved 
for eruptions fed by both shallow (i.e., 3–4 km) and deep (i.e., ~ 9 km) reservoirs. Comparing the results from experi-
mental and numerical methods, it emerges that mixing-to-eruption timescales occurring at shallow reservoirs could 
be on the order of minutes to hours. Finally, we highlight the volcanological implications of our timescale estimates 
for magma ascent and mixing to eruption. In particular, explosive eruptions could begin with little physical ‘warning’, 
of the order of days to months. In this case, the onset of volatile saturation might provide pre-eruptive indicators.
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Graphical Abstract

Introduction
Open system processes are not an exception in volcanic 
plumbing systems (e.g., Morgavi et al. 2022, 2019; Perug-
ini 2021). Among them, magma mixing is the most domi-
nant, and is associated with many of the most explosive 
volcanic eruptions on Earth (Perugini 2021; Morgavi 
et  al. 2019; Druitt et  al. 2012; Kent et  al. 2010; Leonard 
et al. 2002). From the petrologic point of view, open sys-
tem processes also include (a) crystal exchanges between 
different batches of magmas, (b) volatiles transfer, and (c) 
the potential re-melting of a portion of the crystal cargo 
due to heat exchange (e.g., Astbury et al. 2018; Morgavi 
et al. 2022; Pelullo et al. 2022a, 2022b). From the volcano-
logical point of view, the refilling of a shallower system by 
fresh magma coming from deeper crustal levels may lead 
to the remobilization of crystal mushes and potentially 
trigger a new eruption (e.g., Morgavi et  al. 2022). Also, 
volatiles transfer from deep to shallower crustal levels 
may play a significant role in modulating pre-eruptive 
events and in controlling eruptive styles (Bachmann and 
Bergantz 2006; Caricchi et al. 2018; Edmonds et al. 2022; 
La Spina et al. 2022; Petrelli and Zellmer 2020).

Typically, open system processes act at non-equi-
librium conditions, leaving a record on the resulting 
volcanic rocks (e.g., Costa et  al. 2020; Ubide and Kam-
ber 2018). This record includes textural evidences plus 
chemical and isotopic zonings in crystals (e.g., Higgins 
et al. 2021; Chen et al. 2020; Costa et al. 2020; Ubide and 
Kamber 2018). Also, chemical and isotopic variations 
can characterize bulk-rock analyses (Arienzo et al. 2016, 
2009). Identifying the clues of open system behavior in 
a volcanic sequence and studying the related non-equi-
librium processes is of paramount importance to con-
strain the evolution of a volcanic plumbing system and 

to provide hypotheses on the definition of volcanic haz-
ard scenarios (Giordano and Caricchi 2022; Rooyakkers 
et al. 2021; Orsi et al. 2022; Rosi et al. 2022; Morgavi et al. 
2022).

The focus of the present study is the Campi Flegrei 
Caldera (CFC; southern Italy), one of the most hazard-
ous volcanic systems on Earth in the last 40 ky. Following 
two catastrophic events, the Campanian Ignimbrite (~ 40 
ky) and the Neapolitan Yellow Tuff (~ 15 ky), the CFC has 
experienced intense eruptive activity and more than 60 
eruptions (Orsi et al. 2022). The CFC is still active, posing 
a significant risk to the dense population living nearby 
(Orsi et al. 2022; Rosi et al. 2022).

Evidence of open system behavior is widespread in the 
products generated by eruptions within the CFC. As an 
example, the Campanian Ignimbrite shows evidence of 
crystal-mush reactivation by mafic magma recharges 
(Arienzo et  al. 2011, 2009; Civetta et  al. 1997; Di Salvo 
et al. 2020), as well as the Neapolitan Yellow Tuff (Pabst 
et  al. 2008; Forni et  al. 2018b). Many of the deposits 
belonging to the recent activity (i.e., the past 15 ky), e.g., 
Averno 2 (~ 3.7 ky; Di Vito et  al. 2011), Astroni (4.8–
3.8 ka; Arienzo et al. 2015; Astbury et al. 2018), Agnano 
Monte Spina (~ 4.1 ky; Arienzo et al. 2010; Pelullo et al. 
2022a), Nisida (~ 4 ky; Arienzo et  al. 2016), and Monte 
Nuovo (1538 AD; Di Vito et al. 2016), show evidence of 
magma mixing.

Although the CFC is a widely studied area (e.g., Orsi 
et al. 2022; Rosi et al. 2022), an exhaustive review of the 
clues highlighting open system behavior, magma trans-
fer velocities from different crustal levels, and mixing-
to-eruption timescales is still missing. To fill this gap, we 
aim to (1) highlight the evidence of open system behav-
ior in the last ~ 40 ky at CFC; (2) provide an exhaustive 
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review of magma ascent velocities, and mixing-to-erup-
tion timescales in the last 40 ky; (3)  focus on the petro-
logic record of the recent activity (i.e., the last 15 ky) and 
geophysical constraints, to define a pre-eruptive scenario 
and provide new constraints for magma ascent rates and 
warning timescales in medium- to large-class potential 
future eruptive events as defined by Orsi et  al. (2009, 
2004) and Bevilacqua et al. (2022, 2017, 2015).

Evidence of open‑system behavior at the Campi 
Flegrei Caldera
The present review covers the volcanic activity at the 
CFC in the last ~ 40 ky. In detail, it first focuses on the 
two catastrophic events producing the Campanian Ign-
imbrite (~ 40 ky; Giaccio et al. 2017) and the Neapolitan 
Yellow Tuff (~ 15 ky; Deino et al. 2004). Then, it concen-
trates on the recent eruptive activity within the CFC in 
the past 15 ky (Fig. 1).

Campanian Ignimbrite (CI)
Many authors reported evidence of open-system evo-
lution for the CI magma feeding system (e.g., Arienzo 
et al. 2011; Pabst et al. 2008; Pappalardo et al. 2008, 2002; 
Signorelli et al. 1999; Forni et al. 2016).

As an example, Civetta et  al. (1997) proposed that 
the compositional variation within the CI results from 
a combination of crystal–liquid fractionation and the 
syn-eruptive magmatic interaction between magmas 
with different degrees of evolution, accounting for the 
disequilibrium evidence in crystals and the chemical 
heterogeneity of glass compositions. In detail, some 
pumice samples show evidence of mineralogic disequi-
libria such as the co-occurrence of sanidine and diop-
side of variable composition and a bimodal distribution 
of trace-element in Fe-rich diopside (Civetta et  al. 
1997). Glass compositions also record a bimodal distri-
bution (Civetta et al. 1997).

In addition, Arienzo et al. (2011) and Di Renzo et al. 
(2011) describe the existence of two isotopically dis-
tinct CI magmas based on Sr-, Nd-, Pb- and B-isotope 
data. In this scenario, the least evolved magma crys-
tallized during ascent a few ky before mixing, possibly 
favoring eruption.

Some studies, e.g., Forni et  al. (2016) and Di Salvo 
et  al. (2020), propose the occurrence of a crystal-
mush zone, coexisting with a buoyant cap of evolved 
magma. In such a scenario, the recharge of hotter and 
less-evolved magma triggered the CI eruption. This 
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Fig. 1  Map of the CFC area with main pyroclastic products, fault system and craters. Modified after Ciarcia and Vitale 2018
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idea is in agreement with other studies including Di 
Renzo et al. (2011) and Arienzo et al. (2011). Moreover, 
Moretti et  al. (2019) discussed the role of volatiles by 
proposing an over-pressurized CO2-dominated gas cap 
at the top of the magma chamber, possibly favoring the 
CI eruption.

Quantitative modeling by Forni et  al. (2016) and Di 
Salvo et al. (2020) demonstrate that the geochemical and 
isotopic fingerprint of CI magmas (e.g., a marked com-
positional and isotopic variation in the juveniles of the 
topmost crystal-rich deposits erupted just after the cal-
dera collapse, the high Ba and Sr contents and positive 
bulk-rock Eu anomalies observed in crystal-rich units, 
the positive Eu anomalies in the matrix glass of the 
crystal-rich units, the Ba and Sr-rich rims in the feld-
spars and positive Eu anomalies in clinopyroxene rims, 
and the presence of An-rich plagioclase) resulted from 
multiple petrologic processes, including the occurrence 
of a crystal-mush physically and chemically interacting 
with new mafic magma that reactivated the CI system. 
In detail, both studies suggest that the arrival of less-
evolved and hotter magmas at the base of the CI crystal-
mush system produced the melting of low-Or sanidine 
and low-An plagioclase. In the scenario proposed by Di 
Salvo et al. (2020), the melting of sanidine and plagioclase 
reduced the crystallinity of the mushy system, triggering 
a sequence of complex petrologic processes including 
mixing and crystallization.

Neapolitan Yellow Tuff (NYT)
As for the CI, the interpretation of the petrologic pro-
cesses driving the pre-eruptive history of the Neapoli-
tan Yellow Tuff (NYT) is not straightforward (e.g., Forni 
et al. 2018b; Orsi et al. 1995; Orsi et al. 1992; Pabst et al. 
2008; Scarpati et al. 1993). For example, Orsi et al. (1995) 
hypothesize three main magma compositions, separated 
by gaps in the eruptive sequence and interpreted the 
architecture of the magmatic system as a chamber filled 
with three distinct and stratified magmas. The uppermost 
layer, with magma having alkali-trachyte composition, 
was highly homogeneous and probably resulted from 
vigorous convection. The magma filling the intermedi-
ate layer was of trachytic composition, showing compo-
sitional heterogeneities. Orsi et al. (1995) suggested that 
the intermediate layer also experienced convection, but 
less intense than that of the uppermost level. The magma 
at the bottom of the system was compositionally zoned 
ranging from alkali-trachyte to latite downward. In the 
scenario proposed by Orsi et  al. (1995), the three mag-
mas filled the magmatic system sequentially, with the last 
one entering the system shortly before the beginning of 
the eruption and possibly acting as the eruption trigger. 
Pabst et  al. (2008) suggested the presence of multiple 

and isolated magma chambers with distinct composi-
tions before the NYT eruption. Then, a new large-volume 
magma input of intermediate composition recharged one 
of these reservoirs, possibly coalescencing the previously 
separated reservoirs into one large chamber that fed the 
NYT eruption. Recently, Forni et  al. (2018b) reported a 
detailed micro-analytical investigation of the mineral 
phases and matrix glasses collected at different strati-
graphic positions along the NYT pyroclastic sequence 
highlighting at least three compositionally distinct mag-
mas that fed the NYT eruption. They were (a) an evolved 
magma characterized by low Ca–Mg–Ba–Sr and nega-
tive Eu anomalies; (b) a more mafic magma showing high 
Ca–Mg–Ba–Sr, low K and slightly negative Eu anomalies, 
and (c) an intermediate magma with low Ca–Mg, high-K, 
intermediate Ba and Sr and slightly negative-to-positive 
Eu anomalies. Based on their results, Forni et al. (2018b) 
suggested that the compositional variations observed 
in the NYT do not reflect a vertically zoned magma 
chamber. Rather, they result from the complex interac-
tion between different magmatic components stored 
in a heterogeneous upper crustal magma reservoir and 
progressively tapped. The occurrence of disequilibrium 
mineral phases further suggests interaction with a less-
evolved recharging magma. They also indicate that the 
recharge of the magmatic system by a less-evolved and 
hotter magma activated the convection and promoted 
the mixing between the refilling and host magmas. This is 
supported by the presence of intermediate rock composi-
tions hosting crystals derived from both the host and the 
refilling magmas.

Recent activity of the Campi Flegrei Caldera
In the products derived from the recent activity of 
the CFC (i.e., the last 15 ky; Table  1), the evidence of 
magma mixing is widespread (e.g., Arienzo et  al. 2010, 
2015, 2016; Astbury et  al. 2018; D’Antonio et  al. 2022; 
Di Vito et  al. 2011; Voloschina et  al. 2018; Di Renzo 
et  al. 2011). The isotopic record provides many clues to 
unravel the open-system evolution of the recent activ-
ity within the CFC (e.g., D’Antonio et  al. 2022 and ref-
erences therein). As an example, D’Antonio et al. (1999) 
used Sr-isotopic composition of the erupted products 
to isolate three isotopically and geochemically distinct 
magmatic components that erupted in the past 15 ky. 
They are the Campanian Ignimbrite component (CIc; 
87Sr/86Sr ~ 0.70735–0.70740), the Neapolitan Yellow Tuff 
component (NYTc; 87Sr/86Sr ~ 0.70750–0.70757), and the 
Minopoli component (MIc 87Sr/86Sr of ~ 0.7086), respec-
tively. These three components (i.e., CIc, NYTc, and 
MIc) are similar to the trachytic magma that has been 
erupted during the final phase of the CI eruption, to the 
latitic–alkali–trachytic magma batches extruded during 
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the NYT, and to the shoshonitic magma of the Minopoli 
2 eruptions, respectively. In agreement with D’Antonio 
et al. (1999), mixing processes occurred among the three 
components. In detail, the cited study proposes that the 
CIc and NYTc represent the residual portions of the 
long-lived and large-volume magmatic reservoirs devel-
oped since at least 60 and 5 ky, respectively, in agreement 
with Pappalardo et  al. (1999). Finally, MIc could repre-
sent a magma coming from a deeper reservoir.

Di Renzo et  al. (2011) further refined the isotopic 
characterization of the end-members involved in 
mixing events during the recent activity of the CFC, 
hypothesizing three end-members defined by Sr, Nd, 
Pd and B isotopes. In particular, two components 
agree with the characterization reported by D’Antonio 
et al. (1999). They are the NYTc (87Sr/86Sr of 0.70750–
0.70753, 143Nd/144Nd ratio of ca. 0.51246, 206Pb/204Pb of 
ca. 19.04 and δ11B of ca. –7.9‰) and the MIc (87Sr/86Sr 
of ca. 0.70860, 143Nd/144Nd ratio of ca. 0.51236, 
206Pb/204Pb of ca. 18.90, δ11B value of ca. –7.32‰). 
The third component in the characterization proposed 
by Di Renzo et  al. (2011) is the Astroni 6 component 
(A6c; Fig.  2). The A6c points to 87Sr/86Sr values close 
to 0.70726, 206Pb/204Pb of ca. 19.08, 143Nd/144Nd of ca. 
0.51250, and δ11B of − 9.8‰. Based on the new Sr, Nd, 
Pb, and B isotopic analyses, performed on the same 
samples previously investigated by D’Antonio et  al. 
(1999), Di Renzo et  al. (2011) proposed that the A6c 
(one of the components that fed the volcanic activity in 
the last 5  ka) was not a residue of CIc but a new and 
distinct component.

In a few specific cases, Arienzo et  al. (2010) pointed 
to two batches of magmas that mixed during the erup-
tion of Agnano Monte Spina (A-MS). This conclusion is 
supported by whole rock chemical data, isotopic data, 
mineral–melt disequilibria and melt inclusion investiga-
tions. In detail, one component was similar to the MIc 
(D’Antonio et al. 2022; Di Renzo et al. 2011), whereas the 
other component was similar to the NYTc reported by 
D’Antonio et  al. (2022) and references therein. Arienzo 
et  al. (2010) proposed that the mixing between the MI 
and NYT components was pushed by a gas phase which 
drove the ascent of magmas. In agreement with Arienzo 
et al. (2010), Pelullo et al. (2022a) pointed to the existence 
of at least two, physically separated, magmatic environ-
ments for the A-MS plumbing system. Based on textural 
features and the chemical composition of the A-MS 
clinopyroxenes, Pelullo et al. (2022a) highlight two end-
member populations. The first of these is marked by very 
high Mg# (> 91). This population is interpreted as repre-
sentative of a mafic magma (i.e., ME0) that likely derived 
from the partial melting of the local mantle source. The 
second end-member population is characterized by 
more-evolved compositions (Mg# = 70–78) interpreted 
as representative of trachytic and phonolitic magmas 
(ME2), probably stationed in a shallower crustal reservoir. 
An intermediate population (Mg# = 80–84) is interpreted 
as representative of a magma (ME1) resulting from the 
mingling between ME0 and ME2. Pelullo et  al. (2022a) 
proposed that these magmatic environments were con-
nected with the transfer of magma between them over 

Table 1  Eruptions at the CFC in the last 15 ky. Modified from 
Bevilacqua et al. (2022)

ID Eruption Epoch ID Eruption Epoch

70 Monte Nuovo AD 1538 35 Fondi di Baia 2

69 Nisidia 3b 34 Baia 2

68 Fossa Lupara 3b 33 Porto Miseno 1

67 Astroni 7 3b 32 Bacoli 1

66 Astroni 6 3b 31 Casale 1

65 Astroni 5 3b 30 Pisani 3 1

64 Astroni 4 3b 29 Pignatiello 1 1

63 Astroni 3 3b 28 Montagna Spaccata 1

62 Astroni 2 3b 27 Concola 1

61 Astroni 1 3b 26 Fondo Riccio 1

60? Capo Miseno 3b 25 Pisani 2 1

59a Averno 2 3b 24 Pisani 1 1

58 Solfatara 3b 23 Soccavo 5 1

57b Academia Lava Dome 3b 22 Minopoli 2 1

56 Monte Olibano 
Tephra

3b 21 Paleo-San Martino 1

55 Solfatara lava dome 3b 20 Soccavo 4 1

54 Paleo-Astroni 3 3b 19 S4s3_2 1

53b M.te Olibano Lava 
Dome

3b 18 S4s3_1 1

52 S.ta Maria delle Grazie 3b 17 Soccavo 3 1

51 Agnano-Monte Spina 3a 16 Soccavo 2 1

50 Paleo-Astroni 2 3a 15 Paleo-Pisani 2 1

49 Paleo-Astroni 1 3a 14 Paleo-Pisani 1 1

48b Monte Sant’Angelo 3a 13 Pomici Principali 1

47 Pignatiello 2 3a 12 Gaiola 1

46 Cigliano 3a 11 Soccavo 1 1

45 Agnano 3 3a 10 Paradiso 1

44 Averno 1 3a 9 Minopoli 1 1

43 Agnano 2 3a 8 Torre Cappella 1

42 Agnano 1 3a 7 La Pigna 2 1

41 San Martino 2 6 La Pigna 1 1

40 Sartania 2 2 5 La Pietra 1

39 Pigna San Nicola 2 4 Santa Teresa 1

38 Costa San Domenico 2 3 Gauro 1

37 Monte Spina Lava 
Dome

2 2 Mofete 1

36 Sartania 1 2 1 Bellavista 1
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decadal, and perhaps even centennial, timescales. More 
evolved environments (e.g., ME3: Mg# = 60–69) were 
interpreted as resulting from degassing-induced crystal-
lization shortly (e.g., days to hours) before the eruption.

Also, for the case of the Averno 2 fissure eruption, 
chemical, isotopic and melt inclusion data support the 
idea that magma mixing occurred between a more-
evolved and less-radiogenic magma hosted in a shallow 
reservoir intruded by a less-evolved and more-radiogenic 
magma that triggered the eruption. In detail, the two 
components have been characterized by 87Sr/86Sr values 
close to 0.70750–0.70751 and 0.70753–0.70754, respec-
tively (Di Vito et al. 2011; Fourmentraux et al. 2012).

Sr-isotopic data on samples belonging to the Astroni 6 
eruption suggest the occurrence of mixing among chemi-
cally and isotopically distinct magmatic components (Di 
Renzo et al. 2011). Detailed analytical investigations allow 
the authors to refine the geochemical features of the 
magmatic components involved in Astroni 6 pre-erup-
tive dynamics (Arienzo et  al. 2015). One is the Astroni 
6 component (the same defined in Di Renzo et al. 2011), 
the other is chemically similar to some of the products 

extruded during the A-MS and Pomici Principali erup-
tions or, more in general, to the NYT component.

In addition to these isotopic constraints, Astbury 
et  al. (2018), combined textural investigations, geo-
chemical data on glasses and crystals, and high-resolu-
tion trace-element maps of the Astroni 6 crystal cargo 
to reveal the pre-eruptive dynamics occurred before 
the A6 eruption. Such study disclosed the evolution of 
the Astroni 6 plumbing system involving two separate 
magma bodies: (a) an evolved magma stored in a shal-
low system; (b) a less-evolved magma originally stored 
at a depth of ~ 7 km that then raised to shallow levels. 
Also, Astbury et  al. (2018) emphasized that a single 
recharge and mixing event occurred just before the 
beginning of the Astroni 6 eruption.

The isotopic record, chemical data, and investigations 
on melt inclusions also points to open-system behav-
ior on the volcanic plumbing system feeding the Nisida 
eruption (~ 4 ky BP; Arienzo et  al. 2016). Arienzo et  al. 
(2016), proposed that the arrival of a volatile-rich, sho-
shonite–latite magma, isotopically similar to the A6c (i.e., 
87Sr/86Sr ~ 0.70730; 143Nd/144Nd ~ 0.51250), triggered the 

NYTc

A6c

MIc

Mixing: NYTc (Sr 250 ppm) - MIc

Mixing: NYTc (Sr 700 ppm) - MIc  

Mixing: A6c - MIc  

Mixing: A6c - NYTc

Fig. 2  Representation of the three main magmatic components (big squares) and mixing models (lines) as defined by Di Renzo et al. 2011. CI 
component as defined by D’Antonio et al. 1999 is not reported as end-member, but it can be individuated by the clustering of triangle datapoints. 
Lines were obtained using a binary mixing model by the hyperbolic equation Ax + Bxy + Cy + D = 0 (Langmuir et al. 1978). The two mixing curves 
between the NYTc and Mic consider different Sr concentrations for the NYTc, i.e., 250 and 700 ppm, respectively. Error bars are smaller than 
datapoints. Modified after Arienzo et al. 2016
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Nisida eruption. They also suggested that emplacement 
of the A6c component activated the resurgence of the 
caldera floor, feeding most of the volcanic eruptions at 
CFC in the past 5 ky.

The geochemistry of melt inclusions also points to the 
open system evolution of the activity within the CFC. 
Esposito et al. (2018), focused on melt inclusions hosted 
in sanidine, clinopyroxene, plagioclase, biotite, and oli-
vine belonging to the recent activity of the CFC (also 
including the NYT) and the Island of Procida volcanic 
systems. Esposito et  al. (2018) interpreted the selec-
tive enrichment of major and trace elements recorded 
by melt inclusions as the result of dissolution-reaction-
mixing (DRM) in a mush zone at the interface between 
a magma body and wall rock (Danyushevsky et al. 2004). 
As an example, the enrichment of Al2O3 could result 
from DRM between plagioclase and melts at various 
stages of evolution. The DRM interpretation is in agree-
ment with micro-scale heterogeneities that result when 
a less-evolved melt ascends and interacts with a pre-
existing mush zone (Esposito et  al. 2018). Also, com-
bining analytical determinations and rhyolite-MELTS 
modeling, Esposito et  al. (2018) highlighted a group of 
melt inclusions that recorded polybaric fractional crys-
tallization of a volatile-saturated magma at depths rang-
ing from ≥ 7.5  km to ~ 1  km (see the next section for a 
detailed description of magma storage depths).

The only historical Eruption within the CFC is Monte 
Nuovo (1538 AD), characterized by volcanic rocks of 
K-phonolitic composition at the limit of the peralka-
line field (SiO2 = 58.7–59.6 wt%, Na2O + K2O = 13.8–
14.7 wt%, K2O/Na2O ∼1 and Agpaitic Index = 0.92–1; 
D’Oriano et  al. 2005; Piochi et  al. 2005). Di Vito et  al. 
(2016) suggested that these products resulted from the 
mixing between two magmas: the first stored at shallow 
levels, i.e., 4–5 km, and the second possibly intruding the 
shallow reservoir.

The architecture of the volcanic plumbing system 
at the Campi Flegrei Caldera
Information about the architecture of the volcanic 
plumbing system can be achieved by combining geophys-
ical data with petrological and volcanological constraints 
(De Siena et al. 2010, 2014; Giordano and Caricchi 2022; 
Orsi et al. 2022, and references therein).

The architecture over the last 40 ky: petrologic constraints
The investigation of melt inclusions (MIs) provides 
essential constraints on magma geochemical evolution, 
volatile contents, and storage depths (Arienzo et al. 2016, 
2010; Cannatelli et  al. 2007; Fourmentraux et  al. 2012; 
Mangiacapra et al. 2008; Moretti et al. 2019, 2013; Mor-
mone et al. 2011; Voloschina et al. 2018). Therefore, they 

are of paramount importance to reconstruct the archi-
tecture of a volcanic plumbing system, and its evolution 
over time. In particular, the modeling of H2O plus CO2 
saturation surfaces (e.g., Papale et  al. 2006) can provide 
us MI entrapment pressures, that can be easily converted 
to magma storage depths. For the CFC, MIs often high-
light a complex pre-eruptive evolution and they point to 
a trans-crustal magmatic system with different reservoirs 
hosted at different crustal levels (Arienzo et  al. 2016, 
2010; Cannatelli et  al. 2007; Fourmentraux et  al. 2012; 
Mangiacapra et al. 2008; Moretti et al. 2019, 2013; Mor-
mone et al. 2011; Voloschina et al. 2018). This hypothesis 
well agrees with the geochemical record, pointing to dif-
ferent magmas that interact in the volcanic plumbing sys-
tem before an eruption (e.g., D’Antonio et  al. 2022, and 
references therein).

As an example, MIs from the CI equip us with infor-
mation on the architecture of the CFC volcanic plumb-
ing system at 40 Ky. H2O and CO2 contents measured in 
MIs belonging to the CI eruption range from 0.4 to 4.2 
wt% and from 184 to 1100  ppm, respectively (Moretti 
et  al. 2019). Estimated CI entrapment pressures range 
from ~ 50 to ~ 400  MPa, which correspond to a depth 
range of ~ 2–16 km (Moretti et al. 2019).

Mormone et al. (2011) investigated MI from the Solchi-
aro Eruptive sequence (Procida Island Eruption; 18 ky), 
located just outside the CFC. Maximum H2O and CO2 
contents achieved 2.69 wt.% and 2653 ppm, respectively. 
Recalculated entrapment pressures range from ~ 350 MPa 
to < 50  MPa. As a consequence, Mormone et  al. (2011) 
proposed the occurrence of a CO2-rich magma source, 
originally stored at a depth of ~ 13–14 km (i.e., 350 MPa). 
Fanara et  al. (2015) performed experimental investiga-
tions on H2O–CO2 solubility surfaces in natural magmas 
that erupted during the CI and Solchiaro (Procida Island) 
eruptions. Then, they combined these results with H2O–
CO2 contents analyzed in melt inclusions [i.e., the results 
reported by Mormone et  al. (2011) and Esposito et  al. 
(2011)], in glass matrices, and in bulk rocks. Combining 
experimental and natural data, Fanara et  al. (2015) sug-
gested that the Campanian Ignimbrite magma could have 
been stored or ponded during ascent at two different lev-
els: a deeper one corresponding to a depth of ~ 8–15 km, 
and a shallower one at about ~ 1–8 km. Also, the magma 
feeding the Solchiaro eruption pointed to a deep res-
ervoir at ~ 11  km depth with a storage or ponding level 
at ~ 2–8 km depth (Fanara et al. 2015).

Voloschina et  al. (2018) investigated MIs from Baia–
Fondi di Baia eruption (9525–9696 BP). These MIs show 
an average SiO2 content of 59.6 ± 0.7 wt.%, a total alkali 
content of 12–13 wt.%, and a broad range of halogen con-
centrations (up to 0.70 wt.% Cl and 0.23 wt.% F). Water 
contents range from 1.1 to 4.2 wt.%. Combining mineral, 
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melt inclusions, and Sr isotope data, Voloschina et  al. 
(2018) suggest the presence of a magma reservoir located 
at 6–9 km depth and a complex evolution for the plumb-
ing system feeding the eruption with the involvement of 
three magma batches.

Mangiacapra et al. (2008) analyzed the Minopoli 2 sho-
shonite and Fondo Riccio latite products (10.2 to 9.5 ky). 
There, MIs record H2O and CO2 contents in the range 
0.2–2.84 wt.% and 172–1100  ppm, respectively. The 
modeling of H2O–CO2 pairs suggests entrapment pres-
sures ranging from 61 to 212 MPa, corresponding to ~ 2 
and ~ 9 km, respectively (Mangiacapra et al. 2008).

Melt inclusions belonging to the Agnano–Monte Spina 
eruption (4.1 ky; Arienzo et al. 2010) span H2O and CO2 
contents of 0.8 to 3.0 wt.% and 150 to 500 ppm, respec-
tively. The reported H2O and CO2 contents point to yield 
entrapment pressures between 107 and 211 MPa, corre-
sponding to depths between 4 and 8 km (Arienzo et  al. 
2010).

MIs hosted in latite pumice samples from the Nisida 
eruption (~ 4 ka BP; Arienzo et al. 2016) display a water 
content in the range from ~ 1 to ~ 4.5 wt.%, with a mode 
at around 2 wt.%, whereas Sulfur (S) and chlorine (Cl) 
contents range from ~ 0.02 to ~ 0.11 wt.% and from ~ 0.5 
to ~ 1.1 wt.%, respectively. A few MIs show detectable 
dissolved CO2, around 400–500  ppm. Arienzo et  al. 
(2016) estimate entrapment pressures, calculated for the 
H2O–CO2 pairs (Papale et  al. 2006), in the range from 
200 to 230 MPa, corresponding to depths of ~ 9 km and 
suggesting a relatively deep provenance for the latite 
magma feeding the Nisida eruption.

Melt inclusions in phenocrysts of the Vateliero and 
Cava Nocelle shoshonite–latite eruptive products (Ischia, 
just outside the CFC, sixth to fourth centuries BC, 
Moretti et al. 2013) show H2O and CO2 contents ranging 
from 0.9 to 4.3 wt.% and from 170 to 4,600 ppm, respec-
tively. Entrapment pressures calculated for the H2O–CO2 
pairs range from 70 to 430 MPa, corresponding to depths 
between 2.8 and 17.2  km. These results suggest a verti-
cally extended magmatic plumbing system, characterized 
by a major region of magma stagnation and gas fluxing at 
∼200–250 MPa (~ 8–10 km; Moretti et al. 2013).

Melt inclusions belonging to the Averno 2 Eruption 
(3.7 ky; Fourmentraux et  al. 2012) record significant 
variations in H2O (from 0.4 to 5 wt.%), S (from 0.01 to 
0.06 wt.%), Cl (from 0.75 up to 1 wt.%), and F (from 
0.20 to > 0.50 wt.%). Carbon (CO2 or carbonates) was 
not detected in melt inclusions (CO2 ≤ 40  ppm). Esti-
mated entrapment pressures vary from 50 to 100  MPa, 
corresponding to depths ranging between 2 and 4  km, 
respectively.

The current architecture: combining petrological data 
with geophysical constraints
Many models (e.g., Bianco et  al. 2022) agree with the 
presence of a magma reservoirs at ~ 7–10  km and 
with the rising and accumulation of magmatic fluids 
at ~ 2–3 km, as depicted in Fig. 3 and in agreement with 
geophysical constraints, e.g., coda-attenuation anomalies 
(Akande et  al. 2019), seismic reflection surveys (Zollo 
et  al. 2008), seismic tomography, and rock-physics (e.g., 
Calò and Tramelli 2018; De Siena et  al. 2017; Vanorio 
and Kanitpanyacharoen 2015). The current presence of 
a shallow magmatic reservoirs depicted by petrological 
investigations has been often investigated, but not yet 
fully supported by data (e.g., Akande et  al. 2019; Zollo 
et al. 2008).

Fedi et al. (2018) interpreted a wide gravity low at the 
CFC as being produced by a large and deep source dis-
tribution of partially molten, low-density material from 
about 8 to 30  km depth. Also, they combined grav-
ity data with petrological constraints (e.g., Pappalardo 

Fig. 3  Possible plumbing system of the CFC area, modified after 
Bonechi et al. 2022
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and Mastrolorenzo 2012; Melluso et  al. 2014; Arienzo 
et  al. 2016) providing two models: the first assumes the 
presence, at intermediate to deep crustal levels (i.e., 
8–24  km), of large amounts of melts and cumulates 
besides country rocks (Fig. 3); the second reflects a fractal 
density distribution, based on the scaling exponent esti-
mated from the gravity data. The latter model suggests 
that the gravity low would be related to a distribution 
of melt pockets within solid rocks. These two scenarios 
can be considered as the end-members of a trans-crustal 
volcanic plumbing system feeding the eruptive activity of 
the CFC and extending from very shallow crustal levels 
to up to ~ 25 km (Fedi et al. 2018). The trans-crustal sys-
tem is fed by melts of alkali basalt composition that origi-
nate within the underlying mantle at ca. 60 km as shown 
in Fig. 3 (Bonechi et al. 2022). Potassic magmas (shosho-
nitic basalts and subordinately K-basanites) progressively 
evolve within the trans-crustal system, eventually feeding 
ephemeral shallow systems at 2–4  km (Fedi et  al. 2018; 
Pelullo et al. 2022b).

Pre‑eruptive scenarios for possible future 
eruptions
Many studies, mainly based on statistical investigations 
of post-NYT occurrences (i.e., the last 15 ky), provide a 
definition for possible scenarios for future eruptions at 
CFC (e.g., Orsi et al. 2004, 2009; Bevilacqua et al. 2015, 
2017, 2022).

As an example, Orsi et  al. (2009) define three main 
scenarios with reference eruptions: large- medium- 
and small-class events. These are Agnano Monte Spina 
(trachytic composition) as a large event and Astroni 6 
(mostly of trachytic and phonolitic composition) as a 
medium-size event. For the small-size class, Orsi et  al. 
(2009) selected the Monte Nuovo (K-phonolitic) and 
Averno 2 (alkali-trachyte) eruptions. In addition, Agnano 
Monte Spina eruption has been taken as a reference 
eruption scenario for the next large-scale eruption at 
Campi Flegrei by the Italian Civil Protection Agency (e.g., 
Orsi et al. 2004, 2009; Bevilacqua et al. 2015, 2017, 2022). 
Moreover, Bevilacqua et al. (2015, 2017, 2022), point on 
the Astroni, Agnano Monte Spina, and  Solfatara delim-
ited area, as the most probable zone for a future eruptive 
vent opening.

Combining the reference scenarios for future erup-
tions, geophysical constraints depicting the current state 
of the volcanic plumbing system, and the geochemi-
cal and petrological record of the volcanic products, we 
provide new models and discussion on magma ascent 
velocities and mixing-to-eruption timescales. The main 
conceptual model consists of a trans-crustal magmatic 
system (e.g., Giordano and Caricchi 2022) characterized 

by a main storage reservoir hosted at ~ 9  km that inter-
acts with shallow (as they are depicted by petrologic 
studies), maybe ephemeral (as there in not clear geo-
physical evidence for the presence of magma at shallow 
crustal levels) reservoirs, mainly placed at 2–4 km. In this 
framework, we discuss of magma residence times and 
mixing-to-eruption timescales in the last 15 ky. Also, we 
provide new modeling and discussion of magma ascent 
from the main storage reservoir located at ~ 9 km directly 
to the surface.

Magma residence times and mixing‑to‑eruption 
timescales at the Campi Flegrei Caldera in the last 
15 ky
Many authors attempted to define pre- and syn-eruptive 
timescales at the CFC (Table  2 and references therein). 
Most of the proposed estimates (e.g., mixing-to-erup-
tions estimates) refer to an open-system scenario that 
appears to be common within the CFC, as reported in 
the previous sections. Timescales of magmatic processes 
have been derived using different methods applied to 
natural samples, such as the study of molecular diffusion 
in chemically zoned crystal phases or the investigation of 
crystal size distributions, numerical modeling and newly 
designed magma mixing experiments using natural melts 
under different fluid dynamics conditions (Table  2 and 
references therein).

Mixing‑to‑eruption timescales and magma residence 
times by crystal zonations, saturation, and crystal size 
distribution on natural samples
The investigation of natural samples can provide a robust 
estimate of the timescales of pre- and syn-eruptive pro-
cesses, as an example, Astbury et al. (2018) provide mix-
ing-to-eruption timescales for the Astroni 6 eruption by 
measuring the thickness of the most recently recorded 
zones in crystals enriched in incompatible elements. 
These zones are interpreted as final recharge zones, in 
agreement with Ubide and Kamber (2018). The determi-
nations reported by Astbury et al. (2018) were obtained 
in the maximum growth direction along the c-axis of the 
crystal. Noteworthy is the fact that, due to potential sec-
tioning effects, the resulting timescale estimates should 
be considered as maxima [see Astbury et  al. (2018) for 
further methodological details]. These results point to 
mixing-to-eruption timescales in the order of hours to 
days.

Iovine et  al. (2017) applied the modeling of chemical 
diffusion (i.e., Fick’s second law‐based geospeedometry) 
to constrain the timescales of open‐system processes 
before the ∼4.7 ky Agnano-Monte Spina eruption. 
They combined backscattered electron imaging and 
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quantitative electron microprobe determinations on 50 
sanidine crystals focusing on chemical zonations close to 
crystal rims, obtaining results ranging from 3 to 60 years.

Pelullo et  al. (2022a) characterized the composi-
tional zoning of clinopyroxene crystals belonging to the 
Agnano-Monte Spina eruption. They highlighted that the 
chemical zoning for Fe–Mg plus other elements (e.g., Al, 
Ti) often shows two or more compositional plateaus with 
sharp or slightly diffuse boundaries between them. Com-
bining textural and chemical investigations with diffusion 
modeling methods, Pelullo et al. (2022a) pointed to deep 
and shallow reservoirs beneath the CFC that were con-
nected to each other over several tens of years. Also, they 

suggest that the amount of mafic recharge increased dur-
ing the last 10–15 years before the Agnano-Monte Spina 
eruption. They suggest that the input of mafic magma by 
itself does not always trigger eruptions. On the contrary, 
Pelullo et al. (2022a) suggest that eruptions are triggered 
only when a threshold is exceeded such that degassing 
and related events are set in motion.

Other studies (Arzilli et al. 2016; D’Oriano et al. 2005; 
Pappalardo and Mastrolorenzo 2012; Piochi et  al. 2005) 
focused on crystal size distribution to obtain magma 
residence and ascent time estimates. They often point to 
obtaining quick crystallization timescales in the order of 
hours to days (Table 2).

Table 2  Résumé of the latest studies regarding ascent mechanisms and velocities

References Time Process Magnetic system Method

Mixing-to-eruption timescales

Pelullo et al. (2022a) Decades Mafic recharge of evolved 
shallow reservoir

Agnano-Monte Spina erup-
tion (∼4.7 ka)

Compositional zoning in clino-
pyroxene crystals

Iovine et al. (2017) 2–60 years Shoshonite injection in 
phonolitic reservoir

Agnano-Monte Spina erup-
tion (∼4.7 ka)

Diffusion chronometry per-
formed on sanidine crystals

Perugini et al. (2015) Minutes to hours Shoshonite injection in 
phonolitic reservoir

Agnano Monte Spina 
(∼4.7 ka), Astroni 6 (4.1–4.3 
ky), and Averno 2 (∼3.7 ka)

Concentration Variance Decay

Astbury et al. (2018) Hours to days Shoshonite injection in 
phonolitic reservoir

Astroni 6 (4.1–4.3 ky) Thickness of final recharge 
zones and outermost rims

Perugini et al. (2010) 2 and 9 days, respectively Shoshonite injection in 
phonolitic reservoir

Astroni 6 (4.1–4.3 ky) and 
Averno 2 (∼3.7 ky)

Diffusive Fractionation 
Method

Magma residence times and non-mixing-related timescales

Fabbrizio and Carroll (2008) Hours to a max of 1–2 days Evolution of trachy-phono-
lite magma during ascent

Breccia Museo Eruption 
(40 ky)

Dissolution rate data of 
biotites

Pappalardo and Mastrolor-
enzo (2012)

Hours to a max of 1–2 days Volatile-rich trachytic layer 
at the top of a wide magma 
reservoir by magmatic differ-
entiation, which could then 
erupt explosively

Campanian Ignimbrite (40 
ky)

Cristal Size Distribution (CSD)

Arienzo et al. (2011) 6.4 ± 2.1 ka Magma assembly prior the 
CI caldera forming eruption

Campanian Ignimbrite (40 
ky)

U–Th isotopic dating

Arzilli et al. (2018) Days Magma residence time 
under non-equilibrium 
conditions

Campi Flegrei Caldera (last 
40 ky)

Element partitioning between 
alkali feldspar and trachytic 
melts

D’Oriano et al. (2005) Days Syn-eruptive crystallization Monte Nuovo (1538 AD) Cristal Size Distribution (CSD)

Piochi et al. (2005) Few days to tens of days Evolution magmas falling 
near the trachyte-phonolite 
boundary

Monte Nuovo (1538 AD) Cristal Size Distribution (CSD)

Arzilli et al. (2016) Hours to two days Evolution of trachy-phono-
lite magma

Monte Nuovo (1538 AD) Cristal Size Distribution (CSD)

Stock et al. (2016, 2018) Days to years Volatile recharge and 
pressurization of the deep 
system (7.5–8.5 km)

Astroni 1 (4.1–4.3 ka) Volatile variations in apatite 
and hydrous glasses

Di Vito et al. (2016)  ~ 300 years Pre-eruptive magma resi-
dence times

Monte Nuovo (1538 AD) Based on the Uplift history

Bonechi et al. (2022)  ~ 10 ka Filling of the deep reservoir 
at 25 km from the mantle 
source by a melt of alkali 
basalt composition sup-
posed at ~ 50 km

Campi Flegrei Caldera (last 
40 ky)

Mobility by density contrast 
between the melt and the 
surrounding permeable crys-
talline matrix
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Stock et  al. (2018) analyzed fluorine, chlorine, and 
water in apatite crystals, and in melt inclusions from 
clinopyroxene and biotite crystals belonging to the 
Astroni 1 eruption (4.3–4.1 ky). They combined geo-
chemical determinations and thermodynamic modeling 
to reveal the evolution of the volcanic plumbing system 
before the eruption, highlighting that the magmatic sys-
tem remained water-undersaturated throughout most 
of its lifetime and that the melt reached volatile satura-
tion at low temperatures, just before the eruption. Finally, 
they suggested that late-stage volatile saturation probably 
triggered the eruptive event, with a maximum time delay 
between volatile saturation and eruption on the order of 
10–103 days.

Experimental constraints
Many studies in the field of experimental petrology have 
been developed to constrain the evolution of pre- and 
syn-eruptive dynamics within the CFC (e.g., Arzilli et al. 
2016; Perugini et  al. 2015; Iezzi et  al. 2008; Fabbrizio 
and Carroll 2008; Calzolaio et  al. 2010; Arzilli and Car-
roll 2013; Preuss et al. 2016; Vetere et al. 2011; Campag-
nola et al. 2016; Montanaro et al. 2016; Fanara et al. 2015; 
Bonechi et al. 2020, 2022). Here we focus on those exper-
iments that allow extraction of magma ascent, residence 
times, and mixing-to-eruption timescales (i.e., Perugini 
et al. 2015; Arzilli et al. 2018; Calzolaio et al. 2010; Bone-
chi et al. 2022).

As an example, Perugini et al. (2015) performed magma 
mixing experiments using a high-temperature centrifuge 
where tendrils of basalt are injected into the phonolite, 
triggering a “fountain-like” process of mingling. The 
resulting mixing dynamics are intended to simulate the 
triggering of magma mixing in nature via injection of 
mafic magmas into felsic magma chambers. The natural 
end-members used in the experiments were an Agnano 
Monte-Spina phonolitic tuff and an alkali-basalt from 
Minopoli (CFC). The results point to: (1) the produc-
tion of complex mixing patterns of filaments, swirls, and 
bands from mm to µm length scales; (2) morphologies of 
mixing patterns produced during the experiments similar 
to those observed in natural rock samples; (3) estimated 
mixing-to-eruption timescales are on the order of min-
utes to hours.

Calzolaio et  al. (2010) performed a series of decom-
pression experiments on samples of trachytic composi-
tion to investigate pre- and syn-eruptive growth rates of 
alkali feldspars in the volcanic plumbing system feeding 
the Monte Nuovo eruption and unravel magma ascent 
times. Results suggested magma ascent times ranging 
from several hours to 1–2 days.

Arzilli et  al. (2018) reported new experimental data 
on elemental (i.e., Sr and Ba) partitioning between alkali 

feldspar and trachytic melt. The study performed short 
disequilibrium and long near-equilibrium experiments 
at 500  MPa, 870–890  °C to investigate the influence of 
diffusive re-equilibration on trace-element partitioning 
during crystallization. In detail, Arzilli et al. (2018) high-
lighted that the magmatic systems can rapidly pass from 
equilibrium to disequilibrium conditions (e.g., magma 
mixing and fast ascent). The application of the method 
proposed by Arzilli et  al. (2018) to alkali feldspar in 
rocks erupted at the CFC constrain the magma residence 
time at subliquidus conditions in a reservoir to a maxi-
mum of 6 days under disequilibrium conditions and to a 
minimum of 9 days upon approaching near-equilibrium 
conditions.

Bonechi et  al. (2022) investigated the effect of pres-
sure (0.7–7.0 GPa) and temperature (1335–2000  °C) on 
the viscosity of anhydrous primitive alkaline basalts. They 
have been assumed as a proxy of possible magmas from a 
deep system feeding shallower reservoirs in the CFC vol-
canic plumbing system at the present day. Also, Bonechi 
et al. (2022) used the obtained results, i.e., viscosities in 
the order of 0.5–3.0 Pa s, to estimate ascent velocities in 
the range 1.5–6.0  m  yr−1. Finally,  Bonechi et  al. (2022) 
point at the CFC as a critical volcanic district, currently 
undergoing a gradual magma recharge at depth.

Numerical modeling of pre‑ and syn‑eruptive 
dynamics
New modeling on magma ascent velocities
To investigate magma ascent velocities in the magmatic 
feeding system before the eruption, we used a model 
based on the magma-driven ascending dyke theory 
for incompressible fluids (Rubin 1993). In this model, 
whose methodology is explained in the Additional file 1, 
the excess pressure of a reservoir connected to a dyke is 
accounted for, along with rheological parameters, to esti-
mate how fast the magma can travel through the crust 
towards the surface. After the opening of a new vent, 
modeling based on steady-state magma flow through ver-
tical and cylindrical conduits open to the surface should 
be used (e.g., Romano et al. 2020) since they account for 
additional factors like magma vesiculation and magma 
fragmentation in the shallower system. Also, fluid 
dynamic modeling (e.g., Montagna et  al. 2022), could 
provide essential information on pre-eruptive dynamics 
and mixing timescales.

Using the model proposed by Rubin (1993), we mod-
eled the ascent of shoshonitic and trachytic magmas 
moving from a depth of 9 km, characterized by different 
water contents, i.e., 2 and 4 wt.% (as in Stock et al. 2018), 
and an average crystallinity of 10% in volume. The latter 
choice is motivated by the fact that the Agnano-Monte 
Spina pyroclasts show a crystal content in the range of 



Page 12 of 18Petrelli et al. Earth, Planets and Space           (2023) 75:19 

Trachytic magma*
Shoshonitic magma*
ΔP = 5 MPa
ΔP = 10 Mpa

a.

b.

Trachytic magma*
Shoshonitic magma*
 2 wt.% H O
 4 wt.% H O

* 2 wt.% H O,  φ = 0.1

* 10 MPa,  φ = 0.1

Fig. 4  Modeled ascent velocities of magmas from a 9 km reservoir, calculated after Rubin 1993 for different magmatic compositions and different 
values of overpressure at the reservoir
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5 and 10 vol.% (Iovine et  al. 2017) and crystal content 
in magmatic reservoir is generally modeled between 5 
and 30 Vol.% (Vona et al. 2013; Stock et al. 2016, 2018). 
Finally, two different values of overpressure within the 
magmatic system were accounted (i.e., 5 and 10  MPa; 
e.g., Gudmundsson 2012; Geshi et al. 2020).

Figure  4a shows the results of the modeling for 
overpressures of 5 and 10  MPa for trachytic and sho-
shonitic magmas with a fixed water content of 2 wt.% 
and crystal volume fraction (Φ) of 0.1. With an over-
pressure of 5  MPa, ascent velocities are of the order 
of 1.5 × 10–2  m/s and 5.3 × 10–2  m/s for trachytic and 
shoshonitic magmas, respectively. Increasing the over-
pressure to 10  MPa gives final ascent velocities of the 
order of 1.2 × 10–1 m/s and 4.2 × 10–1 m/s for trachytic 
and shoshonitic magmas, respectively. Figure  4b com-
pares the results of the modeling at 10  MPa for water 
contents equal to 2 and 4 wt.%, respectively. Observ-
ing Fig. 4b, it emerges that increasing the water content 
from 2 to 4 wt.% caused an increase of the ascent veloc-
ities of about one order of magnitude (i.e., up to veloci-
ties larger than 100  m/s), due to a drop in the magma 
viscosity.

We can compare our estimates with those reported in 
Table 2. Many studies hypothesize very short timescales 
of magma ascent, based on estimations built on differ-
ent processes that could happen during magma ascent 
or could cause the ascent itself. As an example, short 
timescales for magma ascent, i.e., in the range between 
a few hours and up to ~ 10  days, have been estimated 
by many authors (Arzilli et  al. 2016; Astbury et  al. 
2018; D’Oriano et al. 2005; Fabbrizio and Carroll 2008; 
Pappalardo and Mastrolorenzo 2012; Perugini et  al. 
2010). Considering a reservoir at a depth of ~ 9 km, the 
reported timescales translate into ascent rates between 
100 (i.e., a magma that rises in 2  h and half ) and 
10–2  m/s (i.e., for a magma that rises in ~ 10  days). As 
displayed in Fig.  4, a velocity in the order of 10–2  m/s 
can account for all compositions with an overpres-
sure of 5 MPa. Increasing the overpressure to 10 MPa 
magmas  would easily  achieve velocities on the order 
of  10–1  m/s and on  the order of × 100  m/s  with an 
increase in the water content.

Role of volatiles in syn‑eruptive dynamics
The evolution of the Agnano Monte Spina Eruption (i.e., 
the reference eruption for large-size events) after its 
onset has been detailed and modeled by Romano et  al. 
(2020). They combined field, chemical, and sedimen-
tological investigations to constrain a numerical model  
investigating the role of volatiles on the different tran-
sitions between sustained and collapsed columns. In 

detail, Romano et  al. (2020) found that changes in the 
initial water content and minor compositional changes 
mainly explain different intensities and different volumes 
observed through the eruptive sequence characterizing 
the Agnano Monte Spina eruption. Also, changes in the 
magma water content explain a sudden drop in magma 
ascent rates and column collapse episodes that occurred 
during the A-MS eruptions.

The role of shallow reservoirs
As we reported above, shallow magma reservoirs have 
been identified as actively involved in pre-eruptive 
dynamics at  the CFC (e.g., Arienzo et  al. 2009, 2010; 
Fourmentraux et  al. 2012; Astbury et  al. 2018; Fedele 
2022; D’Antonio et al. 2022). They often point to mixing 
events whereby the feeding of a shallow reservoir by vol-
atile-rich, less differentiated magma from deeper crustal 
levels shortly precede the eruption. The dynamic evolu-
tion of a shallow magma chamber (2–4 km) fed by sho-
shonitic magmas has been numerically investigated by 
Montagna et al. (2022) and Montagna et al. (2015). The 
main aim was to unravel magma mixing dynamics and 
homogenization timescales. They modeled the two mag-
matic reservoirs hosted at a depth (considering the top of 
the reservoir) of 8 and 3 km, respectively. The modeling 
reported in Montagna et  al. (2022) simulated the injec-
tion of a CO2-rich, shoshonitic magma coming from the 
deep reservoir into the shallower system hosting a par-
tially degassed phonolitic magma. These simulations 
reveal several interesting results: (1) soon after the begin-
ning of the simulations, discrete plumes of light magma 
start rising through the shallow reservoir developing 
complex velocity fields and then reaching the top of the 
system; (2) the rising plumes are produced by the mixing 
of the two magmas, i.e., with 30–50 wt.% of deep compo-
nents; (3) a complex pattern developed during the simu-
lations, allowing the rapid mixing between the magmas; 
(4) compositional, density, and gas volume stratification 
occur inside the shallow system, with the maximum 
gas volumes at the top of the chamber; (5) the numeri-
cal modeling proposed by (Montagna et  al. 2015, 2022) 
highlights that, at the  CFC, shallow chamber replenish-
ment shows typical mixing time scales on the order of a 
few hours.

Volcanological implications
Table 2 and Fig. 5 point to a wide spectrum of proposed 
timescale estimates for pre-eruptive dynamics occur-
ring at the CFC. They range from minutes to hours for 
fast evolving mixing-to-eruption events (e.g., Perugini 
et  al. 2015) to ~ 10 ky for the building up of eruptible 
magmas feeding large eruptions (e.g., Arienzo et al. 2011; 
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Bonechi et al. 2022). These timescales agree with a trans-
crustal magmatic system whereby the assembly of erupt-
ible magmas occurs at long timescales but pre-eruptive 
processes may occur at medium (e.g., years to decades; 
Pelullo et al. 2022a; Iovine et al. 2017) or short timescales 
(e.g., Perugini 2021; Astbury et al. 2018).

As an example, Fig.  5 assumes magma ascent veloci-
ties as resulting from our modeling based on the magma-
driven ascending dyke theory. Figure 5 depicts a magma 
plumbing system characterized by a main deep magma 
reservoir stored at ~ 8–9  km. The deep magmatic reser-
voir could directly feed an eruption (Fig. 5, left scenario) 
or interact with shallow magmatic systems (Fig. 5, right 
scenario). To note, the results of our modeling point to a 
rapid increase of ascent velocity at the beginning of the 
ascent path followed by a plateau. Therefore, final ascent 
velocities are close for both deep (~ 9  km) and shallow 
(3–4  km) reservoirs. As an additional consideration, 
shallower systems are expected to host more-evolved 
magmas (i.e., phonolitic and trachytic) than deep-seated 
reservoirs (where magmas tend to evolve from shosho-
nitic to phonolitic and trachytic compositions; Bonechi 
et  al. 2022). Therefore, the results of modeling under 
the same boundary conditions point to higher ascent 
velocities for deep-seated reservoirs, where magmas are 

expected to be less viscous, than for shallower systems. 
The above considerations lead to a first conclusion: con-
siderably fast ascent velocities (i.e., units to tens m/s) can 
characterize eruptions fed by both shallow (i.e., 3–4 km) 
and deep (i.e., ~ 9 km) reservoirs, if characterized by both 
shoshonitic and trachytic magmas with an excess of pres-
sure of at least 10 MPa and H2O content of ~ 4 wt.%. The 
volatile budget also plays a significant role in modulat-
ing syn-eruptive dynamics as reported by Romano et al. 
(2020). Changes in the volatile budget allow explain the 
variations in intensities and volumes observed through 
the eruptive sequence (Romano et al. 2020; Moretti et al. 
2019).

Regarding the evolution of shallow portions of the CFC 
volcanic plumbing system, the progressive concentration 
of volatiles in the silicate melt could trigger an eruption 
after saturation was eventually achieved (e.g., Stock et al. 
2016; Petrelli et al. 2018). Under this scenario, the refill-
ing of the system by a new batch of magma would not 
necessarily culminate in an eruption because the arrival 
of a new mafic magma might be more volatile-undersat-
urated than the evolved melts within the upper crustal 
reservoir (Stock et  al. 2016). As a result, the process of 
magma mixing would ‘dilute’ the dissolved volatile con-
tent of the silicate melt, returning the system to a more 

Fig. 5  Analogies and differences between two possible models for plumbing system of CFC. The two scenarios can be seen as end-members of an 
intermediate, variable actual arrangement of the plumbing system
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undersaturated state (Stock et al. 2016). However, as we 
have summarized, many records point to a direct involve-
ment of magma mixing in pre-eruptive dynamics at CFC 
which suggests a role as eruption trigger (e.g., Perugini 
et  al. 2015). Fast ascent velocities and short timescales 
of mixing-to-eruption events also suggest that explosive 
eruptions could begin with little physical ‘warning’, on 
the order of hours to days. Diffusion modelings in crys-
tals also point to longer timescales on the order of years 
to decades (Iovine et  al. 2017; Pelullo et  al. 2022a). To 
reconcile these large heterogeneities in mixing-to-erup-
tion timescales, we propose, in agreement with Pelullo 
et al. (2022a), that deep and shallow reservoirs were con-
nected with the transfer of magma between them over 
decadal timescales. Different recharging events, over 
decadal timescales, have been recorded by crystal zon-
ing as reported by Pelullo et  al. (2022a). In agreement 
with Pelullo et al. (2022a) and Stock et al. (2016), a sin-
gle mixing event does not necessarily trigger an eruption. 
Notably, volatiles always play a significant role (e.g., Mas-
trolorenzo and Pappalardo 2006; Chiodini et  al. 2015; 
Montagna et  al. 2015; Stock et  al. 2016; Astbury et  al. 
2018; Forni et al. 2018a; Pelullo et al. 2022a). Finally, rapid 
mixing-to-eruption timescales (i.e., minutes to days) 
refers to the last recharging event that destabilizes the 
magmatic system if acting in conjunction with an associ-
ated degassing event, creating the ideal conditions for an 
eruption to be triggered (e.g., Pelullo et al. 2022a).
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