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Abstract 

Single-molecule localization microscopy (SMLM) breaks the optical diffraction limit by numerically localizing sparse 
fluorescence emitters to achieve super-resolution imaging. Spectroscopic SMLM or sSMLM further allows simultane-
ous spectroscopy and super-resolution imaging of fluorescence molecules. Hence, sSMLM can extract spectral fea-
tures with single-molecule sensitivity, higher precision, and higher multiplexity than traditional multicolor microscopy 
modalities. These new capabilities enabled advanced multiplexed and functional cellular imaging applications. While 
sSMLM suffers from reduced spatial precision compared to conventional SMLM due to splitting photons to form 
spatial and spectral images, several methods have been reported to mitigate these weaknesses through innovative 
optical design and image processing techniques. This review summarizes the recent progress in sSMLM, its applica-
tions, and our perspective on future work.
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1  Introduction
The resolution of light microscopy has long been con-
strained by the optical diffraction limit [1]. The diffrac-
tion limit states that two objects cannot be distinguished 
from each other using a light microscope if they are 
separated by less than roughly half the wavelength of the 
probing light. This limit is the consequence of the opti-
cal point spread function (PSF), the diffraction pattern 
formed by light from a point source when a lens collects 
it and focuses on a detector. In a standard light micro-
scope, the PSF is shaped as an airy disc with its full-
width-at-half-maximum (FWHM) defined by the Abbe 
limit

where � [nm] is the wavelength of the detected light; n 
[dimensionless] is the refractive index of the medium 
through which an object is imaged; and θ [°] is the col-
lection angle of the lens. An image acquired by a diffrac-
tion-limited microscope may be considered the ground 
truth convolved with the PSF of the optical system. As an 
Airy disc somewhat resembles a 2D Gaussian function, 
diffraction-limited imaging can be treated as blurring 
the true image by a Gaussian kernel. Super-resolution 
microscopy describes any light microscopy technique 
that breaks the diffraction limit. In practice, it gener-
ally applies to fluorescence microscopy [2], although 
researchers have reported several label-free super-resolu-
tion microscopy technologies [3–6].

Structured illumination microscopy (SIM) achieves 
super-resolution by illuminating a sample with patterned 
light in various orientations to extend the sampled Fou-
rier space with higher spatial frequency components 
[7]. Stimulated emission depletion (STED) microscopy 
achieves super-resolution by illuminating the sample 
with an excitation beam and a donut-shaped depletion 
beam, resulting in an effective focal spot with a diameter 
below the diffraction limit [8, 9].

Single-molecule localization microscopy (SMLM) 
describes a group of super-resolution techniques that 
improve imaging resolution by sparsely sampling fluores-
cent labels. Stochastic optical reconstruction microscopy 
(STORM) uses fluorophores that undergo photoswitch-
ing (or blinking) when imaged under high-intensity light 
in an oxygen-scavenging buffer [10]. In each frame of a 
STORM image, only a sparse subset of fluorophores 
emits light, forming several distinct PSFs on the detector. 
These PSFs are generally approximated by a 2D Gauss-
ian function, whose peak is considered the true  loca-
tion of the fluorophore. An algorithm goes through each 
frame of STORM data and fits a 2D Gaussian function 

(1)FWHM =
�

2n ∗ sin(θ)
,

to each PSF in every frame using a fitting regime, such 
as maximum likelihood estimation (MLE), to estimate 
the location of each fluorophore with sub-diffraction 
limit precision [11]. The algorithm then visualizes all 
the localized fluorophores in a 2D [10, 12] or 3D [13, 14] 
histogram.

Researchers demonstrated multicolor SMLM using 
one or more dichroic mirrors in the detection path to 
separate the emission photons into different color chan-
nels [15], using sequential activation pulses of different 
wavelengths [16, 17], or using sequential labeling [18]. 
However, these methods are analogous to diffraction-
limited multicolor microscopy [19–21] and do not take 
full advantage of the single-molecule sensitivity enabled 
by SMLM. Broeken et al. used a spatial light modulator 
(SLM) to engineer a Gaussian PSF with spectra diffracted 
on either side [22]. They subsequently demonstrated that 
they could encode axial information in the orientation of 
the spectra [23]. However, introducing an SLM led to sig-
nificant photon loss, and the spectral features were com-
pressed into a small space near the PSF center, limiting 
spectral precision.

Between 2015 and 2016, several groups demonstrated 
spectroscopic SMLM (sSMLM), which refracts each 
single-molecule image using a dispersive element to 
simultaneously capture the locations of single-mole-
cule emissions and their spectra [24–27]. In sSMLM, 
each frame contains two simultaneously acquired 
images: a spatial image containing molecules’ PSFs, 
and a spectral image containing their correspond-
ing spectra (Fig. 1a). The spectral image can reveal the 
species of each fluorescent molecule based on its spec-
tral position and shape (Fig.  1b, c). Researchers have 
implemented sSMLM in several ways, such as using a 
diffraction grating (Fig. 2a), a beam splitter and a prism 
(Fig. 2b), or using two objectives with a prism (Fig. 2c). 
In this review, we summarize different configura-
tions of sSMLM and discuss their respective strengths 
and weaknesses. We also discuss the applications of 
sSMLM in multicolor cellular imaging, polarity-sens-
ing, and chemical conformation detection. Then we dis-
cuss image processing techniques to enhance sSMLM, 
including machine learning. Lastly, we discuss future 
directions of sSMLM with a particular focus on multi-
color single particle tracking (SPT).

2 � Implementations of sSMLM
In 2016, our group introduced the first grating-based 
sSMLM [25] (Fig.  2a), using the zeroth-order beam 
for spatial imaging and the first-order beam for spec-
tral imaging. One drawback of grating-based sSMLM 
was limited efficiency. As we reported previously, 49% 
of the emitted photons went to the zeroth-order beam, 
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21% went to the first-order beam, and 30% of the pho-
tons were attenuated by the grating and were not used 
for image reconstruction [28]. Losing photons in sSMLM 
led to reduced spatial and spectral precisions. Another 
drawback of this implementation was that the grating’s 
diffraction angle and the field of view (FOV) were inher-
ently coupled. When reducing the desired spectral dis-
persion, the smaller diffraction angle also reduced FOV.

Moon et  al. introduced single-objective prism-based 
sSMLM (Fig.  2b) [28], which used a beam splitter (BS) 
first to split the emitted photons into two beams, one for 
spatial imaging and one, after passing through a prism, 
for spectral imaging. While this method avoided photon 
loss induced by the grating, it still suffered from a sub-
stantial photon loss caused by the much-increased num-
ber of air-glass interfaces than grating-based sSMLM. 
Unlike grating-based sSMLM, single-objective prism-
based sSMLM requires a BS and an additional mirror 
in the detection path. For example, if we assume a 30:70 
splitting ratio by the BS, the spectral beam efficiency is 
comparable to, and the spatial beam efficiency is slightly 
higher than the grating-based sSMLM using the same 

splitting ratio. However, the grating-based sSMLM used 
only a single component, yielding a much simpler optical 
alignment and maintenance. In addition, grating-based 
sSMLM provides a linear spectral dispersion, making cal-
ibration and image processing more straightforward.

Zhang et  al. introduced a dual-objective prism-based 
sSMLM system (Fig. 2c) [24], where they used two objec-
tive lenses, one for spatial and one for spectral imaging. 
This 4-pi detection [29] collected twice as many photons 
as sSMLM using a single objective lens, leading to much 
improved spatial and spectral precisons. However, 4-pi 
systems are far more challenging to align and maintain 
and require a specialized optical setup, unlike the other 
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two that are mostly compitable with standard SMLM 
systems.

Since these initial reports, several groups introduced 
modified sSMLM implementations. Attempting to 
improve the spatial and spectral precisions of the grat-
ing-based sSMLM system, Song et  al. introduced sym-
metrically dispersed sSMLM (SDsSMLM) (Fig. 2d) [30]. 
Instead of having one spatial and one spectral beam, they 
used a grating to generate equally dispersed -1st and 1st 
orders resulting in two mirrored spectral images. The 
authors estimated the middle point of the centroids of 
each pair of spectral images to generate a virtual spa-
tial image. The authors further combined the two spec-
tral images with respect to the middle point for spectral 
analysis. This way, all collected photons collectively 
contributed to spatial localization and spectral analysis, 
improving both spatial and spectral precisions. However, 
it is challenging to fabricate a grating with minimized 
zeroth-order and higher-order diffractions and a trans-
mission loss of less than 15%.

Recently, Song et  al. introduced a dual-wedge prism 
(DWP)-based sSMLM. In DWP-based sSMLM, the 
authors assembled all optical components into a  single-
objective prism-based system that combined the advan-
tage of the low transmission loss in prism-based sSMLM 
and the compactness of grating-based sSMLM in a single, 
compact module, which can be easily inserted into the 
imaging path (Fig. 2e) [31]. The optical assembly included 
a beam splitter, a prism, and two wedge prisms. The pho-
tons passing through the beam splitter formed a spatial 
image, and the photons reflected by the beam splitter 
and the prism formed the spectral image after being 
dispersed by the two wedge prisms. As a result, DWP-
based sSMLM did not suffer from the high transmission 
loss caused by the grating and minimized the number 
of air-glass interfaces compared to existing prism-based 
sSMLM to achieve the highest photon utilization. In 
addition, unlike in grating-based sSMLM [25], the FOV 
of DWP-based sSMLM is independent of spectral disper-
sion [31].

Jeffet et  al. introduced an Amici prism-based sSMLM 
system [32], which allows the user to tune spectral dis-
persion by rotating one of the prisms (Fig. 2f ). One draw-
back of this implementation is that spatial and spectral 
imaging must be done sequentially. Users need to orient 
the prisms to achieve zero spectral dispersion for spatial 
imaging and then reorient them to achieve the desired 
spectral dispersion for spectral imaging. This weakness 
limits its applications to parallel particle tracking, where 
the particle locations change temporally, but spectra are 
relatively stable.

3 � Multiplexed imaging using sSMLM
Early demonstrations of sSMLM largely focused on mul-
ticolor cellular imaging [24, 33]. In particular, multicolor 
studies emphasized that sSMLM made it possible to pair 
fluorophores with similar spectral signatures, such as 
AF647 and AF660, with low cross-talk, due to its high 
spectral sensitivity [33]. Zhang et  al. [24] demonstrated 
4-color sSMLM cell imaging using fluorophores with 
highly overlapped emission spectra between 660 and 
710  nm (Fig.  3a, b). Having several fluorophores within 
the same spectral range makes it possible to perform 
simultaneous multicolor imaging using a single excitation 
wavelength and a single filter-set, considerably simplify-
ing the optical setup. Zhang et al. [33] performed multi-
color imaging using CF660 and AF647, and highlighted 
the importance of balancing the level of spectral disper-
sion with the intensity of emissions in order to maximize 
spectral precision and thereby minimize cross-talk.

Davis et al. [34] used sSMLM to differentiate between 
desired signals and fluorescent impurities in biologi-
cal samples [34]. They imaged unstained cover glasses 
and cells with and without poly-l-Lysine treatment and 
characterized their spectral and intensity characteristics, 
which they found were distinct from the desired signal. 
They then imaged a stretched lambda phage DNA sample 
labeled with YOYO. They compared the sSMLM image 
to the expected ground truth (a straight line) after apply-
ing various filtering strategies to generate an optimized 
filtering algorithm for impurity removal. They found that 
unfiltered and intensity-filtered images (Fig. 3c–f) had a 
wider spread of localizations around the stretched DNA 
than the spectrum-filtered image (Fig.  3g, h), indicating 
that spectrum-filtering was more successful at removing 
influence from fluorescence impurities.

4 � Polarity sensing using sSMLM and Nile red
Using the polarity-reporter dye Nile red (NR), which 
changes its emission spectrum in responding to the 
polarity of the surrounding environment, sSMLM can 
detect subtle changes in local polarity intracellularly. 
Similar to other benzophenoxazine dyes, NR is lipophilic 
[35] and is often used to label both external and internal 
cellular lipid membranes [27]. The sensitivity of NR to 
the polarity of the surrounding environment is a conse-
quence of the significant difference between the dipole 
moments of its ground and excited states. Specifically, 
the dipole moment of NR increases from ca. 9 to 14 D 
with excitation [36]. As a result, polar media stabilize 
the excited state, relative to the ground state, decreasing 
the energy gap associated with the radiative decay from 
the former to the latter state. The overall result is a red 
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shift in emission with an increase in solvent polarity. NR’s 
emission dynamics and reversible binding to lipids made 
it compatible with SMLM and point accumulation in 
nanoscopic topography (PAINT) [37].

Davis et al. [35] demonstrated that NR could label poly-
mersome nanocarriers that reversibly self-assemble from 
block copolymers. Polymersomes nanocarriers have the 
potential to deliver drugs or vaccines into intracellular 
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space. The structure of polymersomes is analogous to 
a lipid bilayer, with a non-polar segment insulated on 
both ends from the aqueous solution with a polar seg-
ment. Davis et al. showed that NR reversibly binds to the 
non-polar segment of polymersomes, enabling sSMLM 
to visualize the polymersomes at nano-scale resolution. 
They also showed that because the free-floating NR and 
NR bound to the PLL-coated cover glass experienced a 
different local polarity than NR bound to polymersomes, 

sSMLM detected the polarity-induced emission spectral 
shift (Fig. 4b) to reject unbounded NR signals.

Moon et  al. imaged NR using sSMLM to classify the 
properties of cellular lipid membranes [28]. In this study, 
PtK2 cell plasma membranes were labeled with NR after 
being treated with different concentrations of MβCB to 
deplete cholesterol or water-soluble cholesterol to enrich 
cholesterol (Fig. 4c–e). The authors showed that choles-
terol depletion was significantly correlated with lower 
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polarity based on the solvatochromic properties of NR 
detected by sSMLM [28]. They also detected low-polar-
ity, high-cholesterol rafts in the plasma membrane [28]. 
Danylchuk et  al. demonstrated a modified NR specific 
to plasma membranes as opposed to all cellular lipids 
with enhanced photoswitching properties [38]. They 
introduced a new membrane-targeting moiety based on 
an anionic sulfonate head group and an alipophilicalkyl 
chain. The authors then used sSMLM to map lipid orders 
on the plasma membrane of live COS-7 cells [38]. Yan 
et  al. performed sSMLM on COS-7 lipid membranes 
concurrently labeled with NR and BDP-TMR alkyne, 
both lipophilic fluorophores, to measure polarity and dif-
fusivity, respectively [39, 40]. The authors used the NR 
spectrum to measure polarity and lipid order [38], and 
used 1-ms excitation pulses at 560  nm to briefly excite 
BDP-TMR alkyne and measure displacement to calculate 
local diffusivity. The authors found that while diffusiv-
ity was generally correlated with lipid order, there were 
exceptions, such as endoplasmic reticulum peroxisome 
contact sites [39].

Several groups applied sSMLM and NR to classify 
materials’ surface properties. For example, Park et  al. 
characterized the nanoscopic properties, in particular, 
polarity, of polymer materials [41]. They spin-coated 
mixed polymer and NR solutions onto glass coverslips 
and used sSMLM to map the polarity of different poly-
mer materials. They found that polymer materials with 
a higher ratio blend of PIB to PVC exhibited more low-
polarity islands (Fig. 4f–i). Xiang et al. [42] and Kim et al. 
[43] investigated the polarity of adlayers  using sSMLM 
and NR. Xiang et al. immersed the coverslips in various 
organic solutions to form adlayers on coverslips. After 
adlayer formation, the authors immersed the coverslips 
in an aqueous NR solution for sSMLM imaging. They 
found that adlayers formed from more polar solvents 
caused greater redshifts in NR’s emission spectrum and 
visualized the adlayers’ structures [42].

5 � Detecting chemical properties of fluorescent 
molecules using sSMLM

When a mixture contains several isomers of a fluores-
cent molecule, each with a unique spectral signature, the 
spatial distribution of isomers is of great interest [44, 45]. 
However, standard multicolor imaging techniques either 
lack the sensitivity to differentiate spectral alterations or 
the sensitivity for spatial mapping at the single-molecule 
level. Thus, sSMLM can be an ideal tool to satisfy both 
the spectral and spatial sensitivity needs. Sansalone et al. 
[46] applied sSMLM to differentiate the conformational 

isomers of three BODIPY derivatives. The four co-exist-
ing conformational isomers (Fig.  5a) of each compound 
have all extended electronic delocalization, but differ in 
the relative orientation of the heterocyclic fragments at 
the termini of the ethyne bridge. Consistently, sSMLM 
reveals two main populations of emissive molecules with 
spectral-centroid distributions (Fig.  5b) centered at 593 
and 623  nm respectively. The former population was 
assigned to the two conformational isomers (ttc and ttt) 
differing only in the relative orientation of the BODIPY 
chromophore, with the aid of time-dependent density 
functional theory (TDDFT) calculations. The latter pop-
ulation was assigned instead to the two conformational 
isomers (ctt and ctt) differing in the orientation of the 
benzothiazole heterocycle, again on the basis of TDDFT 
calculations.

Kim et  al. applied sSMLM to study the isomerization 
of the nonfluorescent molecule spiropyran into the fluo-
rescent merocyanine (Fig.  5c) [47]. The authors found 
two populations of spectra (Fig.  5d), which they con-
jectured corresponded to two conformational isomers 
(TTT and TTC) of the merocyanine form. Similarly, 
Zhang et  al. used sSMLM to examine spectral hetero-
geneity in Rhodamine B, a fluorophore exhibiting large 
spectral heterogeneity [48]. They compared the spectral 
heterogeneity of Rhodamine B (RhB), which has a flex-
ible N,N-dialkylamino group, to that of Rhodamine 101 
(Rh101), which is structurally similar but with a rigid 
N,N-dialkylamino group. They found that Rh101 had 
lower heterogeneity, indicating that spectral heterogene-
ity in RhB could be caused by conformational changes of 
the N,N-dialkylamino group.

Researchers also applied sSMLM to characterize unla-
beled autofluorescent surfaces [49, 50], such as defects in 
hexagonal boron nitride (hBN) layers (Fig. 5e). Chemical 
vapor deposition of hBN can be an excellent insulating 
layer in nanoelectronics; however, any defects can be det-
rimental to its electrical properties [51]. These sub-dif-
fractional defects are hypothesized to be either nitrogen 
or boron vacancies, which Stern et al. observed emitting 
photons with a narrow wavelength range using sSMLM 
[49]. Stern et  al. further distinguished two species of 
defects (Fig. 5f ) based on the detected emission spectral 
signatures. Although electron microscopic technolo-
gies provide sufficient spatial resolution to resolve these 
defects, they cannot recognize the species of the defects, 
and their laborious sample preparation process often 
introduces new defects. However, further investigation is 
required to thoroughly understand the atomic structure 
of these defects [50].
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Fig. 5  a Structures of the four conformational isomers of a BODIPY derivative; b Scatterplot of the corresponding single-molecule emission 
intensity against the spectral centroid with the relative density of distribution; c Schematic of the optical configuration to detect the two isomers 
of merocyanine; d Spectral histogram showing the detection of two distinct populations of merocyanine. Reprinted with permission from [47]; e 
Illustration of the sSMLM imaging of emitters on hexagonal boron nitride; f Spatial image and spectrum of the two defects on hexagonal boron 
nitride (Reprinted with permission from [50])
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6 � Quantitative imaging 
and machine‑learning‑based analysis using 
sSMLM

The resolution of SMLM ultimately depends on how pre-
cisely a 2D Gaussian function can be fitted to each PSF. In 
2014, Rieger et al. published their seminal work [11] and 
described how localization precision could be estimated 
based on parameters of the fitted Gaussian, such as pho-
ton count and signal spreading [11]. The authors found 
that MLE fitting achieved the Cramer Rao lower bound 
(CRLB), meaning it is the best possible fitting method, 
assuming that a PSF can be approximated by a Gaussian 
distribution. Rieger et al. defined localization precision as

where

FEM [photons] is the gain noise from an EMCCD cam-
era; N [photons] is photon count per PSF; σ [nm] is the 
standard deviation of the fitted Gaussian function; a [nm] 
is pixel size; and b [photons] is background photons per 
pixel. Since parameters in this equation are estimated 
from the fitted Gaussian distribution, they each have 
their own uncertainties [11].

Spectral precision follows a similar principle; however, 
additional parameters, such as spectral dispersion that 
causes additional signal spreading, must be considered. 
Song et al. [52] defined spectral precision as

where s�[nm] is the standard deviation of the spectral PSF 
in the direction of spectral dispersion; sy [pixels] is the 
spread of the spectral PSF in the non-dispersed direction; 
nro [photons] is readout noise per pixel; �� [nm/pixel] is 
the spectral dispersion; B [photons] is background noise 
per pixel; �y [nm/pixel] is the pixel size in the spatial 
domain. Based on this definition, Song et  al. identified 
the ideal spectral dispersion for a given experimental 
setup and the expected signal-to-noise ratio (SNR). This 
ideal spectral dispersion is a trade-off between the error 
from signal spreading caused by wide spectral disper-
sion and the error from spectral shift caused by a narrow 
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dispersion. However, this uncertainty equation only 
applies to the spectral centroid as calculated using the 
weighted mean centroid method reported by Zhang et al. 
and Song et  al. [24, 52]. Meanwhile, other groups have 
reported using Gaussian fitting to identify the spectral 
centroid [27]. However, no studies have quantitatively 
compared these two methods. Martens et al. reported a 
higher emitter density, higher spectral SNR, and better 
temporal resolution than other sSMLM implementations 
using a narrow spectral dispersion; however, this may 
introduce a higher spectral shift error [53].

Several studies attempted to improve spatial and/
or spectral precision in sSMLM using machine learn-
ing. Zhang et al. [54] reported a neural network-based 
spectral classification in multiplexed sSMLM imag-
ing, reducing the cross-talk among different spectral 
bands compared to the weighted spectral centroid 
(Fig. 6a). Because sSMLM splits emitted photons into 
spatial and spectral images, a higher percentage of spa-
tial localizations must be discarded in sSMLM than 
in SMLM to maintain a comparable spatial precision. 
Furthermore, due to signal spreading along the spec-
tral dispersion axis in the spectral image, a greater 
sparsity is also required in sSMLM. Hence, sSMLM 
usually needs more frames and longer acquisition 
time than traditional SMLM. Gaire et  al. developed a 
machine-learning method to address this limitation 
[55]. They acquired high-density sSMLM datasets, 
then generated a low-density image from a fraction 
of the acquired datasets. They first trained a neural 
network using low-density images and optimized it to 
generate output resembling the high-density images 
(Fig. 6b). Then, they used the network to predict high-
density images from low-density acquisition, reduc-
ing the data acquisition time. Manko et  al. developed 
spectrally-resolved U-net (srUnet), a neural network 
to improve the SNR from noisy spatial and spectral 
PSFs (Fig. 6c), and showed improved spatial and spec-
tral precisions after SNR improvement [56] (Fig. 6d, e).

7 � Single particle tracking using sSMLM
Single particle tracking (SPT) has long been associ-
ated with SMLM [57–59]. When tracking a fluores-
cent particle, Gaussian fitting of the imaged particle 
could identify the particle’s location with super-res-
olution precision when the particle size is below the 
optical diffraction limit. Huang et  al. demonstrated 
3-color SPT on the plasma membrane using sSMLM 
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in live U2OS cells [60]. They used CF633, CellMask 
DR (peak absorbance 669  nm), and CF680R (Fig.  7a, 
b), conjugated to WGA (a probe that targets glycopro-
teins), a membrane anchor, and HT (a probe that tar-
gets transferrin receptors). The authors first attached 
the fluorophores to the plasma membrane and tracked 
them diffusing across the membrane simultaneously 
(Fig. 7c).

Butler et  al. [61] and Dong et  al. [62] showed 3D 
spectroscopic SPT of quantum dots (QDs) using 
sSMLM (Fig.  7d, e) [61, 62]. Based on spatial infor-
mation only, traditional SPT cannot differentiate two 
particles if they happen to overlap spatially within one 
or more frames, and there is no method to confidently 
assign their post-crossing trajectories to their corre-
sponding pre-crossing trajectories [59]. Brenner et  al. 
[63] developed a tracking algorithm designed explic-
itly for spectroscopic SPT. They used the spectrum 
to tag each particle so that the post-crossing trajecto-
ries could be assigned to their respective pre-crossing 
trajectories based on the particles’ spectral centroids. 
Because of the high sensitivity of sSMLM and the high 

spectral heterogeneity of QDs, this spectral-tagged 
SPT worked when both QDs were of the same species 
(Fig. 7f, g). Furthermore, they showed that combining 
spectral tagging with the trajectory constructed from 
the spatial locations improved the tracking precision 
(Fig. 7h, i) [63].

8 � Prospectives of spectroscopic SPT using sSMLM
Although several groups demonstrated the feasibility 
of spectroscopic SPT using sSMLM in various samples, 
there has been  a lack of practical studies to investigate 
biological questions. Here, we provide our perspective 
on future applications of spectroscopic SPT to biological 
research.

One potential application of spectroscopic SPT is elu-
cidating the signaling pathways that occur as T-cells 
become activated and bind to their targets via T-cell 
receptors (TCR). This topic is particularly interesting to 
clinical scientists exploiting the mechanism to generate 
chimeric antigen receptor (CAR) t-cells, which can target 
cancer cells and are used in cancer therapy [64]. Ito et al. 
used simultaneous 3-color diffraction-limited imaging 
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and single-color SPT to elucidate the TCR activation pro-
cess [65]. The authors labeled CD45, CD3ζ, and CD3ε 
(molecules involved in T-cell activation) in immobilized 
Jurkat T-cells and imaged them. They then sequentially 
tracked CD3ε and CD45 and found two diffusion states 
(fast and slow) existed within TCR microclusters. This 
study could be improved by spectroscopic SPT using 
sSMLM to determine whether these diffusion states are 
spatially correlated with TCR and linker for activation of 
T-cells (LAT) protein domains, which are only detect-
able using super-resolution imaging [66]. Another study 
showed that upon the formation of a synapse between a 

CAR-TCR and its target, cytotoxic granules converge at 
the microtubule organizing center and are later expelled 
via exocytosis into the target cell [67]. Applying multi-
plexed spectroscopic SPT could determine whether the 
granules are being transported by the microtubule or 
converging from cytokine signaling and could simultane-
ously track other proteins, such as phosphorylated lym-
phocyte-specific protein tyrosine kinase (phospho-Lck), 
essential to synapse formation [68]. These proteins’ tra-
jectories could be further determined with super-resolu-
tion with the TCR locations.

a cb

d e

f g

6894 Localizations
477 Tracks

No
rm

al
ize

d 
In

te
ns

ity

1.0

0.5

0
Wavelength (nm)

600                                  800 Spectral shift distance (ssd, pixel)
-2    0     2    4     6    8   10  12

0.4

0.3

0.2

0.1

0Pe
rc

en
t t

ot
al

 e
ve

nt
s (

%
) Experiment

Fitting, single
Fitting, sum
Kept events

CF633     DR         680R

h

Photon Count  x103

t(ms)
2200

0 Sp
at

ia
l P

re
cis

io
n 

(n
m

)

x position (px)Frame Number

y 
po

sit
io

n 
(p

x)

W
av

el
en

gt
h 

(n
m

)

Fig. 7  a Average emission spectra of CF 633, CellMask DR, and CF680R; b Histogram of identified spectral centroids showing each fluorophore 
species resolved into a separated spectral peak. c Multiplexed SPT in U2OS cells. Reprinted with permission from [60]; d Illustration of sSMLM 
tracking two Qdot species; e Trajectories for two-color QD tracking with spectrally informed trajectory assignments. Reprinted with permission 
from [61]. h improved spatial precision by integrating spatial information from the spectral image in the tracking trajectory; f, g spectral tagging of 
individual quantum dots to separate trajectories with spatial overlapping (Reprinted with permission from [63])



Page 12 of 14Brenner et al. Nano Convergence           (2023) 10:14 

Moon et  al. tracked single mRNAs labeled with a 
fluorophore-attached HALO tag as the mRNAs moved 
between ribonucleoprotein granules (clusters of pro-
teins and RNA that form when the cell is stressed) and 
P-bodies [69]. They found that, as opposed to translat-
ing mRNAs, non-translating mRNAs formed more long-
lasting interactions with the granules, indicating that the 
untranslated region of mRNA formed higher-valency 
interactions with the ribonucleoprotein granules. Such 
a higher-valency interaction may be a mechanism for 
protecting untranslated mRNA when the cell is stressed. 
A follow-up study using sSMLM can perform spectro-
scopic SPT to track specific mRNA sequences that are 
either repressed or upregulated in response to stress.

Another group used SPT to show the intake of HIV-1 
into cells via endocytosis [70]. The authors postulate 
that HIV-1 may rely on unidentified endosomal factors 
to undergo fusion with the cellular plasma membrane. 
Using sSMLM, researchers may perform spectroscopic 
SPT to simultaneously track several endosomal factors 
and HIV-1 as it fuses with a cell. The endosomal factors 
involved in HIV-1 fusion could potentially be identified 
based on imaged proximity and length of interaction. 
These endosomal factors could then be targets in HIV-1 
therapies.

9 � Discussion and conclusion
Despite the strengths mentioned above, sSMLM also has 
several weaknesses. First, sSMLM suffers from a limited 
temporal resolution. The sparsity requirement for spatial 
localization means that a large number of frames are nec-
essary to generate an image that is well-populated with 
localizations. As a result, sSMLM’s applications to live 
cells are limited, especially when a temporal resolution 
higher than one minute is required [71]. A few groups 
attempted to improve the temporal resolution by intro-
ducing multi-emitter fitting algorithms, which relax the 
sparsity constraint by fitting overlapping PSFs [71–73] 
and demonstrated SMLM imaging of relatively fast-
paced events in live cells [71]. To our knowledge, how-
ever, no groups attempted to implement this algorithm 
for sSMLM. One challenge is that in the spectral images 
acquired by sSMLM, each fluorophore species has a 
unique spectral shape, making it challenging to apply a 
universal PSF template to fit overlapping PSFs. This chal-
lenge is further complicated by spectral heterogeneity, 
where each fluorophore has a unique spectral signature, 
even if they are of the same species [28, 48]. One solu-
tion to this challenge could be adapting super-resolution 
optical fluctuation imaging (SOFI), which does not rely 
on any PSF template, but instead adjusts the intensity of 

each pixel according to its level of intensity auto-corre-
lation throughout the acquisition [74]. However, while 
SOFI results in super-resolution images, it does not local-
ize each molecule individually. Therefore, if implemented 
in sSMLM, there would be a loss in single-molecule sen-
sitivity, which has been a major benefit of sSMLM [35, 
47, 75].

Second, the methods to identify the spectral centroid in 
sSMLM image reconstruction are currently fragmented, 
either using Gaussian fitting [27] or the weighted mean 
[24, 52]. It is unclear which method yields higher spec-
tral precision. While Song et al. [52] derived an analytical 
expression for the spectral precision using the weighted 
mean method, there has been no study to compare it 
with Gaussian fitting. One potential concern about the 
Gaussian fitting method is that a fluorophore’s emission 
spectrum may not resemble a Gaussian profile as much 
as a spatial PSF. A library containing all commonly used 
single-molecule emission spectra in SMLM, which estab-
lishes the gold standard for spectral fitting, could benefit 
the broader sSMLM field.

In addition, existing molecule labels are primarily 
designed for traditional SMLM, where the maximum 
number of multiple labels is usually four or fewer [24, 
31, 33, 54]. Both multiplexed super-resolution and spec-
troscopic SPT can significantly benefit from specially 
designed fluorophores that enable highly multiplexed 
(> 10) molecular labeling. Moreover, new fluorophores 
that alter emission spectra responding to more local 
environmental parameters will enable a broader range of 
functional imaging beyond polarity sensing.

In conclusion, the utility of sSMLM has already been 
proven in a remarkable breadth of biological and chemi-
cal applications, including multicolor cellular imag-
ing [24, 33], polarity sensing [27, 28, 35, 38], chemical 
characterization [46–48], and multiplexed SPT [60–62]. 
However, due to a lack of standardization in optics [24, 
28, 31] and image processing techniques [25, 27, 52], 
reduced spatial precision compared to SMLM [25, 28, 
30, 55], and a lack of spectrally optimal fluorescent labels 
[76], the technology has yet to achieve its full potential.
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