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Introduction
Adhesive bonding is a cost effective and weight efficient method to join materials. It also 
provides a lower weight, more versatile, corrosion resistant and fatigue resistant alterna-
tive to bolting and riveting [1] which makes it highly attractive in the automotive and 
aeronautical industries. The need of fuel efficiency and higher speed vehicles have made 
the use of composite materials popular. Joining composite parts with conventional meth-
ods such as bolting or riveting causes defects such as de-laminations often caused during 
the hole drilling process [2]. Adhesive bonding helps to eliminate this issue. Joints can be 
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fabricated in various configurations and single lap joints are widely used due to their 
efficiency and simplicity [3] and often employed when testing adhesive bond properties.

Despite its benefits, adhesive bonds are prone to defects. Common defects in adhesive 
bonding are voids, inclusions, kissing bonds and cracks, all of which cause a reduction 
in joint strength [1]. Many researchers have studied the effect of defects on the strength 
of adhesive joints. An initial study on the effect of bond line defects such as gaps and 
flaws was performed by Hart-Smith [4]. Heslehurst [5] classified defects into two broad 
categories, de-bonds and weak bonds, and used holographic interferometry to identify 
them. Berry et al. [6] investigated the effect of circular defects, centered along the bond 
length, on joint strength. Moura et  al. [7] studied the effect of strip defects, centrally 
placed along the overlap length and across the width, on joint strength. They found that 
as the size of the defect along overlap increases, the bond strength reduces due to the 
higher stresses generated towards the end of the overlap. Engerer et al. [8] studied ‘band’ 
lap joints under tensile loading. Band lap joints are formed using intermittent layers of 
adhesive over overlap length or area [9].

Ultrasonic testing is a widely used nondestructive method for detecting flaws within a 
material and at material interfaces [10]. Ultrasonic measurements are made by transmit-
ting and receiving high frequency sound waves [11]. Analysis of the measured data pro-
vides results which can help identify the presence of material boundaries and/or defects 
[12]. Pulse echo techniques have been widely used for the inspection of bonded joints 
especially when defects such as voids or cracks are involved since it does not require 
access to both sides of the joint [13]. One of the earlier works using the pulse echo ultra-
sound technique was done by Tattersall [14] in which weak bonding along the inter-
face was detected. Shiuh-chan Her and Yi-Chun Li [15] used ultrasound to detect weak 
bonds with an epoxy adhesive by varying hardener mixing ratios using the differences 
in frequency response to evaluate the interfacial stiffness, which was used to find the 
bond strength by correlation. De Freitas et al. [16] used acoustic emission to detect weak 
bonds by monitoring the de-bonding mechanisms in mode I loading using a double 
cantilever beam test. Various other researchers have used ultrasound to study adhesive 
bonds [17–20]. Korzeniowsk [21] for example used ultrasound to detect the shape and 
size of defects which were embedded in the adhesive bond. It was done using the differ-
ence in the intensity of sound reflected from the interface, using A-scan data, depending 
on whether the adhesive is present at the interface. The current study used ultrasonic 
C-scans for detecting shape and size of adhesive coverage which gave a better resolution 
of the adhesive distribution.

Gaps in the bond line frequently occur due to a lack in adhesive coverage and are 
therefore often treated as a defect [22]. These gaps cause the applied load to be re-dis-
tributed to the surrounding adhesive thus increasing local stress in these regions [23]. 
Bonding equipment such as fixtures are recommended when adhesives require proper 
contact pressure and/or heat application [24]. An improper selection or design of bond 
joint fixturing or negligence on the part of the technician during the application process 
can produce improper adhesive coverage in the bond overlap region especially when liq-
uid and paste adhesives are employed. A loss of bond coverage during fabrication can 
cause gaps in the bond region that are not able to transmit the required stresses between 
the adherents. The current study focusses on such scenarios where the adhesive does 
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not cover the entire region of the bond area. The shape of the adhesive coverage was 
defined by pre-determined circular and elliptical shape using Polytetrafluoroethylene 
(PTFE) sheet cut-outs, as these shapes are natural when a viscous fluid spreads on a sur-
face under pressure. Prior to bond testing, the bond region was scanned ultrasonically 
to determine the actual adhesive distribution shape which was then correlated to the 
expected shape and size of the adhesive after the tensile tests. Further, the scan data can 
be used to generate 3-D (Three dimensional) models for Finite Element analysis.

Experimental work
Joint fabrication, dimensions and testing

The adherents used in the study were taken from woven carbon-fiber composite lami-
nate plates composed of plain weave carbon fiber fabric in a two-part epoxy (Proset INF-
114/INF-211) matrix. The composite plates were fabricated in house using a vacuum 
bagging and resin infusion process. The carbon fiber weaves were laid up in [0/+ 45/0]3 
configuration, consisting of 9 layers in total. The manufacturer recommended cure 
cycle was followed. Test coupons were sectioned from the laminated composite using 
a circular tile saw. Single lap joints were made for testing following the configuration as 
detailed in Fig. 1. The lap joint design samples were based on ASTM (American Soci-
ety for Testing and Materials) D-1002 standard [25]. All joints had an adherent overlap 
region of area of 25.4 × 25.4 mm. A two-part epoxy adhesive (Fiber Glast 1101, Ohio, 
United States) was used for bonding. The adherent surfaces were prepared trough abra-
sion using a 320 grit sand paper on an orbital sander followed by an iso-propyl alco-
hol wash based on the adhesive manufacturers recommendation. PTFE films of 0.2 mm 
thickness were cut to form the bond joint templates appearing in Fig. 2b. The PTFE film 
also acted as a spacer for maintaining a bond line thickness of 0.2 mm. Bond joint test 
samples were then fabricated using a fixture to maintain a controlled contact and speci-
men straightness through the adhesive cure cycle. The PTFE film templates remain in 
the bonded region after curing of the adhesive, but as they cannot bond with epoxy 
resin, they carry no shear load, and this does not contribute to the load carrying capacity 
of the overall bonded region. The test samples prepared for the bond joint lap shear tests 
are detailed in Table 1. The part number for each of the configurations is enclosed in a 
bracket along-side each entry in the table for ease of identification during discussion. 
Test samples were made with bonds having circular shapes and elliptical shapes, with 
two different orientations and three different sizes, in addition to a bond samples with 

Fig. 1  Single Lap joint configuration and dimensions used for the experiments
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full coverage. The tensile bond lap shear testing was performed at room temperature 
using an MTS Q-Test 100 tensile testing machine having a load cell rating of 100 KN and 
at a loading rate of 0.02 mm/s based on the ASTM D-1002 standard [25].

Ultrasonic scanning

A custom in-house immersion ultrasonic scanning system paired with a custom Lab-
View code is used to scan the bonded laminates. For the present study, a 10 MHz 0.5 in 
spherically focused ultrasonic immersion transducer (Olympus, Massachusetts, United 
States) with a 38 mm (1.5 in.) nominal focal length was employed. A pulser/receiver (US 
Ultratek, California, United States) is used to sample the ultrasonic signal at a rate of 
160 MHz. The transducer is mounted to translation stages (Velmex, New York, United 
States). A parallel coupled Bi-slide provides motion in the X1-axis (index direction) and 
a single Bi-slide provides X2-axis (scan direction) motion. Both the X1-axis and X2-axis 
have a resolution of 0.0013 mm/step however a raster resolution of 0.2 mm/scan loca-
tion was used for all the scans in the current study. The ultrasonic transducer frequency 
and resolution were selected based on previous experience [26] and determined to pro-
vide adequate resolution to capture the features. The X3-axis of the translation stage has 
a resolution of 0.0013 mm/step and is used to manually focus the transducer prior to 

Fig. 2  a Ultrasonic scan path and direction and b PTFE cut-outs used to produce the required adhesive 
shape

Table 1  Summary of experimental trials (joint identification in brackets)

All dimensions in mm

a—length along overlap length, b—distance along width

Size level 1 Size level 2 Size level 3

Complete coverage 25.4 × 25.4
(R)

Circular Diameter 25.4
(C1)

Diameter 19.05
(C2)

Diameter 16.35
(C3)

Elliptical orientation 1 a = 25.4, b = 19.05
(E1-1)

a = 25.4, b = 12.7
(E1-2)

a = 25.4, b = 6.35
(E1-3)

Elliptical orientation 2 a = 19.05, b = 25.4
(E2-1)

a = 12.7, b = 25.4
(E2-2)

a = 6.35, b = 25.4
(E2-3)
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scanning. Adjustable levelling feet as shown in Fig. 3 are used to level the specimen so 
that its top surface is normal to the axis of the transducer during the entire scan. Fig-
ure 3 shows the top view of the immersion scanning setup. Figure 4a shows a schematic 
representing the various components of the scan setup and Fig. 4b describes the scan-
ning process. The scanning axes and path are shown in Fig. 2a. The origin is defined as 
the point where the scan starts.

Results and discussions
Joint strength tests

Lap shear tests on a full coverage bond samples exhibited a brittle and symmetric 
adherent failure mode as shown in Fig. 5a. Microscopy images Fig. 5b were generated 
using an optical microscope of the failed surfaces, and they indicate that the adhesive 
pulls out the fibers during failure. Prior researchers [27–29] have shown that both the 
peel and shear stresses are maximum near the end of the overlaps on single lap joints 
in lap shear tests. In addition, finite element analysis [30] reveals that a higher stress 
region in the adherent near the interface. Also it has been found by Kupski et al. [31] 
that if fibers oriented at 90° are adjacent to the bond line, it results in an adherent 
failure instead of a cohesive failure when fibers are oriented at 0°, due to higher peel 
stresses. Since woven composites used in the current study had a ply of 0/90° orien-
tation adjacent to the interface, higher peel stresses may be generated by the fibers 
oriented at 90°, leading to crack propagation into the adherent. These could be the 
reasons for the failure mode observed. The same failure mode was observed in all the 
adhesive shape configurations used in this study. The failure modes for elliptical and 

Fig. 3  Custom immersion scanning system (top view)
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circular shapes are shown in Fig. 12. A summary of the failure load for the lap shear 
joint for each of the configurations is as shown in Fig. 6. For each set presented it is 
the compilation of three separate tests for a total of 30 lap shear joint strength tests. 
The error bars presented in the Figs. 6 and 7 are of the standard deviation of the three 
tests. Based on the failure loads listed in Fig. 6, the joint with complete coverage of 
adhesive was found to have the highest average strength as expected. The average fail-
ure load decreased as the coverage area decreases in each of the shapes as would be 
expected. The average shear stresses of the joints paired by their size levels is shown 
in Fig.  7. The average shear stress is defined as the average failure load divided by 
the as manufactured bonded area. The average shear stress increases as the size of 

Fig. 4  a Schematic of immersion scanning system, b ultrasonic scanning process flowchart
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Fig. 5  a Failed surface as observed in joints having complete adhesive coverage. b Magnified image of failed 
adhesive surface from the region highlighted in a, showing adherent failure
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the bonded region in each configuration decreases. This could be because there is a 
larger area of the adhesive which allows for a larger internal stress gradient (see e.g. 
[26]). This gradient allows higher stresses to occur near the edges of the adhesively 
bonded region with less load being carried in the central region of the bond. Despite 
the average shear stress in the ellipse of orientation 2 being consistently higher than 
that of orientation 1, the failure strengths are higher for orientation 2. Another factor 
to be considered is the presence of the adhesive along the traverse direction of load 
applied as in the case of orientation 2 as compared to orientation 1. As the failure 
propagates from the ends, it encounters more resistance in the case of orientation 
2 than otherwise. This indicates that the distribution of the adhesive along the trav-
erse direction to load application influences the joint strength. A detailed finite ele-
ment analysis would be required to assess the actual stress distribution states along 
the interface which will help clearly explain the cause of lower strength. The load–
displacement curves for various configurations are compared in Fig. 8 In each of the 
cases, the energy absorbed by the joints increases as the coverage area increases, with 
the joint having complete coverage taking the lead. The energy absorbed by the ellip-
tical shaped adhesive of E1-1 configuration (a = 25.4  mm, b = 19.05  mm) is less as 
compared to that of elliptical shaped adhesive of E2-1 configuration (a = 19.05 mm, 
b = 25.4 mm) as seen in Fig. 8d. Also, the joints with elliptical shaped adhesive of ori-
entation 1 fail at lower global displacements than other configurations.

Fig. 8  Load displacement curves a Circular shaped adhesive, b elliptical shaped adhesive of orientation 1, 
c elliptical shaped adhesive of orientation 2, d comparison between complete coverage, circular diameter 
25.4 mm, elliptical a = 19.05, b = 25.4 mm, elliptical a = 25.4, b = 19.05 mm
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Ultrasonic scanning

The A-scan and the B-scan of a typical un-bonded Carbon-fiber laminate measuring 
2.3 mm in overall part thickness is shown in Fig. 9 where the front and back walls of 
the sample cause distinct peaks as shown. Other peaks represent reflections from indi-
vidual plies in the composite. The location of individual plies can be seen in the B-scans. 
The intensity of sound reflected decreases because of attenuation of sound due to reflec-
tions from the preceding plies. The A-scans of specimen C2 from the PTFE film region 
(X1 = 2 mm, X2 = 2 mm) and the adhesive region (X1 = 12 mm, X2 = 10 mm) appear in 
Fig. 10. A distinct peak appears as the sound reflects from the PTFE film which is caused 
by a high acoustic impedance mismatch between the carbon fiber laminate and PTFE. 
An A-scan in the region where the adhesive is present shows a relatively smaller peak 
at the same interface. This is due to the better acoustic impedance match between the 
adhesive and carbon fiber epoxy laminate since both the adhesive and the matrix are 
epoxy resins. The B-scans and C-scans are formed from multiple A-scan data at each 
location along the ultrasonic sweep. Figure 11 shows a B-scans of the same specimen 
mentioned above along X1 = 2  mm and X1 = 12  mm. The adhesive and the PTFE film 
positions were identified after the ninth lamina position.

Fig. 9  a A-scan at X1 = 2 mm, X2 = 2 mm and b B-Scan at X1 = 2 mm of an un-bonded Carbon fiber laminate 
plate

Fig. 10  Comparison of A-scans at overlap region of the adhesive overlap in the a PTFE film region and the b 
adhesive region
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C-scans are evaluated to identify the shape and distribution of the adhesive for each 
sample, where the results appear in Fig. 12. The scans show a red region around a blue 
colored region. The red region indicates a higher intensity of sound wave reflection at a 
material interface which indicates the presence of the PTFE film. Alternatively, the blue 
region indicates the presence of the adhesive which has a lower intensity of reflected 
sound as discussed above. It can be clearly seen form the broken interface in Fig. 12 that 
there is a correlation between the geometry of the adhesive observed at the bond inter-
face during C-scans and the actual broken surface.

Conclusions
The effect of the adhesive distribution throughout the overlap region in bonded joints are 
studied. A joint with complete adhesive coverage over the entire overlap region would 
be expected to have the highest strength. Improper application of adhesive may occur 
during fabrication and may result in an improper distribution of adhesive. Three adhe-
sive size levels and two different shapes namely circular and elliptical, with the elliptical 
shape having with two orientations, were studied. The study on lap shear strength reveals 
that the distribution of the adhesive along the traverse direction to load application has 
an effect on the bond strength. The specimen having complete coverage of the adhesive 
along the traverse direction, namely the circular shape having its diameter, and the ellip-
tical shape having one of the axis lengths equal to the bond width, exhibited a larger lap 
shear strength. Meanwhile the elliptical shape with its major axis oriented along the load 
application direction had the least strength as compared to the other orientations, despite 

Fig. 11  B-Scans along a X1 = 2 mm and b X1 = 12 mm
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having the same coverage area. Further analysis using finite element modelling would be 
required to quantify the variations in stress distributions in each of the cases. Ultrasonic 
scanning was performed to identify the shapes of adhesive distribution in the bond over-
lap region. Comparison of the failed specimen after the lap shear tests, revealed a correla-
tion between the shapes identified using ultrasonic C-scans. These scan images can be 
used to provide useful bond geometry data for generating 3-D models of adhesive distri-
bution which can be analyzed using finite element methods.
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and Materials.
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