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Background
Due to the enormous demand for conservative and aesthetic restorations [1], fiber-rein-
forced composites (FRC) have recently been advocated as an alternative to fixed metal 
framework prostheses. Compared to metal prostheses, FRC restorations are lighter and 
more esthetic [1]. In addition, the restorations can be effectively adhered to dental tis-
sues and cause less damage to remaining teeth [2]. Although the durability of this type 
of prosthesis is inferior to metal frameworks, much less time and cost are associated to 
its placement [2]. FRC’s durability has been reported differently in the related studies, 
so that the overall durability rate of 75–94.75 percent has been reported after three to 5 
years [1, 3–5].

The use of composite materials in metal-free fixed partial dentures (FPDs) became 
feasible following the introduction of fiber reinforcement [6]. FRC-based FPDs have 
good resistance to masticatory forces [6] in addition to their low cost, improved aes-
thetics, reduced weight, and favorable elastic modulus [7, 8]. Prosthetics manufactured 
from ceramic material have superior color stability and wear resistance, exhibit mar-
ginal adhesion to tooth structure, and have the potential to damage unrestored oppos-
ing teeth [9]. FRC materials are currently used not only for crowns and inlays, but also 
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metal framework prostheses. The aim of this study was to evaluate the effect of glass-
fiber reinforcement on the flexural strength of different resin composites. The tested 
composites were X-tra fil, Filtek Z350 XT Flow and Filtek Z350 XT commercially avail-
able and reinforced with glass-fiber. Six groups of bars specimens (2 × 2 × 20 mm) 
were prepared (n = 10). The measurement of flexural strength of the resin composites 
was carried out by the three-point bending test. Data were subjected to ANOVA and 
post hoc Tukey’s tests (α = 0.05). The flexural strength of all composites was improved 
when combined with glass fiber. The bulk-fill X-tra fil composite (133.53 MPa) was the 
strongest fiber-reinforced material. Clinically, fiber reinforcement should be employed 
in extensive restorations to provide increased flexural strength.
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for a variety of clinical esthetic restorations, for example the infrastructure of implant-
supported crowns and for FPDs [10]. Although several fiber materials are commercially 
available, polyethylene and glass fiber reinforcing materials are the most popular [6]. 
Silanized glass fibers provide good adhesion to the polymer matrix, good aesthetic qual-
ity, and improved strength of the resulting composite [8, 11]. The study has have exam-
ined the effects of variables such as position, quantity, fiber orientation, and degree of 
adhesion between the fibers and polymer on the level of reinforcement [12].

FRC materials can adapt to dental contours and are easily manipulated during the 
bonding process. The materials also possess acceptable strength and clinical durability 
due to the integration of the fibers with the composite resin and the potential for attach-
ment closer to the incisal edges of teeth, which is useful from a biomechanical perspec-
tive [13, 14]. Problems with porcelain-fused-to-metal FPDs include poor aesthetics due 
to the exposed metal margin and harmful effects on periodontal tissues from the release 
of metal ions [9]. The increasing application of metal-free FPDs made using ceramic [15] 
or resin materials [16] is primarily due to advances in high-strength particulate com-
posite resins [17], improved adhesion techniques [18], and the development of high-
strength fiber-reinforced composites [19].

The aim of this study was to evaluate the effect of glass-fiber reinforcement on the 
flexural strength of different resin composites. The null hypotheses tested were (1) that 
there is no difference in flexural strength among specimens made with different resin 
composites (bulk-fill, flow, and conventional resin composites), and (2) glass fiber rein-
forcement has no effect on flexural strength.

Methods
Specimen preparation

Details of the materials used in this study are provided in Table  1. A total of 60  bar-
shaped specimens in six groups (n = 10) were prepared in a metal mold (2 × 2 × 20 mm). 
The samples were prepared using the conventional nanoparticle-filled composite Filtek 
Z350 XT (batch number 775639; 3M ESPE, St. Paul, MN, USA), Filtek Z350 XT Flow 
composite (batch number N509855; 3M ESPE), or the bulk-fill X-tra fil composite (batch 
number 1315355; Voco, Cuxhaven, Germany).

The materials were placed in the metal mold in a single portion. Sets of 10 speci-
mens of each composite were prepared neat and with pre-impregnated glass fiber 

Table 1  Materials used in the study

Bis-GMA bisphenylglycidyl dimethacrylate, BisEMA ethoxylated bisphenol-A dimethacrylate, TEGDMA triethylene glycol 
dimethacrylate, UDMA urethane dimethacrylate

Materials Manufacturer/batch number Chemical composition (weight  %)

Interlig Angelus, Londrina, PR, Brazil/31464 Glass fibers—60 ± 5 %
Impregnated with 40 ± 5 % resin containing  

Bis-GMA, diurethane, barium glass

X-tra fil Voco, Cuxhaven, Germany/1315355 Inorganic filler—86 %: Bis-GMA, UDMA, TEDMA

Filtek Z350 XT Flow 3M ESPE, St. Paul, MN, USA/N509855 Inorganic filler—65 %: Bis-GMA, TEGDMA, Bis-
EMA

Filtek Z350 XT universal 3M ESPE, St. Paul, MN, USA/775639 Inorganic filler—78,5 %: Bis-GMA, Bis-EMA, 
UDMA, TEGDMA
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reinforcement (batch number 31464; Interlig, Angelus, Londrina, PR, Brazil). The com-
posites were photoactivated with a 40-second exposure (940 mW/cm2) in three areas 
(extreme right, center, and extreme left) of the metal mold (top surfasse) using an LED 
lamp (Radii Cal; SDI, Bayswater, VIC, Australia). Following photoactivation, the speci-
mens were stored dry at 37 °C for 24 h. The specimen surfaces were ground using 200-, 
400-, and 600-grit SiC abrasive (Carborundum; Saint-Gobain Abrasives, Recife, PE, Bra-
zil) to obtain polished, flat surfaces. The specimen dimensions were measured using a 
digital caliper (model CD-15C; Mitutoyo, Tokyo, Japan). All procedures were performed 
by a single operator to ensure standardization.

Flexural strength test

A three-point bending flexural test was performed on each specimen using a universal 
testing machine (DL2000, EMIC, Equipamentos e Sistemas de Ensaio LTDA, São José 
dos Pinhais, PR, Brazil). The load was applied perpendicular to the long axis of the speci-
men at a crosshead speed of 0.5 mm/min until fracture. The flexural strength (FS [MPa]) 
was calculated using the equation FS = 3 FmaxL/2WH2 [20], in which Fmax is the maxi-
mum load in newtons, L is the distance between the support points (8 mm), and W and 
H are the specimen width and thickness in mm.

Statistical analysis

Mean values and standard deviations (SDs) for flexural strength measurements were cal-
culated using the Minitab 16 program for Windows 8 (Minitab, State College, PA, USA). 
Normality of the data distributions was investigated using the Kolmogorov–Smirnov 
normality test. Results were compared using two-way analysis of variance (ANOVA, 
variables composite and fiber reinforcement) and Tukey’s test at a 5 % significance level 
(α = 0.05).

Results
Addition of glass fiber increased the flexural strength of all composites (Table  2, 
p =  0.013). The X-tra fil (102.86  MPa) and Filtek Z350 XT (101.51  MPa) composites 
without glass fiber had similar flexural performance, however, the X-tra fil composite 
experienced greater improvement when blended with glass fiber (133.53 MPa). The flex-
ural strength of the Z350 XT Flow composite was also improved by addition of glass 
fiber, but the performance of this material was lower than the other two composites.

Table 2  Mean flexural strength (MPa) for composites with and without fiber reinforcement 
with respective standard deviations

Mean values followed by different uppercase letters in columns and lowercase letters in rows differed statistically in Tukey’s 
test at 5 % (p = 0.013). Standard deviations are in parentheses

Composite Flexural strength (MPa)

Fiber Without fiber

X-tra fil 133.53 (8.80) Aa 102.86 (6.39) Ab

Filtek Z350 XT 116.14 (6.62) Ba 101.51 (6.66) Ab

Filtek Z350 XT Flow 104.29 (9.05) Ca 82.70 (9.20) Bb
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Discussion
Flexural strength and modulus of elasticity are the two most important mechanical 
characteristics in the evaluation of the fiber reinforcement systems [1]. The three-point 
bending test is a simple method used for comparison of the load bearing capacity of dif-
ferent unidirectional FRC beams [21]. The flexural strength, which is measured in the 
three-point bending test, determines the behavior of the material under simultaneous 
tensile and compressive loading [1, 2].

FRC has been used in a variety of dental applications, including denture bases and 
posts for root canal treatment [22], but it has only recently been used for FPDs [9]. 
Inlay-retained FPDs reinforced with FRC have a reported survival rate of 72–75  % at 
36–63 months after treatment [5]. It has also been noted [5] that the functional survival 
rate can be improved to 93  % by repair or reinstallation, because the cause of failure 
in most cases is attributable to dislodgment or partial fracture. From the above discus-
sion, it may be inferred that fiber reinforcement is effective, but a sufficient thickness of 
veneering composite must be applied to the connector area to prevent fractures [9].

Glass used for the fabrication of such fibers is an amorphous tetrahydrosilicate-based 
material [1], and the chemical and physical characteristics are distinctly different from 
organic fibers [1]. Improved adhesion of composites and glass fibers could be due to 
the sílica contents of the fiber and consequent stronger bonds which in turn lead to an 
increased flexural strength [23]. Another reason for the high flexural strength of the glass 
fiber and composites resin combination could be the strongest chemical bond between 
the glass fiber and the dental polymers [1]. X-tra fil, a bulk fill composite, contains Bis-
GMA, UDMA, and TEDMA with 86 wt % filler particules, while Z350 XT contains Bis-
GMA, Bis-EMA, UDMA, TEGDMA with 78.5 wt % filler particles and Filtek Z350 XT 
Flow contains Bis-GMA, TEGDMA, Bis-EMA with 65 wt % filler particles. Moreover, 
the combination composite with glass fiber presented greater flexural strength than glass 
fiber alone [1].

One approach to increase the adhesion of fibers to a polymer matrix is resin impreg-
nation of fibers before application [12]. An effective impregnation process enables the 
resin to come into contact with the surface of every fiber [12]. Wetting the fibers with 
resin monomer has been a commonly used method. However, although the monomer 
increases the adhesion of fibers to the matrix, residual monomer may impair other prop-
erties [12]. The pre-impregnated fiber used in the present study was developed to over-
come this problem [12]. Investigators have confirmed the reinforcing effect of fibers on 
different polymer types [11, 24, 25]. The increase in flexural strength results from the 
transfer of stress from the weak polymer matrix to the fibers, which have a high tensile 
strength [24]. The stronger the adhesion between the fiber and the matrix, the greater 
the strengthening effect [25]. In composites containing both reinforcing fiber and par-
ticulate fillers, the interfacial adhesion and matching of flexural modulus of these two 
phases plays an important role in increasing the mechanical properties of the material, 
and further research should be conducted to improve the interfacial bond strength [19].

Reinforcing composites with polyethylene fibers can yield enhanced mechanical 
properties [26] such as stiffness, strength, toughness, and fatigue resistance [27]. Fib-
ers provide a load-enhancing effect in brittle resin materials by acting as a stress-bear-
ing component and by crack-stopping or crack-deflecting mechanisms [26]. Fixed 
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fiber-reinforced composite bridges offer a suitable alternative to replace missing perma-
nent anterior teeth, particularly in growing children until a fixed prosthesis can be pro-
vided at the end of the growth period [28]. Methodologically, limitations such as sample 
size and aging processes (alternating thermal stresses, mechanical stresses, wear and 
water storage) should be taken into consideration. Despite the importance of laboratory 
studies to answer some questions over the short term, the real performance of restora-
tions can only be determined by long-term clinical trials [29].

In specimens in which fiber reinforcement was not used, there were no differences in 
flexural strength between X-tra fil and Filtek Z350 XT composite. Filtek Z350 XT exhib-
ited high flexural strength despite an inhomogeneous distribution of filler particles [20, 
30], while X-tra fil inherently contained a greater proportion of fillers. Filtek Z350 XT 
Flow demonstrated lower flexural strength, probably due to a lower filler content. How-
ever, when other tests were performed (such as the push-out test) the results were not 
the same [31]. Thus, future studies are needed to demonstrate the efficacy of bulk-fill 
composites that performed well during flexural testing in this study. The null hypotheses 
discussed earlier must be rejected because (1) there were differences in flexural strength 
among specimens prepared from different resin composites, and (2) addition of glass 
fiber affected the strength of the resulting composite.

Conclusions
Analysis of the flexural strength indicates that glass fiber reinforcement improved the 
performance of any of the three composites tested. Fiber reinforcement showed high-
est flexural strength with the bulk-fill composite, while the lowest flexural strength was 
observed for the flowable composite.
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