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Abstract

The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world's history with more than
200,000 casualties. This disaster was attributed to giant size (magnitude M~ 9, source length >1000 km) of the
earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for
tsunamis in the Indian Ocean countries. In the last ten years, seismology and tsunami sciences as well as tsunami
disaster risk reduction have significantly developed. Progress in seismology includes implementation of earthquake
early warning, real-time estimation of earthquake source parameters and tsunami potential, paleoseismological studies
on past earthquakes and tsunamis, studies of probable maximum size, recurrence variability, and long-term forecast of
large earthquakes in subduction zones. Progress in tsunami science includes accurate modeling of tsunami source
such as contribution of horizontal components or “tsunami earthquakes”, development of new types of offshore

needed for scientists with other stakeholders.

tsunami; The 2011 Tohoku tsunami

and deep ocean tsunami observation systems such as GPS buoys or bottom pressure gauges, deployments of
DART gauges in the Pacific and other oceans, improvements in tsunami propagation modeling, and real-time
inversion or data assimilation for the tsunami warning. These developments have been utilized for tsunami disaster
reduction in the forms of tsunami early warning systems, tsunami hazard maps, and probabilistic tsunami hazard
assessments. Some of the above scientific developments helped to reveal the source characteristics of the 2011
Tohoku earthquake, which caused devastating tsunami damage in Japan and Fukushima Dai-ichi Nuclear Power
Station accident. Toward tsunami disaster risk reduction, interdisciplinary and trans-disciplinary approaches are
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Introduction

On 26 December 2004, five months after the inaugur-
ation of the Asia Oceania Geoscience Society (AOGS),
the countries around the Indian Ocean suffered from
the devastating tsunami. This tsunami, generated by the
Sumatra-Andaman earthquake (magnitude M 9.1), was
the worst tsunami disaster in the world’s written history,
and the casualties were not only from the Indian Ocean
countries but also extended to European countries because
many tourists were spending their Christmas vacations in
Asian countries.
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This disaster was attributed to several factors. The earth-
quake was huge and such a giant earthquake was not
expected in the Indian Ocean; thus tsunami warning sys-
tem did not exist in the Indian Ocean; and consequently
the coastal residents, tourists and governments did not
have knowledge on tsunamis and were not prepared for
such a disaster.

In the last decade, significant improvements have been
made in earthquake and tsunami sciences as well as in
their applications for disaster risk reduction. Scientific
developments include real-time estimation of earthquake
and tsunami source parameters, implementation of early
warning of earthquakes and tsunamis, historical and geo-
logical studies of past earthquakes and tsunamis, examin-
ation of probable maximum earthquake size, long-term
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forecast of large earthquakes, new types of tsunami obser-
vations in the open ocean and on the coast, and accurate
tsunami modeling and inversion. The disaster risk reduc-
tion includes delivery of tsunami early warning messages
to officials and coastal residents, making tsunami hazard
maps or probabilistic hazard assessments, construction of
infrastructure such as speakers to disseminate the warning
messages, seawalls, evacuation signs, and designated
evacuation areas, as well as public education. During the
time period of such developments, the 2011 Tohoku
earthquake and tsunami occurred and caused devastating
tsunami damage in Japan and the Fukushima Dai-ichi
Nuclear Power Station accident. Some of the above
scientific developments helped to reveal the source
characteristics of this giant earthquake and tsunami, yet
they could not prevent the disaster.

In this review paper, I first describe the 2004 Indian
Ocean tsunami in section 2, then review developments
in seismology in section 3, followed by those in tsunami
science in section 4. The 2011 Tohoku earthquake and
tsunami are described in section 5. I then discuss efforts
and issues that show how scientific developments can be
utilized for disaster risk reduction in section 6.
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The 2004 Indian ocean tsunami

The source of the Indian Ocean tsunami was the
Sumatra-Andaman earthquake on 26 December 2004
(Figure 1). The earthquake size, expressed by a moment
magnitude scale (M,,), was 9.1 (according to United States
Geological Survey: USGS), the largest in the world in the
past 40 years. Moment magnitude is derived from seismic
moment, which shows a physical size of the earthquake.
The seismic moment of this single event was comparable
to cumulative moment from global earthquakes in the
preceding decade [1]. Only few earthquakes of this size
(M ~9) occurred in the 20th century, and they were all
around the Pacific Ocean. The 2004 Sumatra-Andaman
earthquake was the first instrumentally-recorded event of
this size in the Indian Ocean.

The 2004 earthquake was an interplate earthquake
between the Indo-Australian plate and the Andaman
(or Burma) microplate, a part of the Eurasian plate
(Figure 1). The Indo-Australian plate subducts along the
Sunda Trench at a rate of approximately 5 cm per year,
and the direction of subduction changes from normal to
the trench to oblique toward north. This subduction
causes upper plate to be dragged and deformed up to a
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Figure 1 The 2004 Sumatra-Andaman earthquake. The tsunami heights measured by field surveys are shown by red bars (NOAA NGDC
Tsunami Database). The yellow circles and beach ball show the one-day aftershocks and the focal mechanism. Computed tsunami fronts are
shown for every hour. Black arrows indicate the direction and speed of Indo-Australian plate. Past earthquakes with their occurrence year and
magnitudes are also shown with filled polygons and ovals.
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certain limit, then suddenly rebound to cause an interplate
earthquake. The focal mechanism solution, estimated
by Centroid Moment Tensor inversion [2] indicates a
thrust faulting, or low-angle reverse fault, mechanism.
The epicenter of the 2004 earthquake was located off
Sumatra Island, but the source area extended northward
through Nicobar to Andaman Islands.

The source lengths of the 2004 earthquake estimated
from various data are somewhat different. Seismological
analyses indicate that the 2004 rupture started at the
epicenter off the west coast of Sumatra, then propagated
toward north through Nicobar and Andaman Islands in
about 500 seconds with a total length of 1200 to 1300
km [1,3]. The fault slip was largest, 20 to 30 m, off the
coast of northern Sumatra, followed by ~5 m slip off
Nicobar Island. The fault slip around the Andaman
Islands was estimated to be small and was speculated to
be slow. The analysis of tsunami waveforms recorded on
tide gauge stations [4] showed a shorter, up to 900 km,
source of the tsunami. Satellite image analyses and
ground-truth field investigations [5-7] indicated that
the coseismic coastal sea level change extended from
Sumatra through North Andaman Island with a total
length of 1600 km. Some of the northern slip is attrib-
uted to afterslip on the fault plane which occurred up
to 40 days [8].

This earthquake generated a tsunami which devastated
the shores of the Indian Ocean. Within 30 minutes of
the earthquake, the tsunami first attacked Banda Aceh
and other coastal villages of Sumatra Island in Indonesia
causing 160,000 casualties. The tsunami then reached the
coasts of Thailand (casualty 8000), Sri Lanka (35,000) and
India (16,000) within approximately two hours. About a
half of tsunami victims in Thailand were foreign tourists.
The tsunami further propagated and reached the east
coast of Africa where it caused 300 casualties in Somalia.
The total casualties of the Indian Ocean tsunami were
more than 200,000.

The distribution of the 2004 tsunami heights, mea-
sured by scientists and engineers from many countries,
looks proportional to the damage distribution (Figure 1).
The tsunami heights were mostly larger than 20 m with
a maximum height above 30 m near Sumatra Island,
particularly in the Aceh province. The tsunami heights
along the Andaman Sea coast varied greatly; 5 to 15 m
near Thailand but less than 3 m near Myanmar. The
tsunami heights were up to 5 m in Andaman Islands. In
Sri Lanka, the tsunami heights were 5 to 15 m.

The tsunami was instrumentally recorded by coastal
tide gauges in the Indian Ocean as well as in the Atlantic
and Pacific Oceans [9]. The tsunami propagation in deep
water was captured by deep-sea pressure gauges [10],
satellite altimeters [11], hydrophones [12] and horizontal
components of broad-band seismographs [13].
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At the time of the 2004 tsunami, the tsunami warning
system existed only in the Pacific Ocean. The Pacific
Tsunami Warning Center (PTWC), located in Hawaii,
issued the first information bulletin only 15 minutes
after the earthquake. The earthquake was located off the
west coast of Northern Sumatra, and the magnitude was
initially estimated to be 8.0. The second bulletin was
issued at 69 minutes after the earthquake, but still before
the tsunami arrivals at the coasts of Thailand, Sri Lanka
and India. The earthquake size was updated to 8.5 and
the possibility of a local tsunami was included in the
bulletin. However, these messages did not reach the
governments or coastal communities around the Indian
Ocean [14].

The 2004 tsunami caused slight damage to Madras
Atomic Power Station at Kalpakkam, near Chennai, on
the east coast of India. This was the first tsunami damage
to a nuclear power plant in the world. At about 3 hours
after the earthquake, the tsunami arrived at the nuclear
power station with 4.5 m height, and caused flooding of
the seawater pump house and construction site of a
new reactor. The switchboard of the pump house was
submerged, but the reactors were safely shut down.
After this accident, International Atomic Energy Agency
revised their safety guide [15].

Review of developments in seismology

Can we forecast earthquakes and tsunamis in advance?
Earthquake source is a fault motion, which is movement
or rupture across a plane within the earth. Sudden fault
motion generates seismic waves which cause ground
shaking and seafloor displacement which becomes the
source of tsunami. If we can forecast future earthquakes,
or tell in advance where, when and how big they will be,
it would benefit to reduce damage from earthquakes and
tsunamis. Earthquake and tsunami forecast is made at
various time scales; in seconds or minutes between fault
rupture and arrival of seismic waves (called Earthquake
Early Warning, EEW), in minutes to hours between the
earthquake occurrence and the first tsunami arrival
(Tsunami Warning), in hours, days or months before the
earthquake (Short-term earthquake prediction), and in
years to decades before earthquake (Long-term earth-
quake forecast).

The EEW system forecasts ground shaking after the
earthquake occurrence but before the arrival of seismic
waves, based on quick analysis of seismic data recorded
near the earthquake source [16,17]. The EEW was devel-
oped before 2004 but has been implemented and in
operation in the last decade in several countries such as
Japan [18]. Typical lead time between the announcement
and start of large ground shaking is from several to sev-
eral tens of seconds, yet providing useful information
through TV, radio or cell phones.
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The current tsunami warning system also relies on
quick analysis of seismic data. The recent deployment of
advanced seismological analysis methods for rapid deter-
mination of earthquake source parameters, such as the W
phase analysis [19], makes it possible to quickly assess an
earthquake’s size with acceptable accuracy and to estimate
the potential tsunami size, in order to issue tsunami
warnings in less than half an hour for global earthquakes.
For example, during the 2012 Sumatra earthquake, PTWC
issued bulletins with not only earthquake parameters but
also tsunami amplitudes predicted by simulation-based
empirical formula [20]. Thus tsunami warning is practic-
ally possible at least for far-field tsunamis. Accurate
near-filed tsunami warning is still challenging as discussed
in next sections.

Earthquake prediction depends on monitoring reliable
precursory phenomena which are yet to be discovered.
In the rest of this section, we limit our discussion on
long-term forecast, which are commonly expressed as
future probabilities of occurrence.

Probabilities of future earthquakes can be estimated
from past earthquake data. Earthquake probabilities in a
certain time window, for example in the next 30 years,
can be calculated by fitting inter-earthquake times with
a probabilistic density function. If earthquakes occur
randomly in time, or a fault does not have any memory
of past earthquakes, the Poisson process is assumed to
compute the time-independent probabilities; i.e., the
probability of the next earthquake is constant through
time, depending solely on the average recurrence inter-
val. Alternatively, earthquake probabilities may increase
with time, if similar size earthquakes recur more or less
regularly (called characteristic earthquakes). The elastic
rebound theory explains that an earthquake occurs when
the accumulated stress at the plate boundary reaches
certain limit. In such a case, statistical distributions such
as log-normal distribution or Brownian passage model
[21,22], with the average recurrence interval and the
date of most recent events, are used to calculate the
time-dependent probabilities.

Was the 2004 Sumatra-Andaman earthquake the first
mega-event in the region? Seismological data indicate
that earthquakes with M 7.5 and 7.9 occurred in the
Nicobar Islands and an M 7.7 earthquake occurred in the
Andaman Islands in 1941 [23]. These past earthquakes
had been considered as the maximum earthquakes in the
Andaman and Nicobar Islands. Instrumental seismological
data are available since the last century. Historical records
of damage from past earthquakes or tsunamis are kept for
more than 1000 years in some countries like China or
Japan [24,25]. In other places, such historical earthquake
data exist only for less than a few centuries, which may
not be long enough to record the history of large earth-
quakes. Geological records such as traces of coastal sea
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level change or deposits brought by tsunami, called tsu-
nami deposit, are used to study older earthquakes. Such
a study area is called paleoseismology.

Paleoseismological studies of tsunami deposits have been
conducted since 2004 in Sumatra Island [26], Thailand
[27-29], the Andaman and Nicobar Islands [30,31] and
India [32]. These studies have shown geological evidence
of past tsunamis in the regions. The last earthquake was
estimated to have occurred around AD 1300-1450 in
Thailand, AD 1290-1400 in Sumatra, AD 1250-1450 near
the Andaman and Nicobar Islands, post AD 1600 in South
Andaman Island, and around AD 1020-1160 along the
Indian coast. These various dates may indicate that the last
great earthquake was not exactly the same as the 2004
Sumatra-Andaman earthquake.

Besides the studies of past earthquakes in particular
regions, seismologists have attempted to make global
assessments of probable maximum earthquake size. Be-
cause of infrequent nature of such giant earthquakes,
global collection of data is needed to increase our
sample and knowledge on such large earthquakes. A
comparative studies of subduction zones [33] showed
that there are two end members of subduction zones,
i.e,, Chilean type and Mariana type, among which only the
former types can produce great earthquakes. Subsequent
studies proposed that the age of subducting plate and
plate convergence rate may control the maximum size of
earthquakes [34]; larger earthquakes occur in subduction
zones where younger plate subducts at a higher con-
vergence rate. However, re-examination of the relation
among the plate age, convergence rate and the maximum
earthquake size, made after the 2004 earthquake, showed
that such a relationship is not as strong as it was believed
before [35].

One way to calculate earthquake probability is to
assume that the maximum earthquake size is M 9.5,
which is the size of the 1960 Chile earthquake, the largest
earthquake in the 20™ century (Figure 2a). For example,
McCaffrey [36] proposed that any subduction zone in the
world could produce an M ~9 earthquake. But was the
1960 Chile earthquake really the maximum earthquake? It
should be noted that the size of the 1960 Chile earthquake
was estimated in the 1970’ [37]. Recently, Matsuzawa
[38] proposed that we should prepare for an M ~ 10 earth-
quake, although the maximum size of an earthquake on
the earth could be M ~ 11.

Variability in size and recurrence interval is likely a
characteristic nature of great earthquakes in subduction
zones [39]. Historical and geological data in other sub-
duction zones indicate that recurrence patterns of past
great earthquakes are highly variable (Figure 2b). For
example, in southern Chile, historical records indicate
that past earthquakes occurred in 1575, 1737, 1837 and
1960, with an average recurrence interval of 130 years.
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Figure 2 Giant earthquakes in the world. (a) The locations of M ~ 9 earthquakes since the 20 century are shown by yellow ovals. Red triangles
indicate DART stations. Black, yellow and green colors indicate three kinds of plate boundaries, i.e, subduction zones, mid-oceanic ridges and transform
faults. (b) Variability of earthquake size in subduction zones. The colored bars represent simplified rupture area: blue, inferred solely from instrumental and
written records; green, includes paleoseismological evidence. Numerals denote moment magnitudes. Updated from Satake and Atwater [39].

However, the geological evidence or tsunami deposits
were found only from the 1960 and 1575 earthquakes
as well as older earthquakes, yielding the recurrence
interval of ~300 years based on paleoseismological studies
[40]. The 2011 Tohoku earthquake added another example
of such variability.

Review of developments in tsunami science

Tsunamis are generated by submarine earthquakes, vol-
canic eruptions or landslides. For the earthquake source,
vertical displacement due to subsurface faulting, which
can be computed from earthquake source parameters
[41] are usually considered as the tsunami source. For the
case of the 2004 Sumatra-Andaman earthquake, seafloor
was uplifted on the western edge and subsided on the
eastern edge of the source area. This asymmetric seafloor
deformation yielded initial receding wave on the east (e.g.,
Thailand) whereas the water level initially rose on the west
(e.g., Indian or Sri Lankan coasts). When the tsunami
source is on a steep seafloor slope and the horizontal dis-
placement is large, the vertical movement of water due to

the horizontal displacement of the slope must be also
considered [42]. For the 2011 Tohoku tsunami, the large
horizontal displacement of seafloor slope was responsible
for 20-40% of the observed tsunami amplitudes [43].
While tsunami is generally larger for larger earthquake,
notable exceptions are “tsunami earthquakes” which gen-
erate much larger tsunamis than expected from seismic
waves [44,45]. Typical examples are the 1896 Sanriku
earthquake which produced much smaller ground shaking
than the 2011 Tohoku earthquake, but the tsunami
heights on Sanriku coasts from these earthquakes were
similar [46]. More recent examples of “tsunami earth-
quake”, such as the 1992 Nicaragua earthquake and the
2010 Mentawai earthquakes, indicate that very large slip
near the trench axis is responsible for the large tsunami
and smaller seismic waves [47,48].

Tsunamis are instrumentally recorded by sea level re-
corders such as coastal tide gauges, near-shore wave and
GPS buoys, and deep-ocean bottom pressure gauges
(Figure 3). Coastal tide gauges have various types such
as mechanical type with a float, and pressure, acoustic
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Figure 3 Various types of instruments designed to measure tsunami.

or radar sensors. After the 2004 Indian Ocean tsunami,
more coastal tide gauges have been installed in the Indian
Ocean region. Currently, sea level data at several hundreds
of stations are available in real-time (e.g., http://www.ioc-
sealevelmonitoring.org/). Near-shore gauges include wave
gauges using ultrasonic waves and GPS buoys. They meas-
ure offshore sea levels at water depths of 50 to 200 m, and
can detect tsunamis before their coastal arrivals giving
some lead time for issuing tsunami warnings. Tsunami
waveforms are much simpler in deep oceans, where they
are free from the effects of coastal reflection or refraction
due to bathymetry. A kinematic GPS analysis of a ship in
open ocean detected the 2010 Chile tsunami [49]. Deep-
ocean measurements of tsunamis have been made by
using bottom pressure gauges for early detection and
warnings of tsunamis. The Deep-ocean Assessment and
Reporting of Tsunamis (DART), developed by NOAA
(National Oceanic and Atmospheric Administration) of
the USA, records water levels using bottom pressure
gauges, and sends signals to a surface buoy via acoustic
telemetry in the ocean, then via satellites to a land station
in real time [50]. After the 2004 Indian Ocean tsunami,
the total number of DART stations in the Pacific as well as
Indian Ocean increased from 6 in 2004 to about 60 in
2013 [51]. An alternative way to retrieve data from deep
ocean bottom pressure data is to use submarine cables.
Around Japan, more than 10 bottom pressure gauges were
installed at the time of the 2011 Tohoku earthquake, and
more cabled networks, DONET along the Nankai trough
[52] and S-net along the Japan Trench [53] are being
deployed.
Tsunami can be hydrodynamically considered as shallow-
water (or long) waves, whose phase velocity is given as a

square root of product of water depth and the gravitational
acceleration. Because the ocean depth, or bathymetry,
is globally surveyed and mapped, the tsunami propaga-
tion can be simulated using the actual bathymetry data.
A popular method of tsunami numerical simulation is a
finite-difference computation of equation of motion for
shallow-water waves (momentum conservation) and the
equation of continuity (mass conservation) [54]. For deep
ocean, a typical grid size is a few to several kilometers.
Near the coasts with shallow depths, non-linear effects
and bottom friction need to be included. In addition,
effects of local topography and bathymetry, such as reflec-
tion or refraction, also play important role, hence the
smaller grid, typically with several tens of meter interval,
is adopted. For computation of tsunami inundation on
land, topographic data are also used with moving bound-
ary conditions [55].

The tsunami waveform data are used to estimate the
water height, or fault slip, distribution at the source. In
this method, called tsunami waveform inversion [56],
the tsunami source or fault plane is divided into sub-
faults, and tsunami waveforms, or the Green’s func-
tions, are computed for each of the subfault with unit
amount of slip. Assuming that the observed tsunami
waveforms are linear superposition of the Green’s
function, the distribution of displacement or fault slip
can be estimated using a least-square method. The tsu-
nami waveform inversion is used to study the tsunami
sources. For the 2011 Tohoku earthquake, because
high-quality and high-sampling offshore tsunami wave-
forms were available, the temporal change as well as
spatial distribution of the slips on subfaults was esti-
mated [43].
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The tsunami waveform inversion has been also used for
tsunami warning systems, both far-field and near-field.
The current tsunami warning system, based on seismic
monitoring, first determines location, depth, and magni-
tude of earthquake, then predict tsunami arrival time and
coastal heights using database of pre-computed tsunami
waveforms for various earthquake sources [57,58]. For
far-field tsunami warnings, the tsunami waveforms at
the DART locations are computed for numerous tsunami
sources around the Pacific Ocean. When the DART
stations record tsunami waveforms, they are compared
with pre-computed tsunami waveforms to first estimate
the tsunami sources. Then, the estimated sources are used
to predict tsunami arrival times and the amplitudes at
more distant locations. The predicted tsunami waveforms
from the real-time data assimilation, without assuming
earthquake source parameters, show good agreement with
the observed waveforms [59].

For the near-field tsunami warning, tsunami wave-
forms recorded on cabled bottom pressure gauges can
be used to estimate the sea surface displacement rather
than the fault slip [60,61]. This method, called tFISH
(tsunami Forecasting based on Inversion for initial sea-
Surface Height), would be useful for tsunami warning if
the cabled stations are densely distributed. The same
method can be applied to data on near-shore GPS buoys
[62]. Combined with Real-time Automatic detection
method for Permanent Displacement (RAPiD) of land-
based GPS data, the method can predict tsunami arrival
time and wave heights at least 5 minutes before tsunami
arrival for near-field tsunamis [63]. Forecasting tsunami
inundation on land can be made by comparing the com-
puted near-shore tsunami waveforms from actual earth-
quake source parameters with those pre-computed and
stored in the database [64].

For recent trans-Pacific tsunamis, such as the 2010
Chile tsunami or the 2011 Tohoku tsunami, discrepancies
(a few percent) in the travel time between the observed
waveforms recorded at DART stations and the computed
waveforms based on linear shallow water have been re-
ported. A small reduction of the tsunami phase velocity at
very long period (>1000 seconds), caused by the coupling
of seawater and self-gravitating elastic Earth, is considered
to be responsible for these delays [65].

The 2011 Tohoku earthquake and tsunami

A giant earthquake occurred off the northern coast of
Honshu, Japan, on 11 March 2011. With the largest
magnitude (M,, 9.0) in the history of Japan, it caused a
devastating tsunami disaster and serious damage to the
nearby Fukushima Dai-ichi Nuclear Power Station. The
earthquake and subsequent tsunami caused approximately
18,500 dead and missing persons. The 2011 Tohoku
earthquake occurred at the Japan Trench where the
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Pacific plate subducts beneath northern Honshu at a rate
of approximately 8 cm per year. This earthquake was also
an interplate earthquake with a thrust-type fault motion.

Very dense geophysical measurements both on land
and offshore Japan made this event the best recorded
subduction-zone earthquake in the world (Figure 4a).
The nation-wide land-based GPS network with more
than 1000 stations recorded large coseismic movements
with a maximum amount of 5.3 m eastward and 1.2 m
downward [66]. The repeated marine geophysical mea-
surements, such as GPS/acoustic positioning, bottom
pressure gauge, or multi-beam swath bathymetry survey,
started before the 2011 Tohoku earthquake, detected huge
seafloor displacement, approximately 50 m in horizontal
direction [67-69].

The 2011 tsunami was first detected on ocean bottom
pressure and GPS wave gauges. A cabled bottom pressure
gauge about 76 km off Sanriku coast at a 1600 m water
depth recorded ~2 m water rise in about 6 minutes start-
ing immediately after the earthquake, followed by an
impulsive wave with additional 3 m rise within 2 minutes
[72]. Similar two-stage tsunami waveforms were also
recorded on a GPS wave gauge near the coast 12 minutes
later, just before tsunami arrival on the coast (Figure 4b).

The Japan Meteorological Agency (JMA) issued the first
tsunami warning 3 minutes after the earthquake. The
estimated tsunami heights were at maximum 6 m, sig-
nificantly smaller than the actual tsunami heights with
a maximum of 40 m [73]. The smaller expected coastal
tsunami heights were due to the initial underestimation
of the earthquake magnitude (M =7.9). Nevertheless,
very strong ground shaking and the tsunami warning
urged many coastal residents to evacuate to high ground
and thus saved their lives. After detecting the large offshore
tsunami on GPS wave gauges, JMA upgraded the tsunami
warning messages to a higher level of estimated tsunami
heights at 28 minutes after the earthquake. Although it was
announced before the actual tsunami arrival to the nearest
coast, the updated warning messages did not reach all the
coastal communities due to power failures and the fact that
coastal residents had already started evacuation.

The occurrence of an M ~ 9 earthquake near the Japan
Trench was another surprise to the global seismological
communities. Off Miyagi prefecture, near the epicenter of
the 2011 Tohoku earthquake, large (M ~ 7.5) earthquakes
have repeatedly occurred since 1793 with an average inter-
val of 37 years. On the basis of this recurrence, the Earth-
quake Research Committee of the Japanese government
estimated the probability of a great (M ~ 8) earthquake
occurring between 2010 and 2040 as 99% [74]. The long-
term forecast failed to predict the size (M) of the Tohoku
earthquake [75].

The Sanriku coast of Tohoku had been devastated by
previous tsunamis. The 1896 Sanriku earthquake, a typical
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“tsunami earthquake,” caused large tsunami, with the
maximum height of 38 m, despite its weak ground shak-
ing. The 2011 tsunami heights along the Sanriku coast
were as high as nearly 40 m, roughly similar to the 1896
tsunami heights [46]. The 1896 tsunami caused about
22,000 casualties, slightly more than the 2011 tsunami.
Study of tsunami waveforms indicate that the 1896 earth-
quake was generated from a fault motion near the trench
axis [70], similar to other “tsunami earthquakes.”

The predecessor of the 2011 Tohoku earthquake is
considered to be the 869 Jogan earthquake [71,76]. A
national history book depicts strong ground shakings,
collapse of houses, kilometers of tsunami flooding with
1000 drowned people in Sendai plain in AD 869 in
Jogan era. In addition, paleoseismological studies found
tsunami deposits in coastal lowlands, more than 4 km
from the current coast in the Sendai plain. Older

tsunami deposits were also found. From the distribution
of the tsunami deposits and computed inundation area,
the size (M = 8.3 to 8.4), location and fault models of the
Jogan earthquake were proposed with a recurrence inter-
val between 500 and 1000 years [71,77].

Tsunami models indicate that the source of the 2011
earthquake appear to be a combination of the 1896
Sanriku “tsunami earthquake” and a Jogan-type deeper
interplate earthquake [43,72]. A huge slip near the trench
axis, similar to the 1896 Sanriku tsunami earthquake,
caused the first impulsive tsunami waves recorded by the
bottom pressure and GPS wave gauges and large tsunami
runup heights along Sanriku coast [46]. The fault motion
and large slip along the deeper plate interface, similar
to a proposed model of the Jogan earthquake [71],
produced a long-wavelength seafloor displacement which
caused the first gradual rise at offshore gauges (Figure 4b)
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and the large tsunami inundation in the Sendai plain
[78,79].

The 2011 tsunami also impacted four nuclear power
stations located near the source area. At these stations,
the strong ground shaking automatically shut down the
reactors, and the diesel power generators started to cool
down the reactors. At the Fukushima Dai-ichi Nuclear
Power Station, strong ground shaking damaged the
external power supply system, and the 15 m tsunami
damaged the diesel generator. The Fukushima Dai-ichi
Station thus failed to cool down the reactors, which led
to melt down of three reactors, hydrogen explosions and
release of radioactive materials into atmosphere [80],
ocean [81], and land/soil [82]. At the other three nuclear
power stations, the reactors were cooled down by using
external or backup power and succeeded to avoid fatal
accident.

The estimated maximum tsunami, or design tsunami
height, at the Fukushima Dai-ichi Nuclear Power Station
was 6.1 m, based on the M 7.5 earthquake which occurred
in 1938. The long-term forecast of Earthquake Research
Committee indicated that a “tsunami earthquake” may
occur anywhere along the Japan Trench. The tsunami
height at the Fukushima Dai-ichi Station from the Jogan
earthquake model was estimated as 8.9 m, and that from a
“tsunami earthquake” off Fukushima was calculated as
15.7 m by Tokyo Electronic Power Company, but no pre-
ventive actions were taken. For critical facilities such as a
nuclear power plant, the seismological progress should be
closely monitored and reflected in safety preparedness.

Toward tsunami disaster risk reduction

Despite advances in natural science on hazards, why do
disaster losses continue to increase? This is a motivation
to initiate an international and interdisciplinary program
called IRDR (Integrated Research for Disaster Reduction)
under ICSU (International Council for Science), together
with ISSC (International Social Science Council) and UN
International Strategy for Disaster Reduction (UN-ISDR).
Disaster risk consists of hazard and vulnerability. Natural
hazard such as earthquake or tsunamis cannot be con-
trolled, but may be forecasted. However, disaster risk can
be reduced by minimizing vulnerability or exposure to
hazards. The disaster risk reduction is therefore closely
related to how science can be utilized for safety of the
society.

In January 2005, immediately after the 2004 Indian
Ocean tsunami, Hyogo Framework of Action (HFA) for
2005-2015 was adopted at the World Disaster Reduction
Conference and later endorsed by UN General Assembly.
It is for building the resilience of nations and communities
to disasters, and consists of five action items. (1) Make
disaster risk reduction a national and local priority; (2)
Identify, assess and monitor disaster risks and enhance
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early warning; (3) Use knowledge, innovation and educa-
tion to build understanding and awareness; (4) Reduce
risk factors; and (5) Be prepared and ready to act. We will
review how the scientific developments can contribute to
these actions.

The tsunami early warning systems have been imple-
mented in the Indian Ocean and other ocean basins. In
the Pacific Ocean, an international tsunami warning
system was established after the 1960 Chile tsunami, and
International Coordination Group was formed under
UNESCO Intergovernmental Oceanographic Commission.
Following the 2004 Indian Ocean tsunami, similar groups
were formed for the Indian Ocean, for the North-eastern
Atlantic and Mediterranean Sea, and for the Caribbean Sea.
In coordination with the UNESCO group, three regional
Tsunami Warning Centers were recently established in
Australia [83], India [84] and Indonesia [85]. These centers
are staffed 24 hours a day and 7 days a week to monitor
seismic activity and the possibility of a tsunami occurrence.
The warning systems rely on the most advanced seismic
and sea-level monitoring, a database of past tsunami events,
and pre-made numerical simulations. These systems can
issue tsunami warning messages typically about 5 minutes
after an earthquake.

Once the coastal residents receive tsunami warning
message, they need to know what it means, and where
to evacuate. Tsunami is a Japanese word meaning “harbor
wave,” but few people around the Indian Ocean knew the
word before the 2004 Indian Ocean tsunami. It has been
used internationally since the 2004 Indian Ocean tsunami.
An effective tool to guide coastal residents for evacuation
is a hazard map showing the tsunami risk zones. Possible
flooding zones and safe evacuation places such as tsunami
shelters can be shown in the hazard maps. One of the les-
sons learned from the 2004 Indian Ocean tsunami is that
not only coastal residents but also foreign tourists need to
be informed about tsunami hazards. In the Hawaiian
Islands, tsunami hazard maps are prepared and published
in the local phone books that are available at every hotel
room. Those in high-rise hotel buildings are advised to
move vertically to the third or higher floors, rather than
horizontally moving out of the possible flooding area.

Tsunami hazard maps are constructed for past tsunamis
or for the most likely tsunami source. In the Sendai plain
before the 2011 Tohoku tsunami, tsunami hazard maps
and other countermeasures were prepared for an M ~ 8
earthquake, which was estimated to occur with 99% prob-
ability in the next 30 years (see The 2011 Tohoku earth-
quake and tsunami section). The predicted inundation area
was, for the most part, within 1 km from the coast, and
much smaller than the actual tsunami inundation area of
the 2011 M =9.0 earthquake which was up to 5 km. The
distribution of the 869 Jogan tsunami deposits, however,
was similar to the inundation area of the 2011 Tohoku
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tsunami. The hazard maps need to consider such infre-
quent gigantic earthquake and tsunamis.

One of the developments in tsunami hazard assess-
ment in the last decade is Probabilistic Tsunami Hazard
Assessment (PTHA) [86,87]. Results of the PTHA are
typically displayed as hazard curves that show the annual
frequency of exceedance of tsunami heights. The hazard
from a large number of possible sources including non-
earthquake source can be aggregated together to develop
a tsunami hazard curve. In addition, multiple sources of
uncertainty related to the source parameters and tsunami
numerical computations can be considered in the PTHA.
Uncertainty can be classified into two types: aleatory
and epistemic. Aleatory uncertainty, or random variability,
relates to the natural or stochastic uncertainty inherent
in a physical system, and cannot be reduced but can be
estimated from repeated observations or experiments.
Epistemic uncertainty is due to incomplete knowledge
and data, and can be reduced by the collection of new
data. Epistemic uncertainty can be treated as logic trees
[88]. A single hazard curve is obtained by integration
over the aleatory uncertainties, and a large number of
hazard curves are obtained for different branches of a
logic-tree representing epistemic uncertainty. The PTHA
for Fukushima Dai-ichi Nuclear Power Station estimated
that the annual exceedance of 10 m high tsunami was
an order of 1 x 107, or return period of around 100,000
years [89].

To reduce social vulnerability, various infrastructures,
or hardwares, have been implemented since the 2004
Indian Ocean and 2011 Tohoku tsunamis. Speakers to
broadcast tsunami warning messages have been installed

Page 10 of 13

in coastal areas of Indonesia or Thailand. Sign boards
showing the altitude and route to evacuation places have
been installed at numerous coastal communities in the
world. New and higher seawalls have been constructed
for coastal cities, particularly to protect critical facilities
such as nuclear power plants. These kinds of infrastruc-
ture have their lifetime and may not be maintained until
the next tsunami disaster.

Soft measures to reduce vulnerability include education
and awareness efforts. Numerous books and videos have
been published and used for education. In Japan, a famous
story, called “Inamura-no-hi” (fire of rice sheaves), has
been used for tsunami education. After a strong earth-
quake was felt at a coastal village in 1854, the village
chief put fire on his just-harvested rice crops to guide
villagers to high ground and to save their lives. Another
concept, “Tsunami tendenko,” which calls for a quick
tsunami evacuation without waiting for others, not even
one’s parents or children, became famous and popular
after the 2011 tsunami [90,91]. Periodic practice and
drills are also important to keep the tsunami warning
and mitigation system functional. In Indonesia, tsunami
evacuation drills have been carried out in many com-
munities including Banda Aceh, Padang and Bali in the
last decade.

Interdisciplinary studies of natural, social and human
sciences, as well as trans-disciplinarity of science, that is
cooperation between scientist and society, are important
for disaster risk reduction. For the latter, results of scien-
tific developments need to be shared with and utilized
by various stakeholders such as national government,
local government or communities (Figure 5).

Tsunami Warning System
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Hazard Mitigation

Al

Education / Awareness
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Figure 5 Elements of a tsunami-resilient society. Tsunami warning system (center), hazard assessment (left) and education systems (right) to
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Conclusions

(1) The 2004 Sumatra-Andaman earthquake, the largest
event in the last 40 years, caused the worst tsunami
disaster in countries around the Indian Ocean.

The main factors for the disaster were unexpected
occurrence of a gigantic earthquake in the region
and lacks of tsunami warning system, education and
awareness for tsunamis in the Indian Ocean.

(2) Seismological developments since 2004 include early
detection and estimation of tsunami occurrence,
paleoseismological studies on evidence of similar
tsunamis in the past, and global studies of recurrence
nature of large earthquakes in subduction zones. The
assessments of probable maximum size and long-term
forecast of great subduction zone earthquakes still
appear to be complicated, because of variability of
recurrent earthquakes.

(3) Developments in tsunami science include accurate
modeling of tsunami source such as contribution of
horizontal components or “tsunami earthquakes”,
instrumental developments for offshore and deep-
ocean tsunami observation, deployments of DART
gauges in the Pacific and other oceans, improvements
in tsunami propagation modeling, and real-time
inversion of various kinds of data for the tsunami
warning.

(4) At the time of the 2011 Tohoku earthquake, the
tsunami warning issued in 3 minutes of the
earthquake saved many lives yet resulted in 18,500
casualties. The long-term earthquake forecast made
before 2011 estimated the 30 year probability of 99
% in the source region with smaller (M ~ 8) size.
The source of the 2011 earthquake was modeled as
a combination of the 1896 “tsunami earthquake” and
the 869 Jogan earthquake.

(5) Towards tsunami disaster reduction, the
development of seismology and tsunami science can
be implemented as tsunami early warning systems,
tsunami hazard maps, and probabilistic tsunami
hazard assessments. In addition, interdisciplinary
and trans-disciplinary approaches are needed for
scientists with other stakeholders.
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