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Introduction
Big data or data-intensive applications (DIAs) process large amounts of data for the 
purpose of gaining key business intelligence through complex analytics using machine-
learning techniques [20, 35]. These applications are receiving increased attention in the 
last years given their ability to yield competitive advantage by direct investigation of 
user needs and trends hidden in the enormous quantities of data produced daily by the 
average Internet user. According to Gartner [1] business intelligence and analytics appli-
cations will remain a top focus for Chief-Information Officers (CIOs) of most Fortune 
500 companies until at least 2019–2021. However, the cost of ownership of the systems 
that process big data analytics are high due to infrastructure costs, steep learning curves 
for the different frameworks (such as Apache Storm [21], Apache Spark [2] or Apache 
Hadoop [3]) typically involved in design and development of big data applications and 
complexities in large-scale architectures.

A key complexity of the above design and development activity lies in quickly and con-
tinuously refining the configuration parameters of the middleware and service platforms 
on top of which the DIA is running [12]. The process in question is especially complex 
as the number of middleware involved in DIAs design increases; the more middleware 
are involved the more parameters need co-evaluation (e.g., latency or beaconing times, 
caching policies, queue retention and more)—fine-tuning these “knobs” on so many 
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concurrent technologies requires an automated tool to speed up this heavily manual, 
trial-and-error continuous fine-tuning process.

We argue that a primary entry-point for such fine-tuning is the DIA’s graph of opera-
tions along with the configurations that the graph is decorated with, for execution. This 
is possible when the adopted framework decomposes the computation in term of con-
current operations on data that are subject to a specific precedence relation. On one 
hand, the graph in question is a DAG—a Directed Acyclic Graph representing the cas-
cade of operations to be applied on data in a batch (i.e., slicing the data and analysing 
one partition at the time with the same operations) or stream (i.e., continuous data anal-
ysis) processing fashion. On the other hand, the application graph can either be known 
to the designer or it can be directly extracted from DIA code. This second scenario is 
where our research solution comes in.

This paper illustrates and evaluates OSTIA, which stands for “Ordinary Static Topol-
ogy Inference Analysis”—OSTIA is a tool which retrieves data-intensive topologies to 
allow for: (a) anti-pattern analysis—OSTIA allows detection of known and established 
design anti-patterns for data-intensive applications; (b) transparent formal verification—
OSTIA transposes the recovered data-intensive topology models into equivalent for-
mal models for the purpose of verifying temporal properties, such as basic queue-safety 
clauses [11].

First, during its reverse-engineering step, OSTIA recovers a JSON file describing the 
technical structure details and configurations in the targeted topologies. Secondly, such 
representations may be used for further analysis through model verification thanks to 
formal verification techniques [11]. The verification approach is lightweight and it is car-
ried out in a completely transparent fashion to OSTIA users.

This paper outlines OSTIA, elaborating on the major usage scenario above, its bene-
fits, and limitations. Also, we evaluate OSTIA using case-study research to conclude that 
OSTIA does in fact provide valuable insights for refactoring of big data architectures. 
Although a previous version of this paper was published in the proceedings of WICSA 
2015 [12], we introduce the following novel contributions:

• we extended OSTIA to address Apache Hadoop data-intensive applications and re-
executed the evaluation in line with this addition;

• we extended OSTIA with a formal verification feature for using a formal model built 
via Constraint LTL over-clocks (CLTLoc) [13]—an extension of the well-known Lin-
ear Temporal Logic (LTL)  [31] with variables measuring the elapsing of time. This 
feature operates verification on CLTLoc specifications and is completely transparent 
to OSTIA users, checking autonomously for safety of OSTIA-elicited topologies;

We released OSTIA as an open-source software [4].
The rest of the paper is structured as follows. The next section elaborates further on 

the notion of refactoring for DIAs. “Research methods” section outlines our research 
design and context of study. “Results: OSTIA explained” section outlines OSTIA. 
“Results” section evaluates OSTIA while “Discussion” section discusses results and eval-
uation outlining OSTIA limitations and threats to validity. Finally, “Related work” and 
“Conclusion” sections report related work and conclude the paper.
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Research methods
From a methodological perspective, the results outlined in this paper were elaborated as 
follows and made concrete through the actions in “Extracting anti-patterns for big data 
applications” and “Research solution evaluation” sections.

Extracting anti‑patterns for big data applications

The anti-patterns illustrated in this paper were initially elaborated within three struc-
tured focus-groups [28] involving practitioners from a different organization in each 
focus-group round; subsequently, we interviewed two domain-expert (5+ years of 
experience) researchers on big data technologies as a control group. The data was ana-
lyzed with a simple card-sorting exercise. The patterns emerged from the card-sorting 
were confirmed/disproved with the patterns emerging from our interview-based con-
trol group; disagreement between the two groups was evaluated Inter-Rater Reliability 
assessment using the well-known Krippendorff Alpha coefficient [26] (assessment of 
Kalpha = 0.89).

Table 1 outlines the population we used for this part of the study. The practitioners 
were simply required to elaborate on the most frequent structural and anti-patterns they 
encountered on their DIA design and experimentation.

The focus-group sessions were structured as follows: (a) the practitioners were pre-
sented with a data-intensive architectural design using standard UML structure and 
behavior representations (a component view and an activity view [19]); (b) the practi-
tioners were asked to identify and discuss any bottlenecks or structural limitations in 
the outlined designs; (c) finally, the practitioners were asked to illustrate any other anti-
pattern the showcased topologies did not contain.

Research solution evaluation

OSTIA’s evaluation is threefold.
First, we evaluated our solution using an industrial case-study offered by one of the 

industrial partners in the DICE EU H2020 Project consortium [5]. The partner in ques-
tion uses open-source social-sensing software to elaborate a subscription-based big-data 
application that: (a) aggregates news assets from various sources (e.g., Twitter, Facebook, 
etc.) based on user-desired specifications (e.g., topic, sentiment, etc.); (b) presents and 
allows the manipulation of data. The application in question is based on the SocialSen-
sor App [6] which features the combined action of three complex streaming topologies 
based on Apache Storm. The models that OSTIA elicited from this application were 

Table 1 Focus-groups population outline

Role #Participants Mean age Mean exp. 
with DIAs 
(#months)

Architect 3 35.3 17.3

Developer 4 27.7 36.2

Operator 5 31.1 38.1

Manager 3 44.2 18.4
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showcased to our industrial partner in a focus group aimed at establishing the value 
of insights produced as part of OSTIA-based analyses. Our qualitative assessment was 
based on questionnaires and open discussion.

Second, to further confirm the validity of OSTIA analyses and support, we applied it 
on two open-source applications featuring Big-Data analytics, namely: (a) the Digital-
Pebble application, “A text classification API in Java originally developed by DigitalPeb-
ble Ltd. The API is independent from the ML implementations and can be used as a 
front end to various ML algorithms” [7]; (b) the StormCV application, “StormCV ena-
bles the use of Apache Storm for video processing by adding computer vision (CV) spe-
cific operations and data model; the platform enables the development of distributed 
video processing pipelines which can be deployed on Storm clusters” [8].

Third, finally, as part of the OSTIA extension recapped in this manuscript, we applied 
formal verification approaches using the Zot [23] model-checker following an approach 
tailored from previous work [11, 13].

Results: OSTIA explained
This section introduces how OSTIA was designed to support design-time analysis and 
continuous improvement of data-intensive applications, using the Storm framework as 
a running example. For this reason, a brief recap of Storm is given to understand the 
rationale behind OSTIA.

A concrete example: the storm architecture

Storm is a technology developed at Twitter [39] in order to face the problem of process-
ing of streaming of data. It is defined as a distributed processing framework which is 
able to analyse streams of data. A storm topology is a DAG composed by nodes of two 
types: spouts and bolts. The former type includes nodes that process the data entering 
the topology, for instance querying APIs or retrieve information from a message bro-
ker, such as Apache Kafka.1 The latter executes operations on data, such as filtering or 
serialising.

OSTIA tool architecture

Architecture overview

The overall architecture of OSTIA is depicted in Fig. 1. The logical architectural infor-
mation of the topology is retrieved by OSTIA via static analysis of the source code. 
OSTIA generates a simple intermediate format to be used afterwards by other algorith-
mic processes.

OSTIA is indeed architected in a way that additional algorithmic analyses similar to 
our anti-pattern analyses can be easily added. These functionalities are carried out with 
the information that resides in the intermediate format and provide added value for the 
design-time analysis and verification. Since the information in the intermediate format 
only rely on the logical code analysis, the algorithmic analyses require some additional 
information regarding the running topology, such as, for instance, the end to end latency 

1 http://kafka .apach e.org/.

http://kafka.apache.org/
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and throughput of the topology or the mean duration of the computation carried out by 
the computational nodes when they process a unit of data.

Such information will be continuously added to the intermediate repository via runt-
ime monitoring of the topology on real deployment cluster. These provide appropriate 
and rich information for refactoring the initial architecture and enabling performance-
driven DevOps [14]. Finally, OSTIA allows users to export the topology in different for-
mats (specifically, JSON, Dot, CSV, and XMI) to analyse and continuously improve the 
topology with other tools—in the scope of this paper we focus on verification by-design 
featuring formal verification.

Architecture properties and extensibility

The architectural design of the OSTIA tool was incepted using a modular model-driven 
architecture [22] in mind. More specifically, the tool provides a platform-independent 
and topology-based analysis module which elicits topologies from data-intensive appli-
cations using an technology-agnostic format based on the “.Dot” notation, a well-known 
standard graph-representation format. On top of this analysis module, the architecture 
provides a design and analysis module which outputs a visualization of the graph-for-
matted input. Finally, the tool provides a pattern-analysis module with graph-analysis 
and pattern-mining functions; one function per pattern is used in this module. Finally, 
the tool provides a software-verification interlay relying on third-party tools from previ-
ous and related work as outlined in “OSTIA-based formal verification” section.

From an extensibility perspective, the architecture provides a basis template com-
mented within the source-code as a basic format to be used to extend each module; 
in principle, extending designers need to simply “instantiate” this template within the 
module and recall the extension from the visualization layer to warrant for OSTIA 
extensibility.

OSTIA methodology

The OSTIA Methodology effectively combines two successful approaches commonly 
adopted software development. The first one is DevOps and the second one is Model-
Driven Engineering. OSTIA can be adopted by both the Developers and Operators 
parts of the DevOps cycle that, together, contribute to the iterative developments 
cycle of software; and, in addition, it can be used to effectively enforce the model 

Topology pre-processing intermediate 
format (json)

Running Topology
runtime 

monitoring
visualization

topology refactoring designer

anti-pattern analysis

Analysis Plugins

Fig. 1 OSTIA extensible architecture
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refinement that enables the shift from high-level abstract models to low-level refined 
ones.

OSTIA takes part in the design process at the level of Developers as follows. Designers 
of applications can use OSTIA to model their application by means of an abstract mod-
eling language, based on UML. The language allows them to design the application in 
terms of abstraction that model the computational nodes of the application and the data 
sources providing input data. Based on the adopted technology, that will be used for the 
implementation of the final artifact, the language offers suitable stereotypes modeling 
the relevant technology-dependent features and that enable the analysis of the applica-
tion design by means of the OSTIA verification tool. This work focuses on two specific 
technologies and, therefore, the UML abstractions are only limited to those required to 
model Apache Storm applications and Hadoop applications. Moreover, on the Develop-
ers side, the designers can use OSTIA to iteratively refine the model of their applica-
tion by running the automatic analysis on different application models, that are possibly 
instantiated with different parameter values (e.g., the number of workers in a node run-
ning a certain functionality of the Storm topology).

On the other hand, OSTIA also participates to the DevOps cycle in the Operators side 
because it offers post-design analysis features. OSTIA, in fact, can be adopted by opera-
tors for the elicitation of the application architecture from its source code. In particular, 
a number of structural anti-pattern has been identified in this work as potential threats 
that might affect the performance of the application and even its correct behavior at 
runtime. OSTIA implements basic yet useful functionalities for static code analysis that 
can be used by designers and operators to discover possibly structural issues. The result 
of the analysis that OSTIA provides at this level is the application topology and the 
parts of the application that are likely to be a potential threat for the entire application. 
Combining the application topology with runtime information, that can be collected by 
standard monitoring framework, the designers can actually enforce a refinement itera-
tion on their design, in addition to the one performed at design time, that is based on 
realistic information coming from the real deployment of the application. This step 
might turn out in a refactoring of the deployed design into a new refined solution that, in 
turn, can be verified with the OSTIA verification tool, deployed and later analyzed with 
the same OSTIA functionalities. Figure 2 shows the refinement loop which is enabled by 
OSTIA.

Fig. 2 Iterative refinement support by OSTIA
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To make the OSTIA methodology a practice, the following activities reflected into the 
OSTIA tool.

• Architecture elicitation The static analysis of the source code of the application 
extracts its topology and made it available for later analysis.

• Structural anti-pattern identification Standard algorithms for graph analysis (such as 
clustering) identify specific structures in the application topology that might lead to 
undesired behaviors.

• Formal analysis Model-checking of the annotated model of the application verifies 
the existence of executions that might burden the application runtime with an exces-
sive workload.

The previous tools can be used in the following scenarios.

• Architecture analysis A development team implements an application that has to sat-
isfy certain requirements at runtime. OSTIA can be used to refine the application 
model before the implementation phase.

• DevOps As part of a DevOps pipeline dedicated to data-intensive solutions, OSTIA 
can be used for instrumenting the continuous refactoring of the data-intensive appli-
cation by studying the application structure and the underlying topology to improve 
their operational characteristics.

Topology design anti‑patterns within OSTIA

This section elaborates on the anti-patterns we elicited (see “Research methods” sec-
tion). These anti-patterns are elaborated further within OSTIA to allow for their detec-
tion during streaming topology inference analysis. Every pattern is elaborated using 
a simple graph-like notation where spouts are nodes that have outgoing edges only 
whereas bolts are nodes that can have either incoming or outgoing edges.

Multi‑anchoring

The multi-anchoring pattern is shown in Fig.  3. In order to guarantee fault-tolerant 
stream processing, tuples processed by bolts need to be anchored with the unique id of 
the bolt and be passed to multiple acknowledgers (or “ackers” in short) in the topology. 
In this way, ackers can keep track of tuples in the topology. Our practitioners agree that 

Fig. 3 The multi-anchoring anti-pattern
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multiple ackers can indeed cause much overhead and influence the operational perfor-
mance of the entire topology.

Cycle‑in topology

The cycle-in pattern is shown in Fig. 4. Technically, it is possible to have cycle in Storm 
topologies. An infinite cycle of processing would create an infinite tuple tree and make it 
impossible for Storm to ever acknowledge spout emitted tuples. Therefore, cycles should 
be avoided or resulting tuple trees should be investigated additionally to make sure they 
terminate at some point and under a specified series of conditions (these conditions can 
be hardcoded in Bolt logic). The anti-pattern itself may lead to infrastructure overload-
ing which in turn incurs in increased costs.

Persistent data

The persistent data pattern is shown in Fig.  5. This pattern covers the circumstance 
wherefore if two processing elements need to update a same entity in a storage, there 
should be a consistency mechanism in place. OSTIA offers limited support to this fea-
ture, which we plan to look into more carefully for future work. More details on this sup-
port are discussed in the approach limitations section.

Computation funnel

The computational funnel is shown in Fig.  6. A computational funnel emerges when 
there is not a path from data source (spout) to the bolts that sends out the tuples off the 
topology to another topology through a messaging framework or through a storage. This 

Fig. 4 The cycle-in anti-pattern

Fig. 5 Concurrency management in case of persistent data circumstances
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circumstance should be dealt with since it may compromise the availability of results 
under the desired performance restrictions.

DOT format for topology elicitation

As previously stated, the OSTIA tool is rigged to elicit and represent Big Data topologies 
using the “*.dot” format; the format in question is a de-facto and de-iure graph descrip-
tion language. DOT graphs are typically files with the file extension gv or dot. Paraphras-
ing from Wikipedia, “Various programs can process DOT files. Some, such as dot, neato, 
twopi, circo, fdp, and sfdp, can read a DOT file and render it in graphical form. Others, 
such as gvpr, gc, acyclic, ccomps, sccmap, and tred, read DOT files and perform calcula-
tions on the represented graph. Finally, others, such as lefty, dotty, and grappa, provide an 
interactive interface [...]”. A small excerpt of DOT code describing a graph with 4 nodes 
is the following:

OSTIA uses the same approach as the aforementioned tools and instatiates the same 
design-patterns employed by the tools in question to enact formal-verification of data-
intensive topologies.

OSTIA‑based formal verification

This section describes the formal modelling and verification employed in OSTIA. Our 
assumption for DIA refactoring is that architects eliciting and studying their topolo-
gies by means of OSTIA may want to continuously and incrementally improve it based 
on results from solid verification approaches. The approach, which was first proposed 
in [27], relies on satisfiability checking [32], an alternative approach to model-checking 
where, instead of an operational model (like automata or transition systems), the system 
(i.e., a topology in this context) is specified by a formula defining its executions over time 
and properties are verified by proving that the system logically entails them.

CLTLoc is a real-time temporal logic and, in particular, a semantic restriction of 
Constraint LTL (CLTL) [18] allowing atomic formulae over (R, {<,=}) where the arith-
metical variables behave like clocks of Timed Automata (TA)  [34]. As for TA, clocks 

Fig. 6 Computation funnel
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measures time delays between events: a clock x measures the time elapsed since the last 
time when x = 0 held, i.e., since the last “reset” of x. Clocks are interpreted over Reals 
and their value can be tested with respect to a positive integer value or reset to 0. To 
analyse anomalous executions of Storm topologies which do not preserve the queue-
length boundedness property for the nodes of the application, we consider CLTLoc with 
counters. Counters are discrete non-negative variables that are used in our model to rep-
resent the length of bolt queues over the time throughout the streaming processing real-
ized by the application. Let X be a finite set of clock variables x over R , Y be a finite set of 
variables over N and AP be a finite set of atomic propositions p. CLTLoc formulae with 
counters are defined as follows:

where x ∈ X , y, z ∈ Y  , c ∈ N and ∼∈ {<,=} , X , Y , U and S are the usual “next”, “previ-
ous”, “until” and “since”. A model is a pair (π , σ) , where σ is a mapping associating every 
variable x and position in N with value σ(i, x) and π is a mapping associating each posi-
tion in N with subset of AP. The semantics of CLTLoc is defined as for LTL except for 
formulae x ∼ c and Xy ∼ z± c . Intuitively, formula x ∼ c states that the value of clock x 
is ∼ than/to c and formula Xy ∼ z± c states that the next value of variable y is ∼ to/than 
z + c.

The standard technique to prove the satisfiability of CLTL and CLTLoc formulae is 
based on of Büchi automata [13, 18] but, for practical implementation, Bounded Satisfi-
ability Checking (BSC) [32] avoids the onerous construction of automata by means of a 
reduction to a decidable Satisfiability Modulo Theory (SMT) problem [13]. The outcome 
of a BSC problem is either an infinite ultimately periodic model or unsat.

CLTLoc allows the specification of non-deterministic models using temporal con-
straints wherein clock variables range over a dense domain and whose value is not 
abstracted. Clock variables represent, in the logical language and with the same preci-
sion, physical (dense) clocks implemented in real architectures. Clocks are associated 
with specific events to measure time elapsing over the executions. As they are reset when 
the associated event occurs, in any moment, the clock value represents the time elapsed 
since the previous reset and corresponds to the elapsed time since the last occurrence of 
the event associated to it. We use such constraints to define, for instance, the time delay 
required to process tuples or between two node failures.

Building on top of the above framework, in [27] we provide a formal interpretation of 
the Storm (meta-)model which requires several abstractions and assumptions.

• key deployment details, e.g., the number of worker nodes and features of the under-
lying cluster, are abstracted away;

• each bolt/spout has a single output stream;
• there is a single queuing layer: every bolt has a unique incoming queue and no send-

ing queue, while the worker queues are not represented;
• every operation is performed within minimum and maximum thresholds of time;
• the content of the messages is not relevant: all the tuples have the same fixed size and 

we represent only quantity of tuples moving through the system;

φ :=
p | x ∼ c | y ∼ c | Xy ∼ z± c | φ ∧ φ | ¬φ |

X(φ) | Y(φ) | φUφ | φSφ
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A Storm Topology is a directed graph G = {N, Sub} where the set of nodes N = S
⋃

B 
includes in the sets of spouts (S) and bolts (B) and Sub ⊂ N×N defines how the nodes 
are connected each other via the subscription relation. Pair (i, j) ∈ Sub indicates that 
“bolt i subscribes to the streams emitted by the spout/bolt j”. Spouts cannot subscribe 
to other nodes in the topology. Each bolt has a receive queue where the incoming tuples 
are collected before being read and processed. The queues have infinite size and the level 
of occupation of each jth queue is described by the variable qj . Spouts have no queues, 
and each spout can either emit tuples into the topology or stay idle. Each bolt can be in 
idle state, in failure state or in processing state. While in the processing state, the bolt 
first reads tuples from its receive queue (take action), then it performs its transformation 
(execute action) and finally it emits the output tuples in its output streams.

An excerpt of the full model designed in [27] is shown in Fig.  7. We provide, as an 
example, one of the formulae defining the processing state. Formula 1 can be read as “for 
all bolts: if a bolt j is processing tuples, then it has been processing tuples since it took those 
tuples from the queue, (or since the origin of the events), and it will keep processing those 
tuples until it will either emit them or fail. Moreover, the bolt is not in a failure state”.

The number of tuples emitted by a bolt depends on the number of incoming tuples. The 
ratio #output_tuples

#input_tuples
 expresses the “kind of function” performed by the bolt and is given as 

configuration parameter. All the emitted tuples are then added to the receive queues of 
the bolts subscribing to the emitting nodes. In the same way, whenever a bolt reads 
tuples from the queue, the number of elements in queue decreases. To this end, Formula 
2, imposes that “if a bolt takes elements from its queue, the number of queued elements in 
the next time instant will be equal to the current number of elements plus the quantity of 
tuples being added (emitted) from other connectd nodes minus the quantity of tuples 
being read”.

These functional constraints are fixed for all the nodes and they are not configurable. 
The structure of the topology, the parallelism level of each node, the bolt function and 
the non-functional requirements, as, for example, the time needed for a bolt in order 
to process a tuple, the minimum and maximum time between failures and the spout 

(1)
�

i∈B





processi ⇒

processi S (takei ∨ (orig ∧ processi))∧

processi U (emiti ∨ faili) ∧ ¬faili





(2)
∧

j∈B

(takej ⇒ (Xqj = qj + raddj − rtakej))

Fig. 7 Finite state automaton describing bolt states
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emitting rate are configurable parameters of the model. Currently, the verification tool 
accepts a JSON file containing all the configuration parameters. OSTIA supports such 
format and is able to extract from static code analysis a partial set of features, and an 
almost complete set of parameters after monitoring a short run of the system. The user 
can complete the JSON file by adding some verification-specific settings.

JSON format for verification

Listing  3.7 shows an excerpt of a JSON script describing a topology including two 
spouts, called S1 and S2 , and three bolts, called called B1 , S2 and S3 . Spouts and bolts 
are modeled by means of a number of parameters that represent an abstraction of their 
(non-functional) behavior at runtime. The JSON format is a readable means that cap-
tures all the needed information, required to run the verification, that are classified into 
three distinct groups. A list of the main ones is included hereafter.

• Topology-related settings:

• list of spouts:
• emit_rate: spout average tuple emitting rate.

• list of bolts:

• subs: the list of all the nodes in the topology that send tuple to the bolt.
• parallelism: level of parallelism chosen for the bolt. This value can be 

extracted from the code implementing Storm topology or set at design time.
• alpha: average processing time for the single tuple.
• sigma: ration between number of output tuples and number of input tuples. 

This value is an abstraction of the functionality carried out by the bolt: val-
ues smaller than one model filtering functions whereas value greater than one 
model other generic function on input tuples.

• structure of the topology, expressed through the combination of the subscription 
lists (“subs”) of all the bolts composing the topology.

• queue_threshold: the maximum level of occupancy that should not be 
exceeded by any queue. This value is extracted from the code implementing Storm 
topology or set at design time.

• max_idle_time: the maximum time for a bolt to be inactive.

• Verification-related settings: the information in this section does not model the 
topology itself but actually relates to the analysis that is run on the topology.

• num_steps: being the verification engine implemented according to the 
bounded model-checking approach, the value specifies the number of discrete 
time instants to be explored in the verification phase.

• periodic_queues: the list of bolts whose queue size is analyzed. The verifica-
tion procedure determines the existence of a system execution that leads to and 
increasing queue size for the bolts specified in the list.

• plugin: underlying model-checker to be used.
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Results
We evaluated OSTIA through qualitative evaluation and case-study research fea-
turing an open-/closed-source industrial case study (see “Establishing anti-patterns 
occurrence with case-study research: 3 cases from industry” section) and two open-
source case studies (see “Establishing anti-patterns occurrence with case-study 
research: 3 cases from open-source” section) on which we also applied OSTIA-based 
formal verification and refactoring (see “OSTIA-based formal verification” section). 
The objective of the evaluation was twofold:

OBJ.1 Evaluate the occurrence of anti-patterns evidenced by our practitioners in both 
open- and closed-source DIAs;

OBJ.2 Understand whether OSTIA-based analyses aid in refactoring towards formally-
verified DIA topologies by-design;

Establishing anti‑patterns occurrence with case‑study research: 3 cases from industry

OSTIA was evaluated using 3 medium/large topologies (11+ elements) part of the 
SocialSensor App. Our industrial partner is having performance and availability out-
ages connected to currently unknown circumstances. Therefore, the objective of our 
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evaluation for OSTIA was twofold: (a) allow our industrial partner to enact architecture 
refactoring of their application with the goal of discovering any patterns or hotspots that 
may be requiring further architectural reasoning; (b) understand whether OSTIA pro-
vided valuable feedback helping designers in tuning their application through a design-
and-refactor loop.

In addition to formal verification, specific algorithms for graph analysis can be inte-
grated in OSTIA to offer a deeper insight of the applications. For instance, the industrial 
case study has been analyzed with two algorithms to identify linear sequences of nodes 
and clusters in the topology graph. Topology linearisation results in sorting the process-
ing elements in a topology in a way that topology looks more linear, visually. This step 
ensures that visual investigation and evaluation of the structural complexity of the topol-
ogy is possible by direct observation. Topology clustering implies identifying coupled 
processing elements (i.e., bolts and spouts) and cluster them together (e.g., by means of 
graph-based analysis) in a way that elements in a cluster have high cohesion and loose-
coupling with elements in other clusters. Simple clustering or Social-Network Analysis 
mechanisms can be used to infer clusters. Clusters may require, in general, additional 
attention since they could turn out to become bottlenecks. Reasoning more deeply on 
clusters and their resolution may lead to establishing the Storm scheduling policy best-
fitting with the application.

OSTIA standard output2 for the smallest of the three SocialSensor topologies, namely 
the “focused-crawler” topology, is outlined in Fig. 8.

Combining this information with runtime data (i.e., latency times) our industrial part-
ner observed that the “expander” bolt needed additional architectural reasoning. More 
in particular, the bolt in question concentrates a lot of the topology’s progress on its 
queue, greatly hampering the topology’s scalability. In our partner’s scenario, the lim-
ited scalability was blocking the expansion of the topology in question with more data 
sources and sinks. In addition, the partner welcomed the idea of using OSTIA as a 
mechanism to enact the refactoring of the topology in question as part of the needed 
architectural reasoning.

wpSpout_1

WpDeserializer_4

expander_8

articleExtraction_1mediaExtraction_1

webPageUpdater_4 textIndexer_1mediaupdater_1 mediatextindexer_1

Linearisation

Left Cascade Right Cascade

Fig. 8 SocialSensor App, OSTIA sample output partially linearised (top) and cascaded (bottom left and right)

2 Output of OSTIA analyses is not shown fully for the sake of space.
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OSTIA assisted our client in understanding that the topological structure of the 
SocialSensor app would be better fit for batch processing rather than streaming, since 
the partner observed autonomously that too many database-output spouts and bolts 
were used in their versions of the SocialSensor topologies. In so doing, the partner is 
now using OSTIA to drive the refactoring exercise towards a Hadoop Map Reduce [3] 
framework for batch processing.

As a followup of our analysis, our partner is refactoring his own high-level software 
architecture adopting a lambda-like software architecture style [33] (see Fig.  9) which 
includes the Social-Sensor App (Top of Fig. 9) as well as several additional computation 
components. In summary, the refactoring resulting from OSTIA-based analysis equated 
to deferring part of the computations originally intended in the expander bolt within 
the Social Sensor app to additional ad-hoc Hadoop Map Reduce jobs with similar pur-
pose (e.g., the EntityExtractor compute node in Fig. 9) and intents but batched out of the 
topological processing in Storm (see Fig. 9).3

Our qualitative evaluation of the refactored architecture by means of several inter-
views and workshops revealed very encouraging results.

Establishing anti‑patterns occurrence with case‑study research: 3 cases from open‑source

To confirm the usefulness and capacity of OSTIA to enact a refactoring cycle, we 
applied it in understanding (first) and attempting improvements of two open-source 
applications, namely, the previously introduced DigitalPebble  [9] and StormCV  [8] 
applications. Figures 10 and 11 outline standard OSTIA output for the two applica-
tions. Note that we did not have any prior knowledge concerning the two applications 
in question and we merely run OSTIA on the applications’ codebase dump in our own 
experimental machine. OSTIA output takes mere seconds for small to medium-sized 
topologies (e.g., around 25 nodes).

The OSTIA output aided as follows: (a) the output summarised in Fig. 11 allowed 
us to immediately grasp the functional behavior of the DigitalPebble and StormCV 

Fig. 9 Industrial case-study, a refactored architecture

3 Several other overburdened topological elements were refactored but were omitted here due to industrial secrecy.
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PreprocessorBolt
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Fig. 10 StormCV topology (linearised)
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partitioner
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sitemap

status

parse

index

Fig. 11 DigitalPebble topology
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topologies allowing us to interpret correctly their operations before reading long doc-
umentation or inspecting the code; (b) OSTIA aided us in visually interpreting the 
complexity of the applications at hand; (c) OSTIA allowed us to spot several anti-pat-
terns in the DigitalPebble Storm application around the “sitemap” and “parse” bolts, 
namely, a multiple cascading instance of the multi-anchoring pattern and a persis-
tent-data pattern. Finally, OSTIA aided in the identification of the computational fun-
nel anti-pattern around the “status” bolt closing the DigitalPebble topology. With this 
evaluation at hand, developers in the respective communities of DigitalPebble and 
StormCV could refactor their topologies, e.g., aided by OSTIA-based formal verifica-
tion that proves the negative effects of said anti-patterns.

OSTIA‑based formal verification and refactoring

In this section we outline the results from OSTIA-based formal verification applied 
on (one of ) the topologies used by our industrial partner in practice. Results provide 
valuable insights for improving these topologies through refactoring.

The formal analysis of the “focused-crawler” topology confirmed the critical role 
of the “expander” bolt, previously noticed with the aim of OSTIA visual output. It 
emerged from the output traces that there exists an execution of the system, even 
without failures, where the queue occupation level of the bolt is unbounded. Figure 12 
shows how the tool constructed a periodic model in which a suffix (highlighted by 
the gray background) of a finite sequence of events is repeated infinitely many times 
after a prefix (on white background). After ensuring that the trace is not a spurious 
model, we concluded that the expander queue, having an increasing trend in the suf-
fix, is unbounded. As shown in the the output trace at the bottom of Fig. 12, further 
analyses on the DigitalPebble use case revealed that the same problem affects the “sta-
tus” bolt of the DigitalPebble topology. This finding from the formal verification tool 
reinforced the outcome of the anti-pattern module of OSTIA, showing how the pres-
ence of the computational funnel anti-pattern could lead to an unbounded growth in 
the queue of the “status” bolt. These types of heavyweight and powerful analyses are 
made easier by OSTIA in that our tool provides a ready-made analyzable models of 
the topologies making almost invisible the formal verification layer (other than manu-
ally setting and tuning operational parameters for verification).
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Discussion
This section discusses some findings and the limitations of OSTIA.

Findings and observations

OSTIA represents one humble, but significant step at supporting practically the necessi-
ties behind developing and maintaining high-quality big-data application architectures. 
In designing and developing OSTIA we encountered a number of insights that may aid 
application refactoring.

First, we found (and observed in industrial practice) that it is often common to develop 
“runnable” architecture topology that will undergo for refactoring even after the deploy-
ment phase and while the application is running. This is mostly the case with big-data 
applications that are developed stemming from previously existing topologies or appli-
cations. OSTIA hardcodes this way of thinking by supporting reverse-engineering and 

Fig. 12 OSTIA-based formal verification output traces showing the evolution of the two bolts over time. 
Queue trends are displayed as solid black line. Dashed lines show the processing activity of the bolts, while 
the other lines illustrate the incoming tuples from the subscribed nodes (emit events)
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recovery of deployed topologies for their incremental improvement. Such improvement 
is helpful because the refactoring can help in boosting the application, that therefore 
require less resources and less cost for the rented clusters. Although we did not carry out 
extensive qualitative or quantitative evaluation of OSTIA in this regard, we are planning 
additional industrial experiments for future work with the goal of increasing OSTIA 
usability and practical quality.

Second, big-data applications design is an extremely young and emerging field for 
which not many software design patterns have been discovered yet. The (anti-)pat-
terns and approaches currently hardcoded into OSTIA are inherited from related fields, 
e.g., pattern- and cluster-based graph analysis. Nevertheless, OSTIA may also be used 
to investigate the existence of recurrent and effective design solutions (i.e., design pat-
terns) for the benefit of big-data application design. We are improving OSTIA in this 
regard by experimenting on two fronts: (a) re-design and extend the facilities with which 
OSTIA supports anti-pattern detection; (b) run OSTIA on multiple big-data applica-
tions stemming from multiple technologies beyond Storm (e.g., Apache Spark, Hadoop 
Map Reduce, etc.) with the purpose of finding recurrent patterns. A similar approach 
may feature OSTIA as part of architecture trade-off analysis campaigns [17].

Third, a step which is currently undersupported during big-data applications design 
is devising an efficient algorithmic breakdown of a workflow into an efficient topology. 
Conversely, OSTIA does support the linearisation and combination of multiple topolo-
gies, e.g., into a cascade. Cascading and similar super-structures may be an interesting 
investigation venue since they may reveal more efficient styles for big-data architectures 
beyond styles such as Lambda Architecture [33] and Microservices [10]. OSTIA may aid 
in this investigation by allowing the interactive and incremental improvement of multi-
ple (combinations of ) topologies together.

Approach limitations and threats to validity

Although OSTIA shows promise both conceptually and as a practical tool, it shows sev-
eral limitations.

First of all, OSTIA only supports only a limited set of DIA middleware technologies. 
Multiple other big-data frameworks such as Apache Spark, Samza, exist to support both 
streaming and batch processing.

Second, OSTIA only allows to recover and evaluate previously-existing topologies, 
its usage is limited to design improvement and refactoring phases rather than design. 
Although this limitation may inhibit practitioners from using our technology, the (anti-)
patterns and algorithmic approaches elaborated in this paper help designers and imple-
mentors to develop the reasonably good-quality and “quick” topologies upon which to 
use OSTIA for continuous improvement.

Third, OSTIA does offer essential insights to aid deployment as well (e.g., separating or 
clustering complex portions of a topology so that they may run on dedicated infrastruc-
ture) and therefore the tool may serve for the additional purpose of aiding deployment 
design. However, our tool was not designed to be used as a system that aids deployment 
planning and infrastructure design. Further research should be invested into combin-
ing on-the-fly technology such as OSTIA with more powerful solvers that determine 
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infrastructure configuration details and similar technological tuning, e.g., the works by 
Peng et al. [30] and similar.

In the future we plan to tackle the above limitations furthering our understanding of 
streaming design as well as the support OSTIA offers to designers during the refactoring 
process.

Related work
The work behind OSTIA stems from the EU H2020 Project called DICE  [5] where 
we are investigating the use of model-driven facilities to support the design and qual-
ity enhancement of big data applications. Much similarly to the DICE effort, the IBM 
Stream Processing Language (SPL) initiative [24] provides an implementation language 
specific to programming streams management (e.g., Storm jobs) and related reactive 
systems. In addition, there are several work close to OSTIA in terms of their foundations 
and type of support, e.g., works focusing on distilling and analysing big data topologies 
by-design [36], as also highlighted in recent research by Kalantari et al. [25].

First, from a non-functional perspective, much literature discusses quality analyses 
of Big Data topologies, e.g., from a performance  [40] or reliability point of view [37]. 
Existing work use complex math-based approaches to evaluating a number of big data 
architectures, their structure and general configuration. However, these approaches do 
not suggest any architecture refactorings. With OSTIA, we automatically elicits a Storm 
topology, analyses the topologies against a number of consistency constraints that make 
the topology consistent with the framework. To the best of our knowledge, no such tool 
exists to date. Furthermore, as highlighted by Olshannikova et  al. [29] the few works 
existing on big data processes and their visualization highlight a considerable short-
coming in tools and technologies to visualize and interact with data-intensive models at 
runtime [29].

Second, from a modelling perspective, approaches such as StormGen [16] offer means 
to develop Storm topologies in a model-driven fashion using a combination of genera-
tive techniques based on XText and heavyweight (meta-)modelling, based on EMF, the 
standard Eclipse Modelling Framework Format. Although the first of its kind, StormGen 
merely allows the specification of a Storm topology, without applying any consistency 
checks or without offering the possibility to recover said topology once it has been devel-
oped. By means of OSTIA, designers can work refining their Storm topologies, e.g., as a 
consequence of verification or failed checks through OSTIA. Tools such as StormGen 
can be used to assist preliminary development of quick-and-dirty topologies.

Third, from a verification perspective, to the best of our knowledge, this represents 
the first attempt to build a formal model representing Storm topologies, and the first try 
in making a configurable model aiming at running verification tasks of non-functional 
properties for big data applications. While some works concentrate on exploiting big 
data technologies to speedup verification tasks  [15], others focus on the formalization 
of the specific framework, but remain application-independent, and their goal is rather 
to verify properties of the framework, such as reliability and load balancing [38], or the 
validity of the messaging flow in MapReduce [41].
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Conclusion
This paper proposes an approach allowing designers and developers to perform analysis 
of big-data applications by means of code analysis and formal verification techniques. 
OSTIA provides support to both in the following sense: it helps designers and develop-
ers by recovering the architectural topology on-the-fly from the application code and 
by assisting them in: (a) reasoning on the topological structure and how to refine it; 
(b) exporting the topological structure consistently with restrictions of their reference 
development framework so that further analysis (e.g., formal verification) may ensue. 
In addition, while performing on-the-fly architecture recovery, the analyses focuses on 
checking for the compliance to essential consistency rules specific to targeted big data 
frameworks. (c) Finally, OSTIA allows designers to check whether the recovered topolo-
gies contain occurrences of key anti-patterns. By running a case-study with partner 
organizations, we observed that OSTIA assists designers and developers in establishing 
and continuously improving the quality of topologies behind their big data applications.

OSTIA can be easily extended to provide more refined tools for the analysis of data-
intensive applications as it is general in the approach and modular with respect to the 
definition of (i) the anti-patterns to be considered and (ii) the formal analysis approaches 
and the application modeling to be adopted. For this reason, in addition to the practi-
cal evidence observed, we believe that OSTIA can be considered as a reference point in 
the development of data-intensive applications. This motivates us to further elaborate 
the anti-patterns, exploiting graphs analysis techniques inherited from social-networks 
analysis. Also, we plan to expand OSTIA to support technologies beyond the most com-
mon application framework for streaming and, finally, to further evaluate OSTIA using 
empirical evaluation.
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