
Verifying big data topologies by‑design:
a semi‑automated approach
Marcello M. Bersani1*, Francesco Marconi1, Damian A. Tamburri2* , Andrea Nodari3 and Pooyan Jamshidi3

Introduction
Big data or data-intensive applications (DIAs) process large amounts of data for the
purpose of gaining key business intelligence through complex analytics using machine-
learning techniques [20, 35]. These applications are receiving increased attention in the
last years given their ability to yield competitive advantage by direct investigation of
user needs and trends hidden in the enormous quantities of data produced daily by the
average Internet user. According to Gartner [1] business intelligence and analytics appli-
cations will remain a top focus for Chief-Information Officers (CIOs) of most Fortune
500 companies until at least 2019–2021. However, the cost of ownership of the systems
that process big data analytics are high due to infrastructure costs, steep learning curves
for the different frameworks (such as Apache Storm [21], Apache Spark [2] or Apache
Hadoop [3]) typically involved in design and development of big data applications and
complexities in large-scale architectures.

A key complexity of the above design and development activity lies in quickly and con-
tinuously refining the configuration parameters of the middleware and service platforms
on top of which the DIA is running [12]. The process in question is especially complex
as the number of middleware involved in DIAs design increases; the more middleware
are involved the more parameters need co-evaluation (e.g., latency or beaconing times,
caching policies, queue retention and more)—fine-tuning these “knobs” on so many

Abstract

Big data architectures have been gaining momentum in recent years. For instance,
Twitter uses stream processing frameworks like Apache Storm to analyse billions of
tweets per minute and learn the trending topics. However, architectures that process
big data involve many different components interconnected via semantically different
connectors. Such complex architectures make possible refactoring of the applications
a difficult task for software architects, as applications might be very different with
respect to the initial designs. As an aid to designers and developers, we developed
OSTIA (Ordinary Static Topology Inference Analysis) that allows detecting the occur-
rence of common anti-patterns across big data architectures and exploiting software
verification techniques on the elicited architectural models. This paper illustrates OSTIA
and evaluates its uses and benefits on three industrial-scale case-studies.

Keywords: Big data architectures, Software design and analysis, Big data systems
verification

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

METHODOLOGY

Bersani et al. J Big Data (2019) 6:40
https://doi.org/10.1186/s40537‑019‑0199‑y

*Correspondence:
marcellomaria.
bersani@polimi.it;
d.a.tamburri@tue.nl
1 Politecnico di Milano, Milan,
Italy
2 TU/e - JADS, Eindhoven, The
Netherlands
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1230-8961
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0199-y&domain=pdf

Page 2 of 23Bersani et al. J Big Data (2019) 6:40

concurrent technologies requires an automated tool to speed up this heavily manual,
trial-and-error continuous fine-tuning process.

We argue that a primary entry-point for such fine-tuning is the DIA’s graph of opera-
tions along with the configurations that the graph is decorated with, for execution. This
is possible when the adopted framework decomposes the computation in term of con-
current operations on data that are subject to a specific precedence relation. On one
hand, the graph in question is a DAG—a Directed Acyclic Graph representing the cas-
cade of operations to be applied on data in a batch (i.e., slicing the data and analysing
one partition at the time with the same operations) or stream (i.e., continuous data anal-
ysis) processing fashion. On the other hand, the application graph can either be known
to the designer or it can be directly extracted from DIA code. This second scenario is
where our research solution comes in.

This paper illustrates and evaluates OSTIA, which stands for “Ordinary Static Topol-
ogy Inference Analysis”—OSTIA is a tool which retrieves data-intensive topologies to
allow for: (a) anti-pattern analysis—OSTIA allows detection of known and established
design anti-patterns for data-intensive applications; (b) transparent formal verification—
OSTIA transposes the recovered data-intensive topology models into equivalent for-
mal models for the purpose of verifying temporal properties, such as basic queue-safety
clauses [11].

First, during its reverse-engineering step, OSTIA recovers a JSON file describing the
technical structure details and configurations in the targeted topologies. Secondly, such
representations may be used for further analysis through model verification thanks to
formal verification techniques [11]. The verification approach is lightweight and it is car-
ried out in a completely transparent fashion to OSTIA users.

This paper outlines OSTIA, elaborating on the major usage scenario above, its bene-
fits, and limitations. Also, we evaluate OSTIA using case-study research to conclude that
OSTIA does in fact provide valuable insights for refactoring of big data architectures.
Although a previous version of this paper was published in the proceedings of WICSA
2015 [12], we introduce the following novel contributions:

• we extended OSTIA to address Apache Hadoop data-intensive applications and re-
executed the evaluation in line with this addition;

• we extended OSTIA with a formal verification feature for using a formal model built
via Constraint LTL over-clocks (CLTLoc) [13]—an extension of the well-known Lin-
ear Temporal Logic (LTL) [31] with variables measuring the elapsing of time. This
feature operates verification on CLTLoc specifications and is completely transparent
to OSTIA users, checking autonomously for safety of OSTIA-elicited topologies;

We released OSTIA as an open-source software [4].
The rest of the paper is structured as follows. The next section elaborates further on

the notion of refactoring for DIAs. “Research methods” section outlines our research
design and context of study. “Results: OSTIA explained” section outlines OSTIA.
“Results” section evaluates OSTIA while “Discussion” section discusses results and eval-
uation outlining OSTIA limitations and threats to validity. Finally, “Related work” and
“Conclusion” sections report related work and conclude the paper.

Page 3 of 23Bersani et al. J Big Data (2019) 6:40

Research methods
From a methodological perspective, the results outlined in this paper were elaborated as
follows and made concrete through the actions in “Extracting anti-patterns for big data
applications” and “Research solution evaluation” sections.

Extracting anti‑patterns for big data applications

The anti-patterns illustrated in this paper were initially elaborated within three struc-
tured focus-groups [28] involving practitioners from a different organization in each
focus-group round; subsequently, we interviewed two domain-expert (5+ years of
experience) researchers on big data technologies as a control group. The data was ana-
lyzed with a simple card-sorting exercise. The patterns emerged from the card-sorting
were confirmed/disproved with the patterns emerging from our interview-based con-
trol group; disagreement between the two groups was evaluated Inter-Rater Reliability
assessment using the well-known Krippendorff Alpha coefficient [26] (assessment of
Kalpha = 0.89).

Table 1 outlines the population we used for this part of the study. The practitioners
were simply required to elaborate on the most frequent structural and anti-patterns they
encountered on their DIA design and experimentation.

The focus-group sessions were structured as follows: (a) the practitioners were pre-
sented with a data-intensive architectural design using standard UML structure and
behavior representations (a component view and an activity view [19]); (b) the practi-
tioners were asked to identify and discuss any bottlenecks or structural limitations in
the outlined designs; (c) finally, the practitioners were asked to illustrate any other anti-
pattern the showcased topologies did not contain.

Research solution evaluation

OSTIA’s evaluation is threefold.
First, we evaluated our solution using an industrial case-study offered by one of the

industrial partners in the DICE EU H2020 Project consortium [5]. The partner in ques-
tion uses open-source social-sensing software to elaborate a subscription-based big-data
application that: (a) aggregates news assets from various sources (e.g., Twitter, Facebook,
etc.) based on user-desired specifications (e.g., topic, sentiment, etc.); (b) presents and
allows the manipulation of data. The application in question is based on the SocialSen-
sor App [6] which features the combined action of three complex streaming topologies
based on Apache Storm. The models that OSTIA elicited from this application were

Table 1 Focus-groups population outline

Role #Participants Mean age Mean exp.
with DIAs
(#months)

Architect 3 35.3 17.3

Developer 4 27.7 36.2

Operator 5 31.1 38.1

Manager 3 44.2 18.4

Page 4 of 23Bersani et al. J Big Data (2019) 6:40

showcased to our industrial partner in a focus group aimed at establishing the value
of insights produced as part of OSTIA-based analyses. Our qualitative assessment was
based on questionnaires and open discussion.

Second, to further confirm the validity of OSTIA analyses and support, we applied it
on two open-source applications featuring Big-Data analytics, namely: (a) the Digital-
Pebble application, “A text classification API in Java originally developed by DigitalPeb-
ble Ltd. The API is independent from the ML implementations and can be used as a
front end to various ML algorithms” [7]; (b) the StormCV application, “StormCV ena-
bles the use of Apache Storm for video processing by adding computer vision (CV) spe-
cific operations and data model; the platform enables the development of distributed
video processing pipelines which can be deployed on Storm clusters” [8].

Third, finally, as part of the OSTIA extension recapped in this manuscript, we applied
formal verification approaches using the Zot [23] model-checker following an approach
tailored from previous work [11, 13].

Results: OSTIA explained
This section introduces how OSTIA was designed to support design-time analysis and
continuous improvement of data-intensive applications, using the Storm framework as
a running example. For this reason, a brief recap of Storm is given to understand the
rationale behind OSTIA.

A concrete example: the storm architecture

Storm is a technology developed at Twitter [39] in order to face the problem of process-
ing of streaming of data. It is defined as a distributed processing framework which is
able to analyse streams of data. A storm topology is a DAG composed by nodes of two
types: spouts and bolts. The former type includes nodes that process the data entering
the topology, for instance querying APIs or retrieve information from a message bro-
ker, such as Apache Kafka.1 The latter executes operations on data, such as filtering or
serialising.

OSTIA tool architecture

Architecture overview

The overall architecture of OSTIA is depicted in Fig. 1. The logical architectural infor-
mation of the topology is retrieved by OSTIA via static analysis of the source code.
OSTIA generates a simple intermediate format to be used afterwards by other algorith-
mic processes.

OSTIA is indeed architected in a way that additional algorithmic analyses similar to
our anti-pattern analyses can be easily added. These functionalities are carried out with
the information that resides in the intermediate format and provide added value for the
design-time analysis and verification. Since the information in the intermediate format
only rely on the logical code analysis, the algorithmic analyses require some additional
information regarding the running topology, such as, for instance, the end to end latency

1 http://kafka .apach e.org/.

http://kafka.apache.org/

Page 5 of 23Bersani et al. J Big Data (2019) 6:40

and throughput of the topology or the mean duration of the computation carried out by
the computational nodes when they process a unit of data.

Such information will be continuously added to the intermediate repository via runt-
ime monitoring of the topology on real deployment cluster. These provide appropriate
and rich information for refactoring the initial architecture and enabling performance-
driven DevOps [14]. Finally, OSTIA allows users to export the topology in different for-
mats (specifically, JSON, Dot, CSV, and XMI) to analyse and continuously improve the
topology with other tools—in the scope of this paper we focus on verification by-design
featuring formal verification.

Architecture properties and extensibility

The architectural design of the OSTIA tool was incepted using a modular model-driven
architecture [22] in mind. More specifically, the tool provides a platform-independent
and topology-based analysis module which elicits topologies from data-intensive appli-
cations using an technology-agnostic format based on the “.Dot” notation, a well-known
standard graph-representation format. On top of this analysis module, the architecture
provides a design and analysis module which outputs a visualization of the graph-for-
matted input. Finally, the tool provides a pattern-analysis module with graph-analysis
and pattern-mining functions; one function per pattern is used in this module. Finally,
the tool provides a software-verification interlay relying on third-party tools from previ-
ous and related work as outlined in “OSTIA-based formal verification” section.

From an extensibility perspective, the architecture provides a basis template com-
mented within the source-code as a basic format to be used to extend each module;
in principle, extending designers need to simply “instantiate” this template within the
module and recall the extension from the visualization layer to warrant for OSTIA
extensibility.

OSTIA methodology

The OSTIA Methodology effectively combines two successful approaches commonly
adopted software development. The first one is DevOps and the second one is Model-
Driven Engineering. OSTIA can be adopted by both the Developers and Operators
parts of the DevOps cycle that, together, contribute to the iterative developments
cycle of software; and, in addition, it can be used to effectively enforce the model

Topology pre-processing intermediate
format (json)

Running Topology
runtime

monitoring
visualization

topology refactoring designer

anti-pattern analysis

Analysis Plugins

Fig. 1 OSTIA extensible architecture

Page 6 of 23Bersani et al. J Big Data (2019) 6:40

refinement that enables the shift from high-level abstract models to low-level refined
ones.

OSTIA takes part in the design process at the level of Developers as follows. Designers
of applications can use OSTIA to model their application by means of an abstract mod-
eling language, based on UML. The language allows them to design the application in
terms of abstraction that model the computational nodes of the application and the data
sources providing input data. Based on the adopted technology, that will be used for the
implementation of the final artifact, the language offers suitable stereotypes modeling
the relevant technology-dependent features and that enable the analysis of the applica-
tion design by means of the OSTIA verification tool. This work focuses on two specific
technologies and, therefore, the UML abstractions are only limited to those required to
model Apache Storm applications and Hadoop applications. Moreover, on the Develop-
ers side, the designers can use OSTIA to iteratively refine the model of their applica-
tion by running the automatic analysis on different application models, that are possibly
instantiated with different parameter values (e.g., the number of workers in a node run-
ning a certain functionality of the Storm topology).

On the other hand, OSTIA also participates to the DevOps cycle in the Operators side
because it offers post-design analysis features. OSTIA, in fact, can be adopted by opera-
tors for the elicitation of the application architecture from its source code. In particular,
a number of structural anti-pattern has been identified in this work as potential threats
that might affect the performance of the application and even its correct behavior at
runtime. OSTIA implements basic yet useful functionalities for static code analysis that
can be used by designers and operators to discover possibly structural issues. The result
of the analysis that OSTIA provides at this level is the application topology and the
parts of the application that are likely to be a potential threat for the entire application.
Combining the application topology with runtime information, that can be collected by
standard monitoring framework, the designers can actually enforce a refinement itera-
tion on their design, in addition to the one performed at design time, that is based on
realistic information coming from the real deployment of the application. This step
might turn out in a refactoring of the deployed design into a new refined solution that, in
turn, can be verified with the OSTIA verification tool, deployed and later analyzed with
the same OSTIA functionalities. Figure 2 shows the refinement loop which is enabled by
OSTIA.

Fig. 2 Iterative refinement support by OSTIA

Page 7 of 23Bersani et al. J Big Data (2019) 6:40

To make the OSTIA methodology a practice, the following activities reflected into the
OSTIA tool.

• Architecture elicitation The static analysis of the source code of the application
extracts its topology and made it available for later analysis.

• Structural anti-pattern identification Standard algorithms for graph analysis (such as
clustering) identify specific structures in the application topology that might lead to
undesired behaviors.

• Formal analysis Model-checking of the annotated model of the application verifies
the existence of executions that might burden the application runtime with an exces-
sive workload.

The previous tools can be used in the following scenarios.

• Architecture analysis A development team implements an application that has to sat-
isfy certain requirements at runtime. OSTIA can be used to refine the application
model before the implementation phase.

• DevOps As part of a DevOps pipeline dedicated to data-intensive solutions, OSTIA
can be used for instrumenting the continuous refactoring of the data-intensive appli-
cation by studying the application structure and the underlying topology to improve
their operational characteristics.

Topology design anti‑patterns within OSTIA

This section elaborates on the anti-patterns we elicited (see “Research methods” sec-
tion). These anti-patterns are elaborated further within OSTIA to allow for their detec-
tion during streaming topology inference analysis. Every pattern is elaborated using
a simple graph-like notation where spouts are nodes that have outgoing edges only
whereas bolts are nodes that can have either incoming or outgoing edges.

Multi‑anchoring

The multi-anchoring pattern is shown in Fig. 3. In order to guarantee fault-tolerant
stream processing, tuples processed by bolts need to be anchored with the unique id of
the bolt and be passed to multiple acknowledgers (or “ackers” in short) in the topology.
In this way, ackers can keep track of tuples in the topology. Our practitioners agree that

Fig. 3 The multi-anchoring anti-pattern

Page 8 of 23Bersani et al. J Big Data (2019) 6:40

multiple ackers can indeed cause much overhead and influence the operational perfor-
mance of the entire topology.

Cycle‑in topology

The cycle-in pattern is shown in Fig. 4. Technically, it is possible to have cycle in Storm
topologies. An infinite cycle of processing would create an infinite tuple tree and make it
impossible for Storm to ever acknowledge spout emitted tuples. Therefore, cycles should
be avoided or resulting tuple trees should be investigated additionally to make sure they
terminate at some point and under a specified series of conditions (these conditions can
be hardcoded in Bolt logic). The anti-pattern itself may lead to infrastructure overload-
ing which in turn incurs in increased costs.

Persistent data

The persistent data pattern is shown in Fig. 5. This pattern covers the circumstance
wherefore if two processing elements need to update a same entity in a storage, there
should be a consistency mechanism in place. OSTIA offers limited support to this fea-
ture, which we plan to look into more carefully for future work. More details on this sup-
port are discussed in the approach limitations section.

Computation funnel

The computational funnel is shown in Fig. 6. A computational funnel emerges when
there is not a path from data source (spout) to the bolts that sends out the tuples off the
topology to another topology through a messaging framework or through a storage. This

Fig. 4 The cycle-in anti-pattern

Fig. 5 Concurrency management in case of persistent data circumstances

Page 9 of 23Bersani et al. J Big Data (2019) 6:40

circumstance should be dealt with since it may compromise the availability of results
under the desired performance restrictions.

DOT format for topology elicitation

As previously stated, the OSTIA tool is rigged to elicit and represent Big Data topologies
using the “*.dot” format; the format in question is a de-facto and de-iure graph descrip-
tion language. DOT graphs are typically files with the file extension gv or dot. Paraphras-
ing from Wikipedia, “Various programs can process DOT files. Some, such as dot, neato,
twopi, circo, fdp, and sfdp, can read a DOT file and render it in graphical form. Others,
such as gvpr, gc, acyclic, ccomps, sccmap, and tred, read DOT files and perform calcula-
tions on the represented graph. Finally, others, such as lefty, dotty, and grappa, provide an
interactive interface [...]”. A small excerpt of DOT code describing a graph with 4 nodes
is the following:

OSTIA uses the same approach as the aforementioned tools and instatiates the same
design-patterns employed by the tools in question to enact formal-verification of data-
intensive topologies.

OSTIA‑based formal verification

This section describes the formal modelling and verification employed in OSTIA. Our
assumption for DIA refactoring is that architects eliciting and studying their topolo-
gies by means of OSTIA may want to continuously and incrementally improve it based
on results from solid verification approaches. The approach, which was first proposed
in [27], relies on satisfiability checking [32], an alternative approach to model-checking
where, instead of an operational model (like automata or transition systems), the system
(i.e., a topology in this context) is specified by a formula defining its executions over time
and properties are verified by proving that the system logically entails them.

CLTLoc is a real-time temporal logic and, in particular, a semantic restriction of
Constraint LTL (CLTL) [18] allowing atomic formulae over (R, {<,=}) where the arith-
metical variables behave like clocks of Timed Automata (TA) [34]. As for TA, clocks

Fig. 6 Computation funnel

Page 10 of 23Bersani et al. J Big Data (2019) 6:40

measures time delays between events: a clock x measures the time elapsed since the last
time when x = 0 held, i.e., since the last “reset” of x. Clocks are interpreted over Reals
and their value can be tested with respect to a positive integer value or reset to 0. To
analyse anomalous executions of Storm topologies which do not preserve the queue-
length boundedness property for the nodes of the application, we consider CLTLoc with
counters. Counters are discrete non-negative variables that are used in our model to rep-
resent the length of bolt queues over the time throughout the streaming processing real-
ized by the application. Let X be a finite set of clock variables x over R , Y be a finite set of
variables over N and AP be a finite set of atomic propositions p. CLTLoc formulae with
counters are defined as follows:

where x ∈ X , y, z ∈ Y , c ∈ N and ∼∈ {<,=} , X , Y , U and S are the usual “next”, “previ-
ous”, “until” and “since”. A model is a pair (π , σ) , where σ is a mapping associating every
variable x and position in N with value σ(i, x) and π is a mapping associating each posi-
tion in N with subset of AP. The semantics of CLTLoc is defined as for LTL except for
formulae x ∼ c and Xy ∼ z± c . Intuitively, formula x ∼ c states that the value of clock x
is ∼ than/to c and formula Xy ∼ z± c states that the next value of variable y is ∼ to/than
z + c.

The standard technique to prove the satisfiability of CLTL and CLTLoc formulae is
based on of Büchi automata [13, 18] but, for practical implementation, Bounded Satisfi-
ability Checking (BSC) [32] avoids the onerous construction of automata by means of a
reduction to a decidable Satisfiability Modulo Theory (SMT) problem [13]. The outcome
of a BSC problem is either an infinite ultimately periodic model or unsat.

CLTLoc allows the specification of non-deterministic models using temporal con-
straints wherein clock variables range over a dense domain and whose value is not
abstracted. Clock variables represent, in the logical language and with the same preci-
sion, physical (dense) clocks implemented in real architectures. Clocks are associated
with specific events to measure time elapsing over the executions. As they are reset when
the associated event occurs, in any moment, the clock value represents the time elapsed
since the previous reset and corresponds to the elapsed time since the last occurrence of
the event associated to it. We use such constraints to define, for instance, the time delay
required to process tuples or between two node failures.

Building on top of the above framework, in [27] we provide a formal interpretation of
the Storm (meta-)model which requires several abstractions and assumptions.

• key deployment details, e.g., the number of worker nodes and features of the under-
lying cluster, are abstracted away;

• each bolt/spout has a single output stream;
• there is a single queuing layer: every bolt has a unique incoming queue and no send-

ing queue, while the worker queues are not represented;
• every operation is performed within minimum and maximum thresholds of time;
• the content of the messages is not relevant: all the tuples have the same fixed size and

we represent only quantity of tuples moving through the system;

φ :=
p | x ∼ c | y ∼ c | Xy ∼ z± c | φ ∧ φ | ¬φ |

X(φ) | Y(φ) | φUφ | φSφ

Page 11 of 23Bersani et al. J Big Data (2019) 6:40

A Storm Topology is a directed graph G = {N, Sub} where the set of nodes N = S
⋃

B
includes in the sets of spouts (S) and bolts (B) and Sub ⊂ N×N defines how the nodes
are connected each other via the subscription relation. Pair (i, j) ∈ Sub indicates that
“bolt i subscribes to the streams emitted by the spout/bolt j”. Spouts cannot subscribe
to other nodes in the topology. Each bolt has a receive queue where the incoming tuples
are collected before being read and processed. The queues have infinite size and the level
of occupation of each jth queue is described by the variable qj . Spouts have no queues,
and each spout can either emit tuples into the topology or stay idle. Each bolt can be in
idle state, in failure state or in processing state. While in the processing state, the bolt
first reads tuples from its receive queue (take action), then it performs its transformation
(execute action) and finally it emits the output tuples in its output streams.

An excerpt of the full model designed in [27] is shown in Fig. 7. We provide, as an
example, one of the formulae defining the processing state. Formula 1 can be read as “for
all bolts: if a bolt j is processing tuples, then it has been processing tuples since it took those
tuples from the queue, (or since the origin of the events), and it will keep processing those
tuples until it will either emit them or fail. Moreover, the bolt is not in a failure state”.

The number of tuples emitted by a bolt depends on the number of incoming tuples. The
ratio #output_tuples

#input_tuples
 expresses the “kind of function” performed by the bolt and is given as

configuration parameter. All the emitted tuples are then added to the receive queues of
the bolts subscribing to the emitting nodes. In the same way, whenever a bolt reads
tuples from the queue, the number of elements in queue decreases. To this end, Formula
2, imposes that “if a bolt takes elements from its queue, the number of queued elements in
the next time instant will be equal to the current number of elements plus the quantity of
tuples being added (emitted) from other connectd nodes minus the quantity of tuples
being read”.

These functional constraints are fixed for all the nodes and they are not configurable.
The structure of the topology, the parallelism level of each node, the bolt function and
the non-functional requirements, as, for example, the time needed for a bolt in order
to process a tuple, the minimum and maximum time between failures and the spout

(1)
�

i∈B

processi ⇒

processi S (takei ∨ (orig ∧ processi))∧

processi U (emiti ∨ faili) ∧ ¬faili

(2)
∧

j∈B

(takej ⇒ (Xqj = qj + raddj − rtakej))

Fig. 7 Finite state automaton describing bolt states

Page 12 of 23Bersani et al. J Big Data (2019) 6:40

emitting rate are configurable parameters of the model. Currently, the verification tool
accepts a JSON file containing all the configuration parameters. OSTIA supports such
format and is able to extract from static code analysis a partial set of features, and an
almost complete set of parameters after monitoring a short run of the system. The user
can complete the JSON file by adding some verification-specific settings.

JSON format for verification

Listing 3.7 shows an excerpt of a JSON script describing a topology including two
spouts, called S1 and S2 , and three bolts, called called B1 , S2 and S3 . Spouts and bolts
are modeled by means of a number of parameters that represent an abstraction of their
(non-functional) behavior at runtime. The JSON format is a readable means that cap-
tures all the needed information, required to run the verification, that are classified into
three distinct groups. A list of the main ones is included hereafter.

• Topology-related settings:

• list of spouts:
• emit_rate: spout average tuple emitting rate.

• list of bolts:

• subs: the list of all the nodes in the topology that send tuple to the bolt.
• parallelism: level of parallelism chosen for the bolt. This value can be

extracted from the code implementing Storm topology or set at design time.
• alpha: average processing time for the single tuple.
• sigma: ration between number of output tuples and number of input tuples.

This value is an abstraction of the functionality carried out by the bolt: val-
ues smaller than one model filtering functions whereas value greater than one
model other generic function on input tuples.

• structure of the topology, expressed through the combination of the subscription
lists (“subs”) of all the bolts composing the topology.

• queue_threshold: the maximum level of occupancy that should not be
exceeded by any queue. This value is extracted from the code implementing Storm
topology or set at design time.

• max_idle_time: the maximum time for a bolt to be inactive.

• Verification-related settings: the information in this section does not model the
topology itself but actually relates to the analysis that is run on the topology.

• num_steps: being the verification engine implemented according to the
bounded model-checking approach, the value specifies the number of discrete
time instants to be explored in the verification phase.

• periodic_queues: the list of bolts whose queue size is analyzed. The verifica-
tion procedure determines the existence of a system execution that leads to and
increasing queue size for the bolts specified in the list.

• plugin: underlying model-checker to be used.

Page 13 of 23Bersani et al. J Big Data (2019) 6:40

Results
We evaluated OSTIA through qualitative evaluation and case-study research fea-
turing an open-/closed-source industrial case study (see “Establishing anti-patterns
occurrence with case-study research: 3 cases from industry” section) and two open-
source case studies (see “Establishing anti-patterns occurrence with case-study
research: 3 cases from open-source” section) on which we also applied OSTIA-based
formal verification and refactoring (see “OSTIA-based formal verification” section).
The objective of the evaluation was twofold:

OBJ.1 Evaluate the occurrence of anti-patterns evidenced by our practitioners in both
open- and closed-source DIAs;

OBJ.2 Understand whether OSTIA-based analyses aid in refactoring towards formally-
verified DIA topologies by-design;

Establishing anti‑patterns occurrence with case‑study research: 3 cases from industry

OSTIA was evaluated using 3 medium/large topologies (11+ elements) part of the
SocialSensor App. Our industrial partner is having performance and availability out-
ages connected to currently unknown circumstances. Therefore, the objective of our

Page 14 of 23Bersani et al. J Big Data (2019) 6:40

evaluation for OSTIA was twofold: (a) allow our industrial partner to enact architecture
refactoring of their application with the goal of discovering any patterns or hotspots that
may be requiring further architectural reasoning; (b) understand whether OSTIA pro-
vided valuable feedback helping designers in tuning their application through a design-
and-refactor loop.

In addition to formal verification, specific algorithms for graph analysis can be inte-
grated in OSTIA to offer a deeper insight of the applications. For instance, the industrial
case study has been analyzed with two algorithms to identify linear sequences of nodes
and clusters in the topology graph. Topology linearisation results in sorting the process-
ing elements in a topology in a way that topology looks more linear, visually. This step
ensures that visual investigation and evaluation of the structural complexity of the topol-
ogy is possible by direct observation. Topology clustering implies identifying coupled
processing elements (i.e., bolts and spouts) and cluster them together (e.g., by means of
graph-based analysis) in a way that elements in a cluster have high cohesion and loose-
coupling with elements in other clusters. Simple clustering or Social-Network Analysis
mechanisms can be used to infer clusters. Clusters may require, in general, additional
attention since they could turn out to become bottlenecks. Reasoning more deeply on
clusters and their resolution may lead to establishing the Storm scheduling policy best-
fitting with the application.

OSTIA standard output2 for the smallest of the three SocialSensor topologies, namely
the “focused-crawler” topology, is outlined in Fig. 8.

Combining this information with runtime data (i.e., latency times) our industrial part-
ner observed that the “expander” bolt needed additional architectural reasoning. More
in particular, the bolt in question concentrates a lot of the topology’s progress on its
queue, greatly hampering the topology’s scalability. In our partner’s scenario, the lim-
ited scalability was blocking the expansion of the topology in question with more data
sources and sinks. In addition, the partner welcomed the idea of using OSTIA as a
mechanism to enact the refactoring of the topology in question as part of the needed
architectural reasoning.

wpSpout_1

WpDeserializer_4

expander_8

articleExtraction_1mediaExtraction_1

webPageUpdater_4 textIndexer_1mediaupdater_1 mediatextindexer_1

Linearisation

Left Cascade Right Cascade

Fig. 8 SocialSensor App, OSTIA sample output partially linearised (top) and cascaded (bottom left and right)

2 Output of OSTIA analyses is not shown fully for the sake of space.

Page 15 of 23Bersani et al. J Big Data (2019) 6:40

OSTIA assisted our client in understanding that the topological structure of the
SocialSensor app would be better fit for batch processing rather than streaming, since
the partner observed autonomously that too many database-output spouts and bolts
were used in their versions of the SocialSensor topologies. In so doing, the partner is
now using OSTIA to drive the refactoring exercise towards a Hadoop Map Reduce [3]
framework for batch processing.

As a followup of our analysis, our partner is refactoring his own high-level software
architecture adopting a lambda-like software architecture style [33] (see Fig. 9) which
includes the Social-Sensor App (Top of Fig. 9) as well as several additional computation
components. In summary, the refactoring resulting from OSTIA-based analysis equated
to deferring part of the computations originally intended in the expander bolt within
the Social Sensor app to additional ad-hoc Hadoop Map Reduce jobs with similar pur-
pose (e.g., the EntityExtractor compute node in Fig. 9) and intents but batched out of the
topological processing in Storm (see Fig. 9).3

Our qualitative evaluation of the refactored architecture by means of several inter-
views and workshops revealed very encouraging results.

Establishing anti‑patterns occurrence with case‑study research: 3 cases from open‑source

To confirm the usefulness and capacity of OSTIA to enact a refactoring cycle, we
applied it in understanding (first) and attempting improvements of two open-source
applications, namely, the previously introduced DigitalPebble [9] and StormCV [8]
applications. Figures 10 and 11 outline standard OSTIA output for the two applica-
tions. Note that we did not have any prior knowledge concerning the two applications
in question and we merely run OSTIA on the applications’ codebase dump in our own
experimental machine. OSTIA output takes mere seconds for small to medium-sized
topologies (e.g., around 25 nodes).

The OSTIA output aided as follows: (a) the output summarised in Fig. 11 allowed
us to immediately grasp the functional behavior of the DigitalPebble and StormCV

Fig. 9 Industrial case-study, a refactored architecture

3 Several other overburdened topological elements were refactored but were omitted here due to industrial secrecy.

Page 16 of 23Bersani et al. J Big Data (2019) 6:40

DatasetSpout

TokenizerBolt

PreprocessorBolt

POSTaggerBolt

FeatureGenerationBolt

SVMBolt

Linearised Topology

Fig. 10 StormCV topology (linearised)

spout

partitioner

fetch

sitemap

status

parse

index

Fig. 11 DigitalPebble topology

Page 17 of 23Bersani et al. J Big Data (2019) 6:40

topologies allowing us to interpret correctly their operations before reading long doc-
umentation or inspecting the code; (b) OSTIA aided us in visually interpreting the
complexity of the applications at hand; (c) OSTIA allowed us to spot several anti-pat-
terns in the DigitalPebble Storm application around the “sitemap” and “parse” bolts,
namely, a multiple cascading instance of the multi-anchoring pattern and a persis-
tent-data pattern. Finally, OSTIA aided in the identification of the computational fun-
nel anti-pattern around the “status” bolt closing the DigitalPebble topology. With this
evaluation at hand, developers in the respective communities of DigitalPebble and
StormCV could refactor their topologies, e.g., aided by OSTIA-based formal verifica-
tion that proves the negative effects of said anti-patterns.

OSTIA‑based formal verification and refactoring

In this section we outline the results from OSTIA-based formal verification applied
on (one of) the topologies used by our industrial partner in practice. Results provide
valuable insights for improving these topologies through refactoring.

The formal analysis of the “focused-crawler” topology confirmed the critical role
of the “expander” bolt, previously noticed with the aim of OSTIA visual output. It
emerged from the output traces that there exists an execution of the system, even
without failures, where the queue occupation level of the bolt is unbounded. Figure 12
shows how the tool constructed a periodic model in which a suffix (highlighted by
the gray background) of a finite sequence of events is repeated infinitely many times
after a prefix (on white background). After ensuring that the trace is not a spurious
model, we concluded that the expander queue, having an increasing trend in the suf-
fix, is unbounded. As shown in the the output trace at the bottom of Fig. 12, further
analyses on the DigitalPebble use case revealed that the same problem affects the “sta-
tus” bolt of the DigitalPebble topology. This finding from the formal verification tool
reinforced the outcome of the anti-pattern module of OSTIA, showing how the pres-
ence of the computational funnel anti-pattern could lead to an unbounded growth in
the queue of the “status” bolt. These types of heavyweight and powerful analyses are
made easier by OSTIA in that our tool provides a ready-made analyzable models of
the topologies making almost invisible the formal verification layer (other than manu-
ally setting and tuning operational parameters for verification).

Page 18 of 23Bersani et al. J Big Data (2019) 6:40

Discussion
This section discusses some findings and the limitations of OSTIA.

Findings and observations

OSTIA represents one humble, but significant step at supporting practically the necessi-
ties behind developing and maintaining high-quality big-data application architectures.
In designing and developing OSTIA we encountered a number of insights that may aid
application refactoring.

First, we found (and observed in industrial practice) that it is often common to develop
“runnable” architecture topology that will undergo for refactoring even after the deploy-
ment phase and while the application is running. This is mostly the case with big-data
applications that are developed stemming from previously existing topologies or appli-
cations. OSTIA hardcodes this way of thinking by supporting reverse-engineering and

Fig. 12 OSTIA-based formal verification output traces showing the evolution of the two bolts over time.
Queue trends are displayed as solid black line. Dashed lines show the processing activity of the bolts, while
the other lines illustrate the incoming tuples from the subscribed nodes (emit events)

Page 19 of 23Bersani et al. J Big Data (2019) 6:40

recovery of deployed topologies for their incremental improvement. Such improvement
is helpful because the refactoring can help in boosting the application, that therefore
require less resources and less cost for the rented clusters. Although we did not carry out
extensive qualitative or quantitative evaluation of OSTIA in this regard, we are planning
additional industrial experiments for future work with the goal of increasing OSTIA
usability and practical quality.

Second, big-data applications design is an extremely young and emerging field for
which not many software design patterns have been discovered yet. The (anti-)pat-
terns and approaches currently hardcoded into OSTIA are inherited from related fields,
e.g., pattern- and cluster-based graph analysis. Nevertheless, OSTIA may also be used
to investigate the existence of recurrent and effective design solutions (i.e., design pat-
terns) for the benefit of big-data application design. We are improving OSTIA in this
regard by experimenting on two fronts: (a) re-design and extend the facilities with which
OSTIA supports anti-pattern detection; (b) run OSTIA on multiple big-data applica-
tions stemming from multiple technologies beyond Storm (e.g., Apache Spark, Hadoop
Map Reduce, etc.) with the purpose of finding recurrent patterns. A similar approach
may feature OSTIA as part of architecture trade-off analysis campaigns [17].

Third, a step which is currently undersupported during big-data applications design
is devising an efficient algorithmic breakdown of a workflow into an efficient topology.
Conversely, OSTIA does support the linearisation and combination of multiple topolo-
gies, e.g., into a cascade. Cascading and similar super-structures may be an interesting
investigation venue since they may reveal more efficient styles for big-data architectures
beyond styles such as Lambda Architecture [33] and Microservices [10]. OSTIA may aid
in this investigation by allowing the interactive and incremental improvement of multi-
ple (combinations of) topologies together.

Approach limitations and threats to validity

Although OSTIA shows promise both conceptually and as a practical tool, it shows sev-
eral limitations.

First of all, OSTIA only supports only a limited set of DIA middleware technologies.
Multiple other big-data frameworks such as Apache Spark, Samza, exist to support both
streaming and batch processing.

Second, OSTIA only allows to recover and evaluate previously-existing topologies,
its usage is limited to design improvement and refactoring phases rather than design.
Although this limitation may inhibit practitioners from using our technology, the (anti-)
patterns and algorithmic approaches elaborated in this paper help designers and imple-
mentors to develop the reasonably good-quality and “quick” topologies upon which to
use OSTIA for continuous improvement.

Third, OSTIA does offer essential insights to aid deployment as well (e.g., separating or
clustering complex portions of a topology so that they may run on dedicated infrastruc-
ture) and therefore the tool may serve for the additional purpose of aiding deployment
design. However, our tool was not designed to be used as a system that aids deployment
planning and infrastructure design. Further research should be invested into combin-
ing on-the-fly technology such as OSTIA with more powerful solvers that determine

Page 20 of 23Bersani et al. J Big Data (2019) 6:40

infrastructure configuration details and similar technological tuning, e.g., the works by
Peng et al. [30] and similar.

In the future we plan to tackle the above limitations furthering our understanding of
streaming design as well as the support OSTIA offers to designers during the refactoring
process.

Related work
The work behind OSTIA stems from the EU H2020 Project called DICE [5] where
we are investigating the use of model-driven facilities to support the design and qual-
ity enhancement of big data applications. Much similarly to the DICE effort, the IBM
Stream Processing Language (SPL) initiative [24] provides an implementation language
specific to programming streams management (e.g., Storm jobs) and related reactive
systems. In addition, there are several work close to OSTIA in terms of their foundations
and type of support, e.g., works focusing on distilling and analysing big data topologies
by-design [36], as also highlighted in recent research by Kalantari et al. [25].

First, from a non-functional perspective, much literature discusses quality analyses
of Big Data topologies, e.g., from a performance [40] or reliability point of view [37].
Existing work use complex math-based approaches to evaluating a number of big data
architectures, their structure and general configuration. However, these approaches do
not suggest any architecture refactorings. With OSTIA, we automatically elicits a Storm
topology, analyses the topologies against a number of consistency constraints that make
the topology consistent with the framework. To the best of our knowledge, no such tool
exists to date. Furthermore, as highlighted by Olshannikova et al. [29] the few works
existing on big data processes and their visualization highlight a considerable short-
coming in tools and technologies to visualize and interact with data-intensive models at
runtime [29].

Second, from a modelling perspective, approaches such as StormGen [16] offer means
to develop Storm topologies in a model-driven fashion using a combination of genera-
tive techniques based on XText and heavyweight (meta-)modelling, based on EMF, the
standard Eclipse Modelling Framework Format. Although the first of its kind, StormGen
merely allows the specification of a Storm topology, without applying any consistency
checks or without offering the possibility to recover said topology once it has been devel-
oped. By means of OSTIA, designers can work refining their Storm topologies, e.g., as a
consequence of verification or failed checks through OSTIA. Tools such as StormGen
can be used to assist preliminary development of quick-and-dirty topologies.

Third, from a verification perspective, to the best of our knowledge, this represents
the first attempt to build a formal model representing Storm topologies, and the first try
in making a configurable model aiming at running verification tasks of non-functional
properties for big data applications. While some works concentrate on exploiting big
data technologies to speedup verification tasks [15], others focus on the formalization
of the specific framework, but remain application-independent, and their goal is rather
to verify properties of the framework, such as reliability and load balancing [38], or the
validity of the messaging flow in MapReduce [41].

Page 21 of 23Bersani et al. J Big Data (2019) 6:40

Conclusion
This paper proposes an approach allowing designers and developers to perform analysis
of big-data applications by means of code analysis and formal verification techniques.
OSTIA provides support to both in the following sense: it helps designers and develop-
ers by recovering the architectural topology on-the-fly from the application code and
by assisting them in: (a) reasoning on the topological structure and how to refine it;
(b) exporting the topological structure consistently with restrictions of their reference
development framework so that further analysis (e.g., formal verification) may ensue.
In addition, while performing on-the-fly architecture recovery, the analyses focuses on
checking for the compliance to essential consistency rules specific to targeted big data
frameworks. (c) Finally, OSTIA allows designers to check whether the recovered topolo-
gies contain occurrences of key anti-patterns. By running a case-study with partner
organizations, we observed that OSTIA assists designers and developers in establishing
and continuously improving the quality of topologies behind their big data applications.

OSTIA can be easily extended to provide more refined tools for the analysis of data-
intensive applications as it is general in the approach and modular with respect to the
definition of (i) the anti-patterns to be considered and (ii) the formal analysis approaches
and the application modeling to be adopted. For this reason, in addition to the practi-
cal evidence observed, we believe that OSTIA can be considered as a reference point in
the development of data-intensive applications. This motivates us to further elaborate
the anti-patterns, exploiting graphs analysis techniques inherited from social-networks
analysis. Also, we plan to expand OSTIA to support technologies beyond the most com-
mon application framework for streaming and, finally, to further evaluate OSTIA using
empirical evaluation.

Abbreviations
OSTIA: ordinary static topology inference analysis; DIA: data intensive application; CIO: Chief-Information Officer; DAG:
directed acyclic graph; WICSA: working IEEE/IFIP conference on software architecture; LTL: linear temporal logic; CLTLoc:
constraint LTL over clocks; UML: unified modeling language; DICE: developing data-intensive cloud applications with
iterative quality enhancement; API: application program interface; ML: machine learning; JSON: javascript object
notation; CSV: comma separated variable; XMI: XML metadata interchange (XML—extensible markup language); CLTL:
constraint LTL; TA: timed automata; SMT: satisfiability modulo theory; EMF: eclipse modeling framework.

Authors’ contributions
All the authors equally contributed to all the sections of the paper. All authors read and approved the final manuscript.

Author details
1 Politecnico di Milano, Milan, Italy. 2 TU/e - JADS, Eindhoven, The Netherlands. 3 University of South Carolina, Columbia,
USA.

Acknowledgements
The authors kindly acknowledge all the people supporting the ideas the allowed the creation of OSTIA.

Competing interests
The authors declare that they have no competing interests

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the [GitHub] repository, (https ://githu
b.com/maels tromd at/OSTIA).

Funding
The work is supported by the European Commission Grant No. 0421 (Interreg ICT), Werkinzicht and the European Com-
mission Grant No. 787061 (H2020), ANITA.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/maelstromdat/OSTIA
https://github.com/maelstromdat/OSTIA

Page 22 of 23Bersani et al. J Big Data (2019) 6:40

Received: 29 January 2019 Accepted: 26 April 2019

References
 1. http://www.gartn er.com/newsr oom/id/26376 15. Accessed 16 Dec 2013.
 2. http://spark .apach e.org/. Accessed 1 Dec 2018.
 3. https ://hadoo p.apach e.org/. Accessed 1 Dec 2018.
 4. https ://githu b.com/maels tromd at/OSTIA . Accessed 1 Dec 2018.
 5. http://www.dice-h2020 .eu/. Accessed 1 Dec 2018.
 6. https ://githu b.com/socia lsens or. Accessed 1 Dec 2018.
 7. https ://githu b.com/Digit alPeb ble/storm -crawl er. Accessed 1 Dec 2018.
 8. https ://githu b.com/senso rstor m/Storm CV. Accessed 1 Dec 2018.
 9. https ://githu b.com/Digit alPeb ble. Accessed 1 Dec 2018.
 10. Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture enables devops: an experience report on migration

to a cloud-native architecture. 2016.
 11. Bersani MM, Distefano S, Ferrucci L, Mazzara M. A timed semantics of workflows. In: ICSOFT (Selected Papers), com-

munications in computer and information Science, vol. 555. Berlin: Springer; 2014. p. 365–83.
 12. Bersani MM, Marconi F, Tamburri DA, Jamshidi P, Nodari A. Continuous architecting of stream-based systems. In:

Muccini H, Harper EK, editors. Proceedings of the 25th IFIP/IEEE working conference on software architectures.
Washington, DC: IEEE Computer Society; 2016. p. 131–42.

 13. Bersani MM, Rossi M, San Pietro P. A tool for deciding the satisfiability of continuous-time metric temporal logic. Acta
Informatica. 2015:1–36. https ://doi.org/10.1007/s0023 6-015-0229-y.

 14. Brunnert A, van Hoorn A, Willnecker F, Danciu A, Hasselbring W, Heger C, Herbst N, Jamshidi P, Jung R, von Kistowski
J, et al. Performance-oriented devops: a research agenda. 2015. arXiv preprint arXiv :1508.04752 .

 15. Camilli M. Formal verification problems in a big data world: towards a mighty synergy. In: Companion proceedings
of the 36th international conference on software engineering, ICSE companion. New York: ACM; 2014. p. 638–41.
https ://doi.org/10.1145/25910 62.25910 88

 16. Chandrasekaran K, Santurkar S, Arora A. Stormgen - a domain specific language to create ad-hoc storm topologies.
In: FedCSIS. 2014. p. 1621–8.

 17. Clements P, Kazman R, Klein M. Evaluating software architectures: methods and case studies. Boston: Addison-
Wesley; 2001.

 18. Demri S, D’Souza D. An automata-theoretic approach to constraint LTL. Inf Comput. 2007;205(3):380–415.
 19. Di Nitto E, Jamshidi P, Guerriero M, Spais I, Tamburri DA. A software architecture framework for quality-aware devops.

In: Proceedings of the 2nd international workshop on quality-aware DevOps, QUDOS@ISSTA 2016, Saarbrücken,
Germany, July 21, 2016. 2016. p. 12–7. https ://doi.org/10.1145/29454 08.29454 11.

 20. Emani CK, Cullot N, Nicolle C. Understandable big data: a survey. Comput Sci Rev. 2015;17:70–81.
 21. Evans R. Apache storm, a hands on tutorial. In: IC2E. New York: IEEE; 2015. p. 2.
 22. Frankel D. Model driven architecture: applying MDA to enterprise computing. New York: Wiley; 2002.
 23. Furia CA, Mandrioli D, Morzenti A, Rossi M. Modeling time in computing: a taxonomy and a comparative survey.

ACM Comput Surv. 2010;42(2):6:1–59.
 24. Hirzel M, Andrade H, Gedik B, Jacques-Silva G, Khandekar R, Kumar V, Mendell MP, Nasgaard H, Schneider S, Soulé R,

Wu KL. Ibm streams processing language: analyzing big data in motion. IBM J Res Dev. 2013;57(3/4):7.
 25. Kalantari A, Kamsin A, Kamaruddin H, Ale Ebrahim N, Gani A, Ebrahimi A, Shamshirband S. A bibliometric approach

to tracking big data research trends. J Big Data. 2017;4(1):30. https ://doi.org/10.1186/s4053 7-017-0088-1.
 26. Krippendorff K. Content analysis: an introduction to its methodology. 2nd ed. Thousand Oaks: Sage Publications;

2004.
 27. Marconi F, Bersani MM, Erascu M, Rossi M. Towards the formal verification of DIA through MTL models. In: Lecture

notes in computer science.
 28. Morgan DL. Focus groups as qualitative research. Thousand Oaks: Sage Publications; 1997.
 29. Olshannikova E, Ometov A, Koucheryavy Y, Olsson T. Visualizing big data with augmented and virtual reality: chal-

lenges and research agenda. J Big Data. 2015;2(1):22. https ://doi.org/10.1186/s4053 7-015-0031-2.
 30. Peng S, Gu J, Wang XS, Rao W, Yang M, Cao Y. Cost-based optimization of logical partitions for a query workload in

a hadoop data warehouse. In: Chen L, Jia Y, Sellis TK, Liu G, editors. APWeb, Lecture notes in computer science, vol.
8709. Berlin: Springer; 2014. p. 559–67.

 31. Pnueli A. The temporal logic of programs. In: Proceedings of the 18th annual symposium on foundations of
computer science, SFCS ’77. Washington, DC: IEEE Computer Society; 1977. p. 46–57. https ://doi.org/10.1109/
SFCS.1977.32

 32. Pradella M, Morzenti A, Pietro PS. Bounded satisfiability checking of metric temporal logic specifications. ACM Trans
Softw Eng Methodol. 2013;22(3):201–2054. https ://doi.org/10.1145/24915 09.24915 14.

 33. Quartulli M, Lozano J, Olaizola IG. Beyond the lambda architecture: effective scheduling for large scale eo informa-
tion mining and interactive thematic mapping. In: IGARSS. 2015. p. 1492–5.

 34. Rajeev A, Dill DL. A theory of timed automata. Theor Comput Sci. 1994;126:183–235.
 35. Ratner B. Statistical and machine-learning data mining: techniques for better predictive modeling and analysis of

big data. Boca Raton: CRC Press Inc; 2012.
 36. Snášel V, Nowaková J, Xhafa F, Barolli L. Geometrical and topological approaches to big data. Futur Gener Comput

Syst. 2017;67:286–96. https ://doi.org/10.1016/j.futur e.2016.06.005.
 37. Tamura Y, Yamada S. Reliability analysis based on a jump diffusion model with two wiener processes for cloud

computing with big data. Entropy. 2015;17(7):4533–46.

http://www.gartner.com/newsroom/id/2637615
http://spark.apache.org/
https://hadoop.apache.org/
https://github.com/maelstromdat/OSTIA
http://www.dice-h2020.eu/
https://github.com/socialsensor
https://github.com/DigitalPebble/storm-crawler
https://github.com/sensorstorm/StormCV
https://github.com/DigitalPebble
https://doi.org/10.1007/s00236-015-0229-y
http://arxiv.org/abs/1508.04752
https://doi.org/10.1145/2591062.2591088
https://doi.org/10.1145/2945408.2945411
https://doi.org/10.1186/s40537-017-0088-1
https://doi.org/10.1186/s40537-015-0031-2
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2491509.2491514
https://doi.org/10.1016/j.future.2016.06.005

Page 23 of 23Bersani et al. J Big Data (2019) 6:40

 38. Tommaso Di Noia MM, Sciascio ED. A computational model for mapreduce job flow. 2014.
 39. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J et al. Storm@

twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. New York:
ACM; 2014. p. 147–56.

 40. Wang D, Liu J. Optimizing big data processing performance in the public cloud: opportunities and approaches. IEEE
Netw. 2015;29(5):31–5.

 41. Yang F, Su W, Zhu H, Li Q. Formalizing mapreduce with csp. In: Proceedings of ECBS. Washington, DC: IEEE Computer
Society; 2010. p. 358–67. https ://doi.org/10.1109/ECBS.2010.50.

https://doi.org/10.1109/ECBS.2010.50

	Verifying big data topologies by-design: a semi-automated approach
	Abstract
	Introduction
	Research methods
	Extracting anti-patterns for big data applications
	Research solution evaluation

	Results: OSTIA explained
	A concrete example: the storm architecture
	OSTIA tool architecture
	Architecture overview
	Architecture properties and extensibility

	OSTIA methodology
	Topology design anti-patterns within OSTIA
	Multi-anchoring
	Cycle-in topology
	Persistent data
	Computation funnel

	DOT format for topology elicitation
	OSTIA-based formal verification
	JSON format for verification

	Results
	Establishing anti-patterns occurrence with case-study research: 3 cases from industry
	Establishing anti-patterns occurrence with case-study research: 3 cases from open-source
	OSTIA-based formal verification and refactoring

	Discussion
	Findings and observations
	Approach limitations and threats to validity

	Related work
	Conclusion
	Authors’ contributions
	References

