
Scalable two‑phase co‑occurring
sensitive pattern hiding using MapReduce
Shivani Sharma* and Durga Toshniwal

Abstract

Background: Expansion of Internet and its use for on-line activities such as E-Com-
merce and social networking are producing large volumes of transactional data. This
huge data volume resulted from these activities facilitates the analysis and understand-
ing of global trends and interesting patterns used for several decisive purposes. Analyt-
ics involved in these processes expose sensitive information present in these datasets,
which is a serious privacy threat. To overcome this challenge, few sequential heuristics
have been used in past where volumes of data were comparatively accommodating
to these sequential heuristics; the current situation is not that much in-line and often
results in high execution time. This new challenge of scalability paves a way for experi-
menting with Big Data approaches (e.g., MapReduce Framework). We have agglomer-
ated the MapReduce framework with adopted heuristics to overcome this challenge of
scalability along with much-needed privacy preservation and yields efficient analytic
results within bounded execution times.

Methods: MapReduce is a parallel programming framework [16] which provides us
the opportunity to leverage largely distributed resources to deal with the Big Data
analytics. MapReduce allows the resource of a largely distributed system to be utilized
in a parallel fashion. The simplicity and high fault-tolerance are the key features which
make MapReduce a promising framework. Therefore, we have proposed a two-phase
MapReduce version of these adopted heuristics. MapReduce framework divides the
whole data into ‘n’ number of data chunks D = {d 1 d ∪ 2 ∪ d 3 ∪ d n } and distrib-
utes them over ‘n’ computing nodes to achieve the parallelization. The first phase of
MapReduce job runs on each data chunk in order to generate intermediate results,
which are further sorted and merged in the second phase to generate final sanitized
dataset.

Results: We conducted three set of experiments, each with five different scenarios
corresponding to the different cluster sizes i.e., n = 1,2,3,4,5 where ‘n’ is a number
of computing nodes. We compared the approaches with respect to real as well as
synthetically generated large datasets. For varying data sizes and varying number
of computing nodes, it has been observed that sanitization time required by the
MapReduce-based algorithm for same size dataset is much less than the sequential
traditional approach. Further, the scalability can be improved by using more number of
computing nodes. Lastly, another set of experiments explores the change in sanitiza-
tion time with varying sizes of the sensitive content present in a dataset. We evaluated
the effectiveness of proposed approach in different scenarios, with varying cluster size
from 1 to 5 nodes. It has been observed that still the execution time of our approach
is much less than traditional schemes. Further, no hiding failure, artifactual patterns

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Sharma and Toshniwal J Big Data (2017) 4:4
DOI 10.1186/s40537‑017‑0064‑9

*Correspondence:
shivani.vce@gmail.com
Department of Computer
Science and Engineering,
Indian Institute
of Technology, Roorkee,
Uttrakhand 247667, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0064-9&domain=pdf

Page 2 of 18Sharma and Toshniwal J Big Data (2017) 4:4

have been observed during the experiments as well as in terms of misses cost also the
MapReduce version performance is same as of traditional approaches.

Conclusion: Traditional approaches for data hiding primarily MaxFIA and SWA were
lacking with due inability to tackle large voluminous data. To subjugate the new
challenge of scalability, we have implemented these basic heuristics with Big Data
approach i.e., MapReduce framework. Quantitative evaluations have shown that the
fusion of MapReduce framework with these adopted heuristics fulfills its obligatory
responsibility of being scalable and many-fold faster for yielding efficient analytic
results.

Keywords: Privacy preservation, MapReduce framework, Big data, Information hiding

Background
With advancements in technology, applications such as social networking, e-commerce,
wireless sensors etc. tend to produce a large volume of data. These voluminous datasets
facilitate the analysis and understanding of much needed global trends and interesting
patterns, for which organizations/clients may require to share their data with others.
Sharing may cause exposure of sensitive information present in these datasets and might
invite number of privacy threats [2] (e.g. medical records or financial records if mined
can provide significant human benefits but the failure of privacy might allow malicious
users or providers to misuse this information which can cause considerable economic or
social loss).

A number of privacy preservation techniques exist some of which focus on preserving
the privacy of outsourced data i.e. for the secure data storage and computation at third
party [1, 3, 4]. Methods such as anonymization, encryption used in these techniques,
preserve the privacy by considering whole data as private. These approaches fairly deal
with the issues like frequency attack, access control, etc. but the analytically generated
rules/patterns still can reveal sensitive information present in these datasets. This is due
the inability of these techniques which do not obstruct the mining of patterns exposing
any sensitive information. Therefore, we need to restrict the generation of such sensitive
rules, before sharing or analyzing data.

A number of data hiding techniques are used in [9–14] to mask sensitive knowledge
before sharing or analyzing datasets. Existing data hiding techniques can be broadly
divided into three categories: heuristic, border and exact. Heuristics based approaches
are simple and provide high privacy level but process the data in sequential fashion [13].
These heuristics are fairly adequate for small/medium sized datasets though the current
situation is not that much in-line. The exponential increase in data volume and sequen-
tial nature of conventional data hiding techniques often result in high execution time or
sometimes even non-feasible. This new challenge of scalability paves a way of experi-
menting with Big data approaches (e.g. MapReduce framework) for parallel processing.

MapReduce parallel programming framework [8] provides abundance of computa-
tion and storage power and can be seen as a promising solution for Big Data analysis.
MapReduce framework agglomerated with adopted heuristics overcomes the challenge
of scalability along with much-needed privacy preservation and yields efficient analytic
results for real execution time. Key features like flexibility, simplicity and fault-tolerance
make MapReduce Framework a significant choice [17]. Further, MapReduce excels at

Page 3 of 18Sharma and Toshniwal J Big Data (2017) 4:4

distributing heavy computational operations across a cluster of distributed computing
machines while abstracting many of the underlying implementation details (e.g. load
balancing, job monitoring, data partitioning etc) [19].

In our work, we propose a scalable and fast heuristic-based approach to hide sensi-
tive knowledge using MapReduce Framework. To adequately utilize the abundant power
of the framework, the sanitization process is split into two MapReduce phases. Initially,
original data is partitioned into ‘n’ number of data chunks which are distributed over ‘n’
computing machines. On each data chunk, a subroutine runs to select the victim item
against each sensitive itemset and produces an intermediate result. In the second phase,
the corresponding victim item is removed from identified transaction. Further, all these
modified transactions are sorted and combined to obtain final sanitized dataset which
can be uploaded or shared with others. We deliberately designed a number of MapRe-
duce jobs to collaboratively mask the sensitive knowledge. We evaluated our approach
on large-scale real transactional dataset as well as synthetically generated datasets using
IBM Quest Synthetic Data Generator. Results demonstrate that our approach is signifi-
cantly efficient and scalable over existing data hiding techniques.

Our work contributed in three major directions. Firstly, we designed MapReduce jobs
to mask sensitive knowledge in highly scalable fashion. Secondly, we proposed some
modifications in basic heuristics to prevent over-hiding and high communication/com-
putation cost while collaborating them with MapReduce Framework. Parallelization
ensures to sanitize large-scale dataset in real execution time Lastly, with reproducible
quantitative evaluations, we have shown that the MapReduce framework combined with
basic heuristics overcome the identified challenges in significant and efficient manner.

The rest of this paper is organized as follows. "Related work and problem analysis" sec-
tion briefly discusses some related work. "MapReduce" section discusses the basics of the
MapReduce framework. In "Proposed MapReduce version of MaxFIA and SWA" section,
scalable two-phase co-occurring sensitive pattern hiding heuristic approach is described
in detail. "Experiments and performance analysis" section presents experimental results
and performance analysis. Finally, "Conclusion" section draws the conclusion.

Related work and problem analysis
Related work

The issue of scalability and high execution time has been widely investigated and resolved
mainly for outsourced techniques like Xuyun et al. identified issue of scalability during
anonymization of large-scale dataset [1]. They introduced scalable two-phase top-down
anonymization approach by using MapReduce framework over a cloud. The primary TDS
approach introduced by Fung et al. [18] has been divided into multiple MapReduce jobs
which collaboratively anonymize large scale data in high scalable manner. EFPA is a pri-
vacy preserving approach [4] for association rules on a cloud. A number of parties can
combine their data and mine association rule with no data leakage. EFPA used encryption
and perform mining over encrypted data only. This ensures privacy preservation with low
computational cost. Hybrid cloud (public and private) architecture is introduced in [5]
to ensure the privacy of data before making it accessible to others. The private cloud has
been provided as an interface to access a public cloud. The data utilization system and
private cloud are used to encrypt data. The system provides security by outsourcing the

Page 4 of 18Sharma and Toshniwal J Big Data (2017) 4:4

cryptographic access control mechanism. The system claims reduced computational cost
at user side. Yi et al. [3] introduced another cryptographic approach for preserving the
privacy of association rules in a cloud. The ElGamal cryptographic approach has been
used in distributed fashion where semi-honest server mine the encrypted data. Liu et al.
[2] proposed privacy preserved scanning of big data using MapReduce framework. The
technique minimizes the sensitive data exposure during the data detection for outsourc-
ing data securely. Wei et al. [6] proposed a secure computation auditing protocol which
bridges secure storage and computation within a cloud and achieves privacy using veri-
fier signature, batch verification, and probabilistic sampling techniques. Yan et al. [7]
proposed two privacy preserving techniques for trust evaluation based on additive homo-
morphic encryption. It is applicative approach and supports big data process.

Most of the work has been done for handling scalability issue while preserving data
privacy for outsourced data i.e. for secure data storage and computation at a third party.
But for sanitization techniques like hiding sensitive co-occurring patterns or masking
restricted rules, scalability is still an issue. Masking techniques play a crucial role in pri-
vacy preservation as even after anonymization or encryption, mined rules can generate
certain patterns which may expose sensitive information. Hence, it is equally important
for masking techniques to be scalable and fast enough such that data privacy can be pre-
served in both ways. Further, we will discuss some primary data hiding techniques and
their limitations to understand the background of the problem.

Traditional heuristic approaches

A number of sequential heuristics are used to preserve the data privacy by hiding sen-
sitive co-occurring patterns. Atallah et al. [11] in proposed a primary heuristic tech-
nique to hide the sensitive association rules by reducing the support of their generating
itemsets. The authors proposed the construction of lattice-like graph in the database
through which greedy iterative traversal is made for identifying and hiding maximum
frequent item related to the sensitive rule. All the sensitive rules are masked in one by
one fashion. Dasseni et al. [14] generalized the problem and proposed three ideas to hide
sensitive frequent itemsets as well as sensitive rules. The first two schemes reduce the
confidence of sensitive rule either by increasing the antecedent support or by decreasing
the frequency of rule consequent. The third strategy decreases the support of either the
antecedent or consequent of the rule but not both till the confidence of the rule becomes
less than the minimum threshold. The technique is based on an assumption that the
items appearing in one sensitive itemset will not appear in another. Verykios et al. [15]
extended the work in [14] and tried to improve the data quality by hiding the maxi-
mum support victim item from the identified transaction exhibiting minimum length.
Oliveira et al. introduced multiple rules hiding approach in [9] which requires two data-
base scan without any concern of the number of sensitive itemsets need to be masked.
Authors introduced three ways to select victim item i.e. MinFIA, MaxFIA, and IGA.
MinFIA identifies minimum support item as a victim and removes it from the support-
ing transaction. MaxFIA chooses a maximum support item as the victim. Lastly, IGA is
a hybrid approach which clusters the sensitive patterns sharing same itemsets and hides
the whole cluster at once. SWA [10] is an improved version of [9] as it requires single
database scan and aims to hide all the restrictive patterns in five easy steps. It is simple

Page 5 of 18Sharma and Toshniwal J Big Data (2017) 4:4

Ta
bl

e
1

Su
m

m
ar

y
of

 e
xi

st
in

g
tr

ad
it

io
na

l h
eu

ri
st

ic
 b

as
ed

 d
at

a
hi

di
ng

 te
ch

ni
qu

es

S.
 n

o
A

pp
ro

ac
h

Te
ch

ni
qu

e
us

ed
A

ch
ie

ve
d

Is
su

es

1
[1

1]
Co

ns
tr

uc
te

d
la

tt
ic

e-
lik

e
gr

ap
h

of
 a

 d
at

as
et

G
re

ed
y

ite
ra

tiv
e

tr
av

er
sa

l t
o

im
m

ed
ia

te
 s

ub
se

t
Se

le
ct

ed
 v

ic
tim

 w
ith

 m
ax

im
um

 s
up

po
rt

G
oo

d
pr

iv
ac

y
le

ve
l

Si
m

pl
e

an
d

fa
st

H
av

e
no

t c
on

si
de

re
d

th
e

ex
te

nt
 o

f l
os

s
of

 s
up

po
rt

 fo
r l

ar
ge

ite

m
se

ts
 h

en
ce

 d
at

a
qu

al
ity

 g
et

 a
ffe

ct
ed

Sc
al

ab
ili

ty
 to

 h
an

dl
e

la
rg

e-
sc

al
e

da
ta

2
[1

4]
In

cr
ea

se
 s

up
po

rt
 o

f a
nt

ec
ed

en
t (
A
)
→

B

D
ec

re
as

e
su

pp
or

t o
f c

on
se

qu
en

t A
→

(B
)

H
yb

rid
 d

ec
re

m
en

t t
ill

 c
on

fid
en

ce
 o

r s
up

po
rt

 g
oe

s
be

lo
w

th

e
th

re
sh

ol
d

D
ec

re
as

e
th

e
su

pp
or

t o
r c

on
fid

en
ce

 b
ut

 n
ot

 b
ot

h
Ba

se
d

on
 s

tr
on

g
as

su
m

pt
io

n
of

 a
ny

 it
em

 c
on

ta
in

ed
 in

 o
ne

se

ns
iti

ve
 it

em
se

t w
ill

 n
ot

 a
pp

ea
r i

n
an

ot
he

r s
en

si
tiv

e
ite

m
se

t
Sc

al
ab

ili
ty

3
[1

5]
D

el
et

ed
 m

ax
im

um
 s

up
po

rt
 it

em
 i
∈
s f

ro
m

 m
in

im
um

le

ng
th

 tr
an

sa
ct

io
n

Th
e

se
co

nd
 a

lg
or

ith
m

 s
or

t s
en

si
tiv

e
ite

m
se

t i
n

te
rm

s
of

si

ze
 a

nd
 s

up
po

rt
 o

f i
te

m
se

ts
 a

nd
 m

as
k

th
em

 in
 ro

un
d

ro
bi

n
fa

sh
io

n

Sa
ni

tiz
e

m
in

im
um

 le
ng

th
 tr

an
sa

ct
io

n
fir

st
 in

 o
rd

er
 to

de

cr
ea

se
 th

e
si

de
 e

ffe
ct

 o
n

no
n-

se
ns

iti
ve

 d
at

a
Se

co
nd

 a
lg

or
ith

m
 is

 fa
ir

en
ou

gh
 b

y
m

as
ki

ng
 in

 ro
un

d
ro

bi
n

fa
sh

io
n

Sc
al

ab
ili

ty
 is

 s
til

l a
n

is
su

e
H

ig
h

ex
ec

ut
io

n
tim

e
fo

r l
ar

ge
 d

at
as

et

4
[9

]
M

ax
FI

A
: d

el
et

ed
 m

ax
im

um
 s

up
po

rt
 it

em
 i
∈
s w

he
re

s
⊆

T

M
in

FI
A

: D
el

et
e

m
in

im
um

 s
up

po
rt

 it
em

 i
∈
s w

he
re

 s
⊆

T

IG
A

:
m

ak
e

cl
us

te
rs

 o
f s

en
si

tiv
e

pa
tt

er
ns

 s
ha

rin
g

sa
m

e
ite

m
se

ts
 a

nd
 d

el
et

e
m

ax
 o

r m
in

 s
up

po
rt

 it
em

C
lu

st
er

 fo
rm

at
io

n
hi

de
s

th
e

se
t o

f s
en

si
tiv

e
ite

m
se

ts
 a

t
on

ce
N

o
tr

av
er

sa
l r

eq
ui

re
d,

 e
as

ily
 c

ou
nt

 a
nd

 s
el

ec
t m

ax
 a

nd

m
in

 s
up

po
rt

 it
em

Se
ns

iti
ve

 d
at

as
et

 is
 s

ep
ar

at
ed

 o
ut

 in
 o

rd
er

 to
 re

du
ce

 th
e

da
ta

 s
iz

e
an

d
sa

ni
tiz

at
io

n
tim

e

Is
su

e
of

 s
ca

la
bi

lit
y

an
d

hi
gh

 e
xe

cu
tio

n
tim

e
in

 c
as

e
of

 la
rg

e
sc

al
e

da
ta

se
t

5
[1

0]
SW

A
 m

as
k

se
ns

iti
ve

 ru
le

s
by

 h
id

in
g

m
ax

im
um

 fr
eq

ue
nc

y
ite

m
 i
∈
s w

he
re

 s
⊆

T
 S

W
A

 re
qu

ire
s

si
ng

le
 d

at
ab

as
e

sc
an

Co
nc

ea
l a

ll
th

e
se

ns
iti

ve
 ru

le
s

Re
qu

ire
 s

in
gl

e
da

ta
ba

se
 s

ca
n

Sl
id

in
g

w
in

do
w

 c
on

ce
pt

 m
ad

e
th

e
ap

pr
oa

ch
 s

ca
la

bl
e

to

so
m

e
ex

te
nt

H
ig

h
ex

ec
ut

io
n

tim
e

as
 w

el
l a

s
sc

al
ab

ili
ty

 w
he

n
da

ta
 is

 b
ig

da

ta

6
[1

2]
A

gg
re

ga
te

: d
el

et
ed

 tr
an

sa
ct

io
n
T
∩
S
 s

up
po

rt
in

g
m

ax
i-

m
um

 s
en

si
tiv

e
ite

m
se

ts
D

is
ag

gr
eg

at
e:

 d
el

et
e

m
ax

im
um

 s
up

po
rt

 it
em

 i
∈
s w

he
re

s
⊆

T
 fr

om
 re

m
ai

ni
ng

 tr
an

sa
ct

io
ns

H
yb

rid
 a

pp
ro

ac
h

is
 fa

st
 a

s
it

se
le

ct
iv

el
y

id
en

tif
y

tr
an

sa
c-

tio
n

an
d

de
le

te
 m

ax
im

um
 s

up
po

rt
 it

em
D

ire
ct

 d
el

et
io

n
of

 tr
an

sa
ct

io
ns

 a
ffe

ct
s

th
e

da
ta

 q
ua

lit
y

as

th
e

tr
an

sa
ct

io
ns

 m
ay

 c
on

ta
in

 n
on

-s
en

si
tiv

e
in

fo
rm

at
io

n
to

o
Sc

al
ab

ili
ty

 is
su

e
ex

is
ts

Page 6 of 18Sharma and Toshniwal J Big Data (2017) 4:4

sliding window approach which maintains good data privacy and scalability. Amiri [12]
claims to provide a high data quality and lower distortion by using the aggregation and
disaggregation scheme. The author proposes to delete the transactions supporting the
maximum number of sensitive itemsets directly and further, delete the maximum sup-
port victim from the remaining sensitive transactions. Direct deletion of transactions
may hide the sensitive itemsets in much less time but, possibly degrades the data quality.
Because these deleted transactions may also contain some non-sensitive information. A
summary of all the above traditional techniques is presented in Table 1.

Problem analysis

From the literature discussed in "Related work" and "Traditional heuristic approaches"
sections, it can be stated that we need to preserve the data privacy in both ways i.e. for
secure data storage/rule mining at a third party as well as by masking restricted sensi-
tive information before data sharing. A number of traditional techniques exist in both
categories which perform well with comparatively accommodating volumes of data; the
current situation is not that much in-line and often results in high execution time and
sometimes result in non-feasibility. Much work has been done to improvise outsourced
techniques but data hiding techniques are still struggling with these limitations.

From Table 1, it can be observed that both MaxFIA [9] and SWA [10] are primary
data hiding techniques offering multiple advantages over others in terms of simplicity,
required number of database scans etc. Both these approaches identify maximum sup-
port item as a victim and remove it from the supporting transactions. For accommodat-
ing volumes of data, as discussed in "Traditional heuristic approaches" section, MaxFIA
is a novel scheme but when applied to a big dataset, it results in high execution time and
non-scalability. Further, K-sliding window approach used in SWA resolves the scalability
issue but these K-data windows still need to be processed in a sequential manner i.e. one
after another which again results in high execution time.

These new challenges of scalability and high execution time paves a way for experi-
menting with Big Data approaches (e.g. MapReduce framework). Thus, here we propose
parallelized version of these conventional approaches by using MapReduce Framework.

Challenges in collaborating basic heuristics with MapReduce

Conventional MaxFIA and SWA techniques maintain a list of supporting transac-
tion Ids against each sensitive itemset [9, 10]. After every victim item removal, a look
ahead procedure is performed to verify if the transaction has also been selected for other
restrictive rules. If yes, and the victim item we removed is also the part of this other
restricted rule, we need to remove the transaction from the respective list. This improves
the misses cost but requires to repeat the procedure for every transaction and sensitive
itemset; it is a time consuming, computationally expensive and sometimes infeasible
procedure for Big Data and a parallel environment. Therefore, these heuristics require to
be modified in terms of following:

 • Traditionally all sensitive itemsets are masked in one by one fashion.
 • After each victim item removal,transaction list against every affected sensitive item-

set is revised. In a parallel environment, the lookahead procedure requires all nodes

Page 7 of 18Sharma and Toshniwal J Big Data (2017) 4:4

to communicate and revise their set of sensitive itemset and respective list, which
ultimately will increase communication and computation cost.

 • If every node sanitizes their set of transaction (data chunk) independently then there
is a chance of over-hiding which will degrade the data quality of sanitized dataset.

 • To study how to divide a dataset into small data chunks such that even during paral-
lel sanitization, the minimum length/DoC transaction can be modified first.

Therefore, we require few modifications of these basic heuristics to handle these chal-
lenges while implementing them in a parallel environment (i.e. MapReduce framework).
The proposed improved version maintains a global index file with the master node con-
taining sensitive itemset, supporting transaction Ids list and their delta value to keep a
check if a particular sensitive itemset further needs to be masked or not. This method-
ology ultimately prevents over-hiding. Transaction ids list will now be used to find if a
restricted pattern belongs to a transaction or not i.e. by directly searching for the particu-
lar transaction id in the corresponding list. This helps in speeding up the sanitization pro-
cess. Further, the global index file also mitigates the requirement of revising transaction
list recursively during look ahead procedure. Now all computing nodes need to propagate
the effect of victim item removal directly to the global file by reducing the correspond-
ing delta value. This methodology is neither computationally expensive nor requires any
communication among computing nodes but only with the master node. Lastly, for main-
taining the requirement of sanitizing minimum length/DoC transaction first, we have
modified data partitioner explained in "Overview" section. These small amendments in
adopted heuristics when combined with MapReduce framework ultimately resolve all
identified issues and help in masking sensitive itemsets in a parallel fashion within the
real execution time.

MapReduce
MapReduce is a parallel programming framework [16] which provides us the oppor-
tunity to leverage largely distributed resources to deal with the Big Data analytics. The
framework divides and distributes the Big Data as well as heavy computation involved,

Fig. 1 Computation phase of MapReduce [1]

Page 8 of 18Sharma and Toshniwal J Big Data (2017) 4:4

over n computing machines. These ‘n’ computing machines are combined to form a clus-
ter. User need to specify two functions i.e. Map and Reduce which accept and process
dataset in form of (key, value) pair and output the processed data again in (key value)
same format i.e. (key1, val1) → (key2, val2). Map function processes the data and gener-
ates intermediate (key2, val2) pair which is given as the input to the reducer function for
merging the values associated with the same key. MapReduce allows the resource of a
largely distributed system to be utilized in a parallel fashion. The simplicity and high
fault-tolerance are the key features which make MapReduce a promising framework. It
hides the complications and handles failure automatically. Simple MapReduce compu-
tation phase can be seen in Fig. 1 MapReduce provides two level of parallelization i.e.
task level and job level. When a number of MapReduce jobs execute together, it is called
job level parallelization and if multiple mappers and reducers run within a single job, it
refers to task level parallelization.and distributes them

Proposed MapReduce version of MaxFIA and SWA
MapReduce framework divides the whole data into ‘n’ number of data chunks
D = {d1 ∪ d2 ∪ d3 · · · ∪ dn} and distributes them over ‘n’ computing nodes. This is called
data partition. By default, the maximum size of each data chunk is 64 MB depending
on which value of n varies. We have deliberately designed a number of Map Reduce jobs
which processes each data chunk parallel in two MapReduce phases.

Overview

Proposed two-phase MapReduce version can be viewed as a composition of some easy and
small objectives. The first phase of MapReduce job runs on each data chunk in order to
generate intermediate results, which are further sorted and merged in the second phase to
generate final sanitized dataset. The overview of these phases is discussed below:

 • Phase-I
 • Sub-routine 1: (Data separator) Sensitive transactions (T*)
{if s ⊆ T ,where s ∈ S,T ∈ D} are separated out from the non-sensitive transac-
tions (T’) in order to reduce the size of dataset need to be processed further.

 • Sub-routine 2: (Frequency calculator) Support of each 1-frequent item calculates and
stores in an support index file(SIF), such that support of any item can be directly
accessed by any node in a cluster.

 • Sub-routine 3: (Victim identifier) Against each sensitive itemset, an item with maxi-
mum support is selected as a victim.

 • Sub-routine 4: (Transaction sorting) Sensitive transactions are sorted depending on
the given condition (e.g. Length of transaction, Degree of conflict etc.).

 • Sub-routine 5: (Sensitive itemset effect calculator) It calculates
� = Current support − Th(minimum support) the minimum number of times

Page 9 of 18Sharma and Toshniwal J Big Data (2017) 4:4

sensitive itemset need to be masked for making it infrequent. All the sensitive item-
sets and their corresponding � values are stored in a global index file (GIF).

• Phase-II

Data partitioner: Initially, the sensitive dataset determined in Phase-I is sorted in increas-
ing order of length/DoC. A total number of computing nodes (n) in a cluster and sorted
sensitive dataset is provided as input to the partitioner, where ’n’ new buckets(sets) are ini-
tialized. Every (i+n)th transaction is provided to the (i)th bucket. Further, these data buck-
ets can be divided according to the value set for the size of each data chunk.

 • Sensitive transactions are further divided into data chunks using data partitioner and
distributed over n computing machines.

 • At each node, victim item against each sensitive itemset is removed till all restricted
information is hidden.

Finally, modified transactions and a non-sensitive set of transactions are combined to
form final sanitized dataset. Further, we will take the techniques one by one and discuss
their MapReduce version in detail.

MapReduce version of MaxFIA

Here, we introduce two-phase MapReduce version of MaxFIA which selects victim item
with maximum support and sanitizes the transaction with a minimum degree of con-
flict (DoC) first. Initially, we deliberately design the subroutine which runs over each of
the partitioned datasets in parallel. For each restricted sensitive itemset, subroutine 1:
concretely computes the frequency of each 1-frequent item (item, 1), subroutine 2: com-
putes the DoC for each transaction i.e. number of the sensitive itemset, the transaction
is supporting (Tid , 1). Further, subroutine 3: computes Delta value � for each sensitive
itemset s. MapReduce framework sorts, shuffles, and merges these key value pairs to
form a value list against each key i.e. (Tid , countlist), (item, countlist) and (s,�). These lists
are provided as input to the reducers where global item support, global sensitive itemset
support and transaction DoC are calculated with respect to the whole database. Trans-
actions with DoC > 0 are called Sensitive Transactions and others supporting none of
the sensitive itemsets are called Non-Sensitive Transactions, which are directly merged
with final sanitized dataset. A group of sensitive transactions is sorted in ascending order
of DoC such that transaction supporting minimum number of the sensitive itemset is
sanitized first, to reduce the side effect on non-sensitive information. The item with the
maximum support is selected as the victim item, which is removed from the identified
transaction. The pseudocode of Phase I is given in Algorithm 1.

Page 10 of 18Sharma and Toshniwal J Big Data (2017) 4:4

In phase II, set of sensitive itemsets, corresponding victim item, a chunk of sensitive
transactions are provided as input to the mapper. For each sensitive itemset, the cor-
responding victim item is removed consecutively in distributed fashion from the list of
identified transaction {(T − v), where v ∈ {s,T }, s ∈ S and s ⊆ T } with lowest
DoC. After every victim removal, Delta and support of item(i) is modified directly in
GIF and SIF. Finally, the obtained key value pair from the mapper will be given as the
input to the reducer, which merges the sanitized transaction and the non-sensitive trans-
actions obtained in Phase-I together in order to generate fully sanitized dataset which
can be shared and analyzed with much-needed privacy. The pseudocode for Phase-II
mapper and reducer is given in Algorithm 2.

Page 11 of 18Sharma and Toshniwal J Big Data (2017) 4:4

These two phases explore the abundant computation power of the MapReduce parallel
programming framework and can handle even voluminous data by using largely distrib-
uted computing nodes. It is shown in "Experiments and performance analysis" section,
that MapReduce can process the huge data volume in highly scalable fashion and within
bounded execution time.

MapReduce version of SWA

SWA is an improvised version of MaxFIA and requires only single database scan. Slid-
ing window approach used in SWA make it quite scalable but, still in case of big data
the sanitization time is huge. Hence, MapReduce implementation helps the approach to
be fast enough such that even voluminous data can be sanitized in an adequate amount
of time. Unlike MaxFIA, SWA sorts the identified supporting transactions against any
sensitive itemset in increasing order of their ’length’ to minimize the side effects on non-
sensitive information. The data is processed by considering the set of transactions within
K-size window. It adds to scalability but still each data window needs to be processed
one after another i.e. in a sequential fashion and often results in high execution time.
MapReduce framework not only reduces the sanitization time but also mitigates the
requirement of sliding window approach. This is possible since it directly divides data
into small chunks and sanitizes them in parallel.

In Phase-I, for each sensitive itemset s ∈ S, the frequency of a 1-frequent item is cal-
culated by a subroutine in mapper and intermediate key-value pair (item, 1) is gener-
ated. Subroutine 2: separates the sensitive transactions from the set of non-sensitive
ones. Subroutine 3: calculates the length of the transaction denoted by variable ‘len’ i.e.
number of total items in the transaction (Tid , len) and further, subroutine 4: evaluates
the � value for each sensitive itemset. The reducer processes these intermediate results
and identifies the victim item against each sensitive itemset. The set of sensitive transac-
tions gets sorted in ascending order of length ’len’ such that the minimum length trans-
action is sanitized first. Two global files SIF and GIF storing item support and � value
for each sensitive itemset are created respectively. The pseudocode of Phase I is given in
Algorithm 3.

Page 12 of 18Sharma and Toshniwal J Big Data (2017) 4:4

In Phase-II, set of the sensitive itemsets, corresponding victim item and sorted list (in
terms of length) of sensitive transactions are provided as input to the mapper. Each node
masks sensitive itemsets in parallel by removing the victim item. Finally, sanitized trans-
actions are combined with the set of non-sensitive transactions to form final sanitized
dataset, which can be shared with other parties. The pseudo-code of Phase-II is given
in Algorithm 2. The only difference in Phase-II for both schemes is in the way of sorting
taking place. In MaxFIA, transaction batch is sorted on the basis of DoC and in SWA it
is sorted on the basis of length respectively.

Experiments and performance analysis
With reproducible quantitative evaluations, we have shown that MapReduce framework
agglomerated with adopted heuristics, overcomes this challenge of scalability along with
much-needed privacy preservation and yields efficient analytic results within bounded
execution times. We implemented conventional heuristics and the proposed approach in
Hadoop using JAVA. Hadoop is an open source software system implementing MapRe-
duce. We deployed the above approaches in a local cluster of five nodes with one mas-
ter and rest as slaves. We conducted three set of experiments, each with five different
scenarios corresponding to the different cluster size i.e. n = 1, 2, 3, 4, 5 where ‘n’ is a
number of computing nodes. We compared the approaches with respect to real as well
as synthetically generated large datasets. The size of dataset varies from 10 to 25 GB
[10.8, 15.4, 21.3, 24.9]. Dataset with size 21.3 GB is real transactional data obtained from

Page 13 of 18Sharma and Toshniwal J Big Data (2017) 4:4

“kaggel’s- dataset repository” [20] and others are synthetically generated using IBM
Quest Synthetic Data Generator.

First, experimental setup compares both proposed and existing version of MaxFIA and
SWA from the perspective of scalability and sanitization time. Figures 2 and 3 show the
change in execution time with varying data size i.e. ranging from [10 to 25 GB]. It can
be clearly observed that sanitization time required by the MapReduce-based algorithm
for same size dataset is much less than the sequential traditional approach. Therefore,
it can be concluded that even if we implement our approach on single node, we can
observe that the sanitization time is much less compared to traditional approaches. This
is because even on single node setup, Hadoop provides two mappers running in parallel.

10 15 20 25
0

2

4

6

8

10

12

14

16

18
x 10

4

Dataset Size (GB)

S
an

iti
za

tio
n

T
im

e(
S

ec
on

ds
)

Sequential MaxFIA

MapReduce MaxFIA

Dataset size= 21.3 GB
Sensitive content size = 0.42MB

Fig. 2 Effect of varying data size on sanitization time with single computing node (MaxFIA)

10 15 20 25
0

2

4

6

8

10

12

14

16

18
x 10

4

Dataset Size (GB)

S
an

iti
za

tio
n

T
im

e(
S

ec
on

ds
)

Sequential SWA
MapReduce SWA

Dataset size= 21.3 GB
Sensitive content size = 0.42MB

Fig. 3 Effect of varying data size on sanitization time with single computing node (SWA)

Page 14 of 18Sharma and Toshniwal J Big Data (2017) 4:4

In the second set of experiments, we evaluated the effectiveness of MapReduce version
in terms of change in execution time with varying data and cluster size. Figures 4 and 5
show the comparison of both approaches with respect to data size ranging from [10 to
25 GB] and a number of nodes within the cluster varying from 1 to 5. It can be observed
that with the increase in the number of computing nodes, the execution time decreases
for both schemes, because of the parallelization.

Lastly, the third set of experiments explores the change in sanitization time with vary-
ing size of the sensitive content (0.5–2 MB) which exist in the dataset of size 21.3 GB.
We evaluated the effectiveness of proposed approach in different scenarios, with varying
cluster size from 1 to 5 nodes. Figures 6 and 7 compare the execution time for both the

10 15 20 25
0

2

4

6

8

10

12

14

16

18
x 10

4

Size of Dataset (GB)

S
an

iti
za

tio
n

T
im

e(
S

ec
on

ds
)

n=1
n=2
n=3
n=4
n=5
n=1(Traditional−MaxFIA)

Dataset size (GB) =[10.8,15.4,21.3,24.9]
Sensitive content size = 0.42 MB
n= number of computing nodes in cluster

Fig. 4 Effect of varying data size on sanitization time with varying number of computing nodes in cluster
(MaxFIA)

10 15 20 25
0

2

4

6

8

10

12

14

16

18

x 10
4

Size of Dataset (GB)

S
an

iti
za

tio
n

T
im

e(
S

ec
on

ds
)

n=1
n=2
n=3
n=4
n=5
n=1(Traditional−SWA)

Dataset size (GB) =[10.8,15.4,21.3,24.9]
Sensitive content size = 0.42 MB
n= number of computing nodes in cluster

Fig. 5 Effect of varying data size on sanitization time with varying number of computing nodes in cluster
(SWA)

Page 15 of 18Sharma and Toshniwal J Big Data (2017) 4:4

approaches. It can be clearly observed that with the increase in sensitive content size the
sanitization time increases. But still, the execution time of our approach is much less
than traditional schemes. Further, with the increase in the number of computing nodes,
sanitization time can be further reduced.

The efficiency of the proposed method in terms of privacy preservation can be
explained using performance measures introduced in [10]: Hiding Failure There will be
no hiding failure as the approach is committed to run till all the sensitive itemsets are
masked. Artifactual Patterns As no foreign element has been added to the dataset for
masking sensitive content, therefore no artificial patterns are expected to be generated.
Lastly, in terms of Misses Cost: the performance of parallelized and original heuristics

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10

12

x 10
4

Sensitive Content in Dataset(MB)

S
an

iti
za

tio
n

T
im

e(
S

ec
on

ds
)

n=1
n=2
n=3
n=4
n=5
n=1(Traditional MaxFIA)

Dataset size = 21.3 GB
Sensitive content size = [0.42, 1, 1.46, 1.9]
n = No. of computing nodes in cluster

Fig. 6 Effect of varying sensitive content size present in dataset with varying number of computing nodes in
cluster (MaxFIA)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10

12

x 10
4

Sensitive Content in Dataset(MB)

S
an

iti
za

tio
n

T
im

e(
S

ec
on

ds
)

n=1
n=2
n=3
n=4
n=5
n=1(Traditional−SWA)

Dataset size = 21.3 GB
Sensitive content size = [0.42, 1, 1.46, 1.9]
n = No. of computing nodes in cluster

Fig. 7 Effect of varying sensitive content size present in dataset with varying number of computing nodes in
cluster (SWA)

Page 16 of 18Sharma and Toshniwal J Big Data (2017) 4:4

is expected to be the same because the quality of information hiding depends on two
major factors that are- victim item selection and transaction selection. In either way
(parallelized or traditional approach), maximum support item is selected as victim item
and transactions are sanitized in the increasing order of their length or DoC. Hence, it
can be clearly deduced that the privacy level achieved by both traditional and parallel
version will be approximately same.

Finally, we can conclude that the MapReduce version of data hiding techniques out-
performs the existing approaches in terms of scalability and execution time. Further, the
efficiency of proposed approach can be improved by engaging more number of comput-
ing nodes in a cluster. MapReduce framework supports cloud environment and hence,
our approach can be easily implemented on a cloud infrastructure.

Conclusion
Expansion of Internet and its use for on-line activities (e.g. social networking, e-com-
merce) overwhelmed E-Business with huge data volume, which facilitates organiza-
tions for analyzing and understanding global trends and patterns. Sharing and analysis
involved may expose personal or confidential information a dataset may contain; which
is certainly a serious privacy threat. Traditional approaches for data hiding primar-
ily MaxFIA and SWA were lacking with due inability to tackle large voluminous data.
To subjugate the new challenge of scalability we have implemented these basic heuris-
tics with Big Data approach i.e. MapReduce framework. Quantitative evaluations have
shown that the fusion of MapReduce framework with these adopted heuristics fulfills
its obligatory responsibility of being scalable and many-fold faster for yielding efficient
analytic results.
Authors’ contributions
DT contributed to the underlying idea and helped in drafting the manuscript. DT played a pivotal role in guiding and
supervising throughout. SS developed and implemented the idea, designed the experiments, analyzed the results and
wrote the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
We are thankful to DeitY for providing the scholarship to do the research in Ph.D. Program.

Competing interests
The authors declare that they have no competing interests.

Appendix

s Sensitive itemset
v Victim item selected to remove in order to reduce support

of corresponding sensitive itemset
S Set of sensitive itemsets
D Dataset
T Transaction 2 D
T* Sensitive transaction i.e. one which supports one or more

sensitive itemsets
DOC Degree of conflict i.e. number of sensitive itemsets transac-

tion supports
len Length of transaction i.e. total number of items transaction

consists of
TB* Set of sensitive transactions

Page 17 of 18Sharma and Toshniwal J Big Data (2017) 4:4

db Data chunk
D* Sanitized dataset
D′ Non-sensitive dataset
Sanitization time Execution time = Total time taken by the algorithm to hide

all the given sensitive information present in a dataset. In
this paper, we have used both terms interchangeably

Sensitive itemset Pattern of two or more items that exist together and may
reveal some personal/confidential information that client
do not want to disclose

Scalability Capability of a system/ model/function/algorithm to cope
and perform under an increased or expanding workload
(data volume)

Outsourced techniques All the privacy preservation techniques which ensure
secure storage and computation of data at any third party
like on a cloud

Data Hiding techniques Techniques which distort or block sensitive patterns which
can reveal any personal or confidential information before
sharing data

Privacy level It can be defined as the % of sensitive information masked
before sharing data

Data quality Ratio of knowledge content present in dataset after
sanitization

Global index file It maintains the sensitive itemset with corresponding sup-
porting transaction Ids list and Delta value(Δ). It is main-
tained with the master node and shared with all other com-
puting nodes in a cluster

Support index file It maintains the list of 1-frequent itemset with global sup-
port i.e. with respect to the whole dataset. SIF can be
accessed directly by any node in a cluster

Received: 2 September 2016 Accepted: 27 February 2017

References
 1. Zhang X, Yang LT, Liu C, Chen J. A scalable two-phase top-down specialization approach for data anonymization

using mapreduce on cloud. IEEE Trans Parallel Distrib Syst. 2014;25(2):363–73.
 2. Liu F, Shu X, Yao D, Butt AR. Privacy-preserving scanning of big content for sensitive data exposure with MapReduce.

In: Proceedings of the 5th ACM conference on data and application Security and Privacy. New York: ACM; 2015. p.
195–6.

 3. Yi X, Rao FY, Bertino E, Bouguettaya A. Privacy-preserving association rule mining in cloud computing. In: Proceed-
ings of the 10th ACM symposium on information, computer and communications security. New York: ACM; 2015. p.
439–50.

 4. Huang C, Lu R. EFPA: efficient and flexible privacy-preserving mining of association rule in cloud. In 2015 IEEE/CIC
international conference on communications in China (ICCC). New York: IEEE; 2015. p. 1–6.

 5. Li J, Li J, Chen X, Liu Z, Jia C. Privacy-preserving data utilization in hybrid clouds. Fut Gener Comput Syst.
2014;30:98–106.

 6. Wei L, Zhu H, Cao Z, Dong X, Jia W, Chen Y, Vasilakos AV. Security and privacy for storage and computation in cloud
computing. Inf Sci. 2014;258:371–86.

 7. Yan Z, Ding W, Niemi V, Vasilakos AV. Two schemes of privacy-preserving trust evaluation. Fut Gener Comput Syst.
2016;62:175–89.

 8. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51:107–13.
 9. Oliveira SR, Zaiane OR. Privacy preserving frequent itemset mining. In: Proceedings of the IEEE international confer-

ence on privacy, security and data mining. Australian Computer Society, Inc.., 2002. Vol. 14, p. 43–54.

Page 18 of 18Sharma and Toshniwal J Big Data (2017) 4:4

 10. Oliveira SR, Zaïane OR. Protecting sensitive knowledge by data sanitization. New York: ICDM; 2003. Vol. 3, pp. 613–16.
 11. Atallah M, Bertino E, Elmagarmid A, Ibrahim M, Verykios V. Disclosure limitation of sensitive rules. In: 1999 Workshop

on knowledge and data engineering exchange, (KDEX’99) Proceedings. 1999. p. 45–52.
 12. Amiri A. Dare to share: protecting sensitive knowledge with data sanitization. Decis Support Syst. 2007;43(1):181–91.
 13. Zhang X, Liu C, Nepal S, Yang C, Chen J. Privacy preservation over big data in cloud systems. In: Security, Privacy and

Trust in Cloud Systems. Berlin: Springer; 2014. p. 239–57.
 14. Dasseni E, Verykios VS, Elmagarmid AK, Bertino E. Hiding association rules by using confidence and support. In:

International workshop on information hiding. Berlin: Springer; 2001. p. 369–383.
 15. Verykios VS, Elmagarmid AK, Bertino E, Saygin Y, Dasseni E. Association rule hiding. IEEE Trans Knowl Data Eng.

2004;16(4):434–47.
 16. Bhandarkar M. MapReduce programming with apache Hadoop. In: IEEE international symposium on parallel and

distributed processing (IPDPS), 2010. New York: IEEE; 2010.
 17. Zhang Y, Cao T, Li S, Tian X, Yuan L, Jia H, Vasilakos AV. Parallel processing systems for big data: a survey. Proc IEEE.

2016;104(11):2114.
 18. Fung BC, Wang K, Yu PS. Top-down specialization for information and privacy preservation. In: 21st international

conference on data engineering (ICDE’05). New York: IEEE; 2005.
 19. Sharma S, Toshniwal D. Parallelization of association rule mining: survey. In: International conference on computing,

communication and security (ICCCS). New York: IEEE; 2015. p. 1–6.
 20. The transactional data provided for acquire valued shoppers challenge. https://www.kaggle.com/c/acquire-valued-

shoppers-challenge/data. Accessed 7 Oct 2016.

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data

	Scalable two-phase co-occurring sensitive pattern hiding using MapReduce
	Abstract
	Background:
	Methods:
	Results:
	Conclusion:

	Background
	Related work and problem analysis
	Related work
	Traditional heuristic approaches
	Problem analysis
	Challenges in collaborating basic heuristics with MapReduce

	MapReduce
	Proposed MapReduce version of MaxFIA and SWA
	Overview
	MapReduce version of MaxFIA
	MapReduce version of SWA

	Experiments and performance analysis
	Conclusion
	Authors’ contributions
	References

