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Abstract
At this juncture when mixed models are heavily employed in applications ranging from
clinical research to business analytics, the purpose of this article is to extend the exact
distributional result of Wald (Ann. Math. Stat. 18: 586–589, 1947) to handle models
involving a number of variance components.
Due to the unavailability of exact distributional results for underlying statistics, currently
available methods provide small group/sample inference only for balanced ANOVA
models or simple regression models. The exact distributional results developed in this
article should prove useful in making inferences by such methods as parametric
bootstrap, fiducial, and generalized p-value approach, when there are a number of
variance components to deal with.

Keywords: Variance components, Compound symmetric covariance structure, REML,
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1 Introduction
Ever sinceWald (1947) published his celebrated paper, basically there has been only relax-
ation of the assumptions (cf. Seely and El-Bassiounni (1983)) made in that paper involving
a simple mixed model. Therefore, the purpose of this article is to extend Wald’s result
to develop additional exact distribution theory to tackle various inference problems in
mixed models having the compound symmetric covariance structure.
The variance components in mixed models (cf. Searle et al. (2006)) play an important

role in such applications as clinical analytics, business analytics, and industrial process
control (cf. Hamada and Weerahandi (2000), and Wu and Hamada (2009)), a whole area
that classical approach to inference fails to provide small sample inference. However, the
solutions they provided are valid only for ANOVA type problems.
Mixed-effectsmodels first became popular due to the ease of handling covariance struc-

tures associated with longitudinal data, and then due to the well known advantage (cf.
Henderson (1975) and Robinson (1991)) of BLUPs (Best linear unbiased predictors) over
the LSEs (Least squares estimators) when a practitioner has to make inferences on a num-
ber of groups (e.g. markets, patient groups, and treatment levels) in a grouping structure.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-020-00105-w&domain=pdf
mailto: Weerahandi@aol.com
http://creativecommons.org/licenses/by/4.0/


Weerahandi and Yu Journal of Statistical Distributions and Applications             (2020) 7:4 Page 2 of 14

In fact, in Corporate America the BLUP has replaced the LSE as the most widely used
statistical technique in advanced business analytics.
In mixed-effects regression models, the MLE (Maximum likelihood estimator) based

methods, are basically the only class of methods available for making inferences on mod-
els involving a number of random effects. But such solutions are asymptotic methods
requiring, not only the sample sizes to be large, but also the number of levels in a grouping
structure to be large, an unreasonable assumption. Therefore, in this article we will also
briefly develop tests and interval estimates for variance components and their functions.

2 Themodel and problems
To describe the underlying problems more precisely, consider a regression model in a
mixed model setting with a number of random effects in a grouping structure,

y = Xβ + Z1u1 + Z2u2 + · · · + ZJuJ + ε, (1)

where X is an N × k matrix formed by a set of covariates corresponding to k fixed effects
β , Zj are N × kj matrices formed by covariates corresponding to random effects uj of jth

factor with kj levels. We make the usual assumption that ε ∼ N
(
0, σ 2

e IN
)
. Also using the

most widely used compound symmetric covariance structure, which is also the default
setting in statistical software packages, we also make the assumption uj ∼ N

(
0, σ 2

j Ij
)
,

j = 1, · · · , J , and that they are distributed independently of each other and the error
terms. It should be noted that the vector of fixed effects β contain the overall mean effect
of each of the factors having random effects, which we denote as βzj, j = 1, · · · , J .
The model can also be written in familiar compact form as

y = Xβ + Zu + ε, (2)

where Z = (
Z1, · · · ,ZJ

)
and u = (

u1, · · · ,uJ
)′. Henderson (1975) provided the formu-

las for the BLUEs (Best linear unbiased estimators) of the fixed effects and the BLUPs
of random effects when the variances are known. Robinson (1991) showed that various
derivations available in the literature for these quantities all lead to Henderson’s formulas

X′Xβ̂ + X′Zũ = X′y, (3)

Z′Xβ̂ + (Z′Z + �−1)ũ = Z′y,

where � = Var(u) and ũ is the BLUP of u. Under the compound symmetric
covariance structure, the default in statistical software packages, �ρ = �/σ 2

e =
diag(ρ1I1, ρ2I2, · · · , ρJIJ), where ρj = σ 2

j /σ 2
e . The equations in (3) can be solved explic-

itly for β̂ and ũ. It is evident from (2) and was formally proved by Henderson et al. (1975)
that β̂ is actually the GLSE (Generalized least squares estimator)

β̂ = (X′�−1X)−1X′�−1y, where � = IN + Z�ρZ′. (4)

Then, we can easily obtain the explicit solution for the random part of the predictor as

ũ = (Z′Z + �−1
ρ )−1Z′(y − Xβ̂). (5)

2.1 The issue with available results

Whenwe go aboutmaking inferences in applications involving a number of variance com-
ponents, we encounter the fact that the variance components are unknown parameters,
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and hence need to be tackled before we can carry out any kind of inference. The most
widely used method is to estimate them by the REML (Restricted maximum likelihood)
or the ML (Maximum likelihood), and then carry out tests and interval estimates using
their asymptotic distributions. It is well known that (cf. Weerahandi (2004) and Gamage
et al. (2013)), due to using such asymptotic assumptions, which require not only the sam-
ple sizes to be large, but also the number of factor levels in a grouping structure to be
large, an unreasonable assumption in practice.
Therefore, the purpose of this article is to develop inference methods without relying

on asymptotic distributional results. Since variance components are important in their
own merit in a variety of applications we will undertake one application in the area of
industrial process control.

3 Exact distributions of LSEs
To solve problems involving variance components, regardless one takes the GPQ (Gen-
eralized pivotal quantity) based approach, parametric bootstrap approach, or generalized
fiducial approach, we need to tackle the variance components, which are typically
unknown. The inferences based on MLE and asymptotic results are highly inaccurate
in that they seriously miss the intended Type I error in testing of hypotheses and the
intended probability coverage in interval estimation

3.1 Distributions for inferences on variance components

By considering the ordinary least squares regression of X̃ = (X,Z) on y, Wald (1947)
showed, albeit in non-matrix notation, that the distribution of the residual sum of squares,
Se = y′ (In − X̃(X̃′X̃)−1) y is related to the familiar chi-squared distribution

U = Se
σ 2
e

∼χ2
e , where e = N − rank(X̃). (6)

Moreover, U was shown to be distributed independently of u. Typically X̃ is not of full
rank asWald (1947) implicitly assumed, but the assumption can bemaintained by redefin-
ing X̃ as the non-singular sub-matrix that one gets if the regression is run blindly. Gamage
et al. (2013) showed how one variance component can be tackled by transforming X̃ by
an orthonormal basis for the vector space spanned by its columns. Actually, any number
of variance components in a compound symmetric structure can be handled more con-
veniently and efficiently based on the LSE results, because underlying LSE results based
on the QR algorithm is highly computationally efficient and fool proof in handling non-
singular design matrices. This is accomplished by extending Wald’s argument for any
number of random effects, and properly redefining the X̃matrix.
From the theory of regression and extended Wald results, it is known that û|u ∼

N
(
u, σ 2

e (X̃′X̃)−1
u

)
, where (X̃′X̃)−1

u ) is the sub-matrix of (X̃′X̃)−1 corresponding to the
u part of the LSE regression. Therefore, the unconditional as well as the conditional
distribution of (û − u) given u is given by

(û − u)|u ∼ N
(
0, σ 2

e (X̃′X̃)−1
u

)
,

a distribution free of u. Hence the unconditional distribution of

(û − u) ∼ N
(
0, σ 2

e (X̃′X̃)−1
u

)
,
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is also the same and distributed independently of u. Hence, the LSE, as opposed to
Henderson’s predictor ũ, of u is distributed as

û = (̂u − u) + u ∼ N
(
0, σ 2

e (X̃′X̃)−1
u + �u

)
, (7)

where�u is the covariance matrix of u. In particular, individual variance components and
variance ratios of practical importance can be tackled based on the distributional result

ûj ∼ N
(
0, σ 2

e

(
(X̃′X̃)−1

j + ρjIj
))

, where ρj = σ 2
j

σ 2
e
. (8)

In computing ûjs by LSE, perhaps it is convenient to run the unconstrained regression,
and then center each ûj by subtracting the mean, the mean of estimated βzj.

3.2 Distributions for functions of variance components

The distributional result (8) allows us to handle any variance component by the distribu-
tion of the corresponding component of û. In solving some of the inference problems in
quality assurance and in applications of the BLUP, however, we also need to tackle multi-
ple variance components simultaneously. To develop necessary distributional results for
such applications, consider two factors of interests, and let û1 and û2 be the least squares
estimators of their random effects u1 and u2, each of which corresponds to non-singular
sub-matrices of X̃.
Then, it follows from (7) that

(
û1
û2

)

∼ N
((

01
02

)

, σ 2
e �xρ

)

, (9)

where

�xρ = �x(ρ1, ρ2) =
(
X̃′X̃

)−1

12
+

(
ρ1I1 01
02 ρ2I2

)

.

Let �−1
xρ be the inverse of the matrix �xρ , found by Eigen value decomposition or

otherwise. Then, from (9) we can obtain two independent random vectors as
(
v̂1
v̂2

)

= �−1
xρ

(
û1
û2

)

∼ N
((

01
02

)

, σ 2
e I

)

.

Now it is evident that the two variance components can be tackled using the two
independent chi-squared random variables

Vl = Sl(ρ1, ρ2)
σ 2
e

∼ χ2
al , where Sl(ρ1, ρ2) = v̂l′v̂l, for l = 1, 2, (10)

where al = rank(X̃l), which in many cases equal to kl − 1.
As shown by Weerahandi and Gamage (2016), an alternative way of making inferences

in problems involving two parameters can be accomplished by a marginal distribution of
one statistic and the conditional distribution of the other statistic. In our application we
readily have the marginals given by (8), the conditional distributions can be found using
themultivariate distribution theory on normal distributions. For example, the conditional
distribution of û2 given û1 is given by

û2|û1 ∼ N
(
δ21,�2,1

)
, (11)

where
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δ21 = �22�
−1
22 û1, �2,1 = �11 − �12�

−1
11 �21,

and sub-matrices of �xρ appearing in the above equation are obtained by the partition

�x(ρ1, ρ2) =
(

�11 �12
�21 �22

)

,

It is now evident that we can tackle the two variance components of interest using the
chi-squared statistics,

V1 = S1(ρ1)
σ 2
e

∼ χ2
a1 , where S1(ρ1) = û1′ (

(X̃′X)−1
1 + ρ1I1

)−1
û1 (12)

V21 = S21(ρ1, ρ2)
σ 2
e

|û1 ∼ χ2
a2 , where S21(ρ1, ρ2) = (û1 − δ21)

′�−1
2,1 (û1 − δ21).

However, it is inconvenient to work with conditional distributions in deriving inference
methods. We can avoid the above conditional distribution by applying the transformation
suggested by Weerahandi and Gamage (2016). In our problem this is accomplished by
considering the distribution of the CDF (Cumulative distribution function) of V21, which
is distributed as

U21 = FV21 = C
(
Û1, Û2; ρ1, ρ2, σ 2

e
) |Û1 = û1 ∼ U(0, 1), (13)

where uppercase variables represent the observable random quantities, and C is the CDF
of the chi-squared distribution with a2 degrees of freedom, which is readily available from
statistical software packages. But the above uniform distribution is free of û1. Therefore,
the random variable U21 is distributed as

U21 = C
(
Û1, Û2; ρ1, ρ2, σ 2

e
) ∼ U(0, 1) (14)

independently of Û1. Obviously the above argument can be extended for two sets of ran-
dom effects to enable handling of any number of variance components in an iterative
manner.

4 Illustration: Inference on functions of variance components
In this section we illustrate the application of foregoing results by undertaking a function
of variance components that arise in practice of statistical quality assurance and in some
applications of BLUPs. For a variety of problems associated with Gauge, “Repeatability”
and “Reproducibility”, and the reader is referred to Wu and Hamada (2009) for a detailed
discussion of these notions and for various sums and ratios of variance component that
are important in quality assurance measurement systems.
We will illustrate the approach that one can take in such applications, by considering

the problems of making inferences on a variance component and a sum of one variance
component σ 2

j of and the error variance σ 2
e . Making inferences about the variance ratio

ρj itself is a trivial task because, it follows chi-squared random variate

Vj = S(ρj)
σ 2
e

∼χ2
a , where S(ρj) = ûj′

(
(X̃′X̃)−1

j + ρjIj
)−1

ûj, (15)

and a = kj − 1 and (X̃′X̃)−1
j is the sub-matrix of (X̃′X̃)−1 corresponding to the uj part of

the regression. In some applications it is more convenient to work with the alternate form
of (15),

Vj = S̃
(
σ 2
e , σ 2

j

)
∼ χ2

a , where S̃
(
σ 2
e , σ 2

j

)
= ûj′

(
σ 2
e (X̃′X̃)−1

j + σ 2
j Ij

)−1
ûj, (16)
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If needed, the computation of S(ρj) can be simplified by diagonalizing the (X̃′X̃)−1
j

matrix by means of an orthogonal matrix, say P, as

S(ρj) = ũ′
j
(
Dj + ρjIj

)−1 ũj =
∑

l

u2lj
(ρj + λlj)

where Dj is a diagonal matrix formed by Eigen values λj of (X̃′X̃)−1
j and ũj = Pûj.

It follows from (15) and (8) that

W = aSe
eS(ρj)

∼ Fe,a, (17)

a test statistic involving no nuisance parameters. For example, it is easily seen that an
upper 100γ% confidence bound for ρj is given by

ρj ≤ max
(
0, s−1

j

(
ase
eqγ

))
,

where qγ is the γ th quantile of the F-distribution with a and e degrees of freedom, and
s−1
j is the inverse function of s(ρj).
Making inferences on individual variance components, and sums and some ratios of

variance components is not a trivial task. In fact, classical approach to inference fails to
provide small sample inference even in the simple balancedmixedmodels (cf.Weerahandi
(1992)). Whereas inferences on any function of variance components is easily accom-
plished by taking the generalized approach to inference. It should be emphasized that
one can obtain equivalent results by taking the generalized fiducial inference approach
introduced by Hannig et al. (2006). For example, most of the the problems undertaken
by Cisewski and Hannig (2012) can be tackled using exact distributional results without
relying on any asymptotic or approximate results. Moreover, now that we have exact dis-
tributional results, one can also take Parametric Bootstrap approach to make inferences
involving exact probability statements, just like Generalized Inference does.

4.1 Inference on individual variance components

Perhaps the easiest way to make inferences on individual variance components as well
as functions of variance components, is by replacing each nuisance parameter by their
GPQ (Generalized pivotal quantity) that reduces to the parameter at the observed sample
point, and then showing the resulting quantity leads to a well defined extremer region in
the problem of testing of the parameter of interest. While the error variance, σ 2

e is easily
handled by the obvious GPQ suggested by (6)

Gσ 2
e

= σ 2
e se
Se

= se
U
, (18)

which is basically the same as the classical PQ (Pivotal quantity). The GPQs of other
variance components is not that easy to derive, but by applying what is known as the
substitution method (cf. Weerahandi (2004)) to Eqs. (6) and (15), we can obtain a GPQ
that reduces to σ 2

j at the observed sample point as

Gσ 2
j

= σ 2
e se
Se

s−1

⎛

⎝
seS

(
σ 2
j /σ 2

e

)

Se

⎞

⎠ = se
U
s−1

( seVj

U

)
, (19)
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where s()−1 is the inverse function of s() unless it is negative, in which case the GPQ is
set to 0. Obviously expression (19) provides a GPQ for σ 2

j , because it has the required
properties:

• The distribution of Gσ 2
j
is free of unknown parameters

• At observed sample points, Gσ 2
j
depends only on the parameter of interest, σ 2

j .

In fact, at observed sample points, Gσ 2
j
reduces to σ 2

j .
Nevertheless, the inverse function s−1() of s() can be avoided, by first considering the

problem of testing null hypotheses of the form

H0 : σ 2
j ≥ σ 2

0 .

A GTV (Generalized test variable), a notion introduced by Tsui and Weerahandi (1989),
for testing the above hypotheses can also be obtained by the substitution method in
alternative equivalent forms as

T =
seS

(
σ 2
j /σ 2

e

)

Ses
(

σ 2
j

σ 2
e

Se
se

) = Vj

U
se

s
(

Uσ 2
j

se

) , or as

T = S̃(σ 2
e , σ 2

j )

s̃
(

σ 2
e se
Se , σ 2

j

) = Vj

s̃
(
se
U , σ 2

j

) . (20)

Notice that the distribution of the above test variable is free of nuisance parameters,
because the expression of T in (20) involves only σ 2

j , the parameter of interest. In addi-
tion, from its first expression, it is clear that the test variable reduces to 1 at the observed
values of the random variables, because at the observed values Se become equal to se, and
S becomes equal to s, thus leading to a well defined point on the boundary of extreme
regions based on T . Moreover, the random variable T tends to be stochastically increas-
ing in σ 2

j , because it follows from (16) that ˜S() is a stochastically decreasing function of
σ 2
j . Hence, the generalized p-value for testing H0 can be obtained as

p = maxPr(T ≤ 1) = Pr
(
Vj ≤ s̃

( se
U
, σ 2

0

))

= EGa
(
s̃
( se
U
, σ 2

0

))
, (21)

where Ga is the CDF of the chi-squared distribution with a degrees of freedom and the
expectation is taken with respect to the random variable U ∼ χ2

e .
The generalized confidence intervals for the variance component σ 2

j can be derived
from the GPQ (19) or deduced directly from the p-value in (21). In the latter approach, if
σ 2
1 and σ 2

2 are chosen such that

EGa
(
s̃
( se
U
, σ 2

1

))
= 1 − γ

2
and

EGa
(
s̃
( se
U
, σ 2

2

))
= 1 + γ

2
,

then
[
σ 2
1 , σ

2
2
]
is a 100γ% generalized confidence interval for σ 2

j .
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4.2 Inference on sums of variances

To illustrate the approach one can take in dealing with various sums and ratios of variance
components that arise in quality assurance applications (cf. Wu and Hamada (2009)) con-
sider the particular problem of making inferences about quantities such as σ 2

1 +σ 2
2 . Unlike

simple in variance ratios, the problem is non-trivial even if one of the two variances is the
error variance σ 2

e . So, in order to illustrate the approach that one can take in dealing with
sums of variance components, consider the particular problem of constructing interval
estimates for the sum σ 2

s = σ 2
e + σ 2

j
It follows from (18) and (19) that

Gs = Gσ 2
j

+ Gσ 2
e

= se
U

(
1 + s−1

( seVj

U
)

))

is a potential GPQ for the sum. It is indeed a GPQ for σ 2
s , because it has the required

properties:

• The distribution of Gs is free of unknown parameters
• At observed sample points, Gs depends only on the parameter of interest.

Moreover, at observed sample points Gs reduces to σ 2
s . Therefore, 100γ% generalized

confidence intervals on σ 2
s can be constructed by first finding quantiles of the GPQ

Pr(Gs ≤ qγ ) = Pr
(
se
U

(
1 + s−1

( seVj

U
)

))
≤ qγ

)
,

and obtaining one-sided interval estimates as σ 2
s ≤ qγ . The quantiles can be easily com-

puted by exact numerical integration. The generalized confidence can be computed more
conveniently using Monte Carlo integration. For example, 95% generalized confidence
intervals for σ 2

s can be obtained in the following steps:

• Generate a large set of random numbers from the independent chi-squared random
variables (Ui,Vi), say i = 1, 2, · · · , 100000 pairs,

• For each pair, compute Gi = Gs(Ui,Vi), i = 1, 2, · · · , 100000, from Ui ∼ χ2
e and

Vi ∼ χ2
a ,

• Sort the Gi samples and obtain the order statistic as G(1),G(2), · · · ,G(100000),
• Obtain the 95% lower confidence bound for σ 2

s as G(5000),
• Obtain the 95% upper confidence bound for σ 2

s as G(95000),
• Obtain the 95% equal-tail confidence interval for σ 2

s as
(
G(2500),G(97500)

)
.

Testing of hypotheses can also be carried out using the above interval estimates. For
example, the null hypotheses H0 : σ 2

s = δ is rejected at 0.05 level of significance if the
interval estimate,

(
G(2500),G(97500)

)
does not contain the hypothesized value δ.

4.3 Inference on fixed effects

Next consider the problem of making inferences on some or all fixed effects in the pres-
ence of random effects. Confidence intervals and tests available fromwidely used software
packages such as SAS PROC MIXED and R lme are based on asymptotic distributions
of the REML and the ML of variance components. Unlike inferences directly on variance
components, these methods are not too bad. But since fixed effects also depend on vari-
ance components to some extent, the purpose of this section to show how one can make
inferences based on exact probability statements.
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If variance components were known parameters, then we can make inferences about
β based on its GLSE (Generalized Leased Squares Estimator) specified by (4), which is
distributed as

β̂ ∼ N(β , σ 2
e �), where � = IN + Z�ρZ′. (22)

But the issue of concern is that, while it is trivial to handle the error variance σ 2
e , the

classical approach fails to provide satisfactory inferences when the among group variances
are unknown, as usually the case. The inference problem is not simple because β̂ is itself
is a function of nuisance parameters, namely

β̂ = (X′�−1X)−1X′�−1y.

There is of course no issue in point estimation. In fact, simple LSE based point estimates
are unbiased estimates, which are as good as point estimates provided by the REML and
the ML methods. The problem is making inferences about components of β beyond the
point estimation is not trivial. So we will next develop generalized inference methods to
tackle β .
To show how the generalized inferences based on exact probability statements can be

developed based on (22), let us consider the case where we have one factor between
group variance σ 2. In this case the covariance matrix � appearing in (4) reduces to
� = IN + ρZZ′, where ρ = σ 2/σ 2

e . Consider the problem of testing individual com-
ponents of β , results of which can be easily extended to test a vector of fixed effects. In
generalized approach to inference such nuisance parameters as ρ can be tackled by its
GPQ, the random quantity

R = R(U ,V ) = max
(
0, s−1

(
seS(ρ)σ 2

e
σ 2
e Se

))
= max

(
0, s−1

(
seV
U

))
, (23)

which reduces to ρ at the observed set of sample points. In Section 4 we saw that this GPQ
yields that same inferences on ρ as the classical PQ, but as we see below, it has greater
potential when treated as a GPQ. Now we can make inferences on the β vector and its
components based on the result (23) using the resulting GPQ

βR = (
X′�−1

R X
)−1 X′�−1

R y,

where �R = IN + RZZ′.
To illustrate the steps in making such generalized inference, consider the specific

problem of testing hypotheses of the form

H01 : βi ≥ β0, or H02 : βi ≤ β0, (24)

where β0 is a specified constant with β0 = 0 in (24) being the most widely used situation
of testing the significance of a variable of special interest such as the efficacy of a drug.
If there were no random effects, we would have used the t-test suggested by the classical
regression theory to perform the test. To develop the counterpart in the presence of a
random effects, let us use the distributional result

Z = β̂i(ρ) − βi

σe
√

(X′�−1X)i
∼ N(0, 1), (25)
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where β̂i(ρ) is the ith component of β(ρ) corresponding to the parameter βi being tested.
This result along with (6) implies that

T =
ˆβi(ρ) − βi

Se
√

(X′(IN + ρZZ′)−1X)i
∼ te,

a result we could have used if the variance ratio ρ were known. Moreover, recall that we
can tackle the ρ parameter using the distribution results (6) and (15), namely

U = Se
σ 2
e

∼χ2
e , where e = N − rank(X̃) and

V = S(ρ)

σ 2
e

∼χ2
a , where S(ρ) = û′ ((X̃′X̃)−1

u + ρIl
)−1

ûj.

in the case of one grouping structure with l groups.
Since ρ is unknown in practice, the above result leads to an approximate t-test only.

However, we can derive a generalized test based on exact probability statement using for-
going distributional results. In view of the form of the T statistic in the known ρ case, it is
evident that the unknown variance ratio can be tackled by using the potential generalized
test variable

T̃ = σe√
Se(β̂i(R) − βi)

(β̂i(ρ) − βi)

σe
√(

X′(IN + ρZZ′)−1X
)
i

√
(X′ (IN + RZZ′)−1 X)i

= Z√
U(β̂i(R) − βi)

√(
X′ (IN + RZZ′)−1 X

)
i, (26)

where R is a function of U and V , and Z ∼ N(0, 1), U ∼ χ2
e , and V ∼ χ2

a are mutuality
independent random variables.
It is clear from the second expression of (26) that the distribution of T̃ is free of

unknown parameter, and from the first expression it is clear that at the observed set
of sample points, the test variable reduces to 1/√se. Moreover the distribution of T̃ is
stochastically monotonic in βi. Therefore, the hypotheses of the form (24) can be tested
based on the generalized p-value

p = Pr
(

Z√
U

√
(X′ (IN + RZZ′)−1 X)i ≤ (β̂i(R) − β0)√se

)

= E
[

�

(
(β̂i(R) − β0)

√
U

√
se(X′ (IN + RZZ′)−1 X)i

)]

. (27)

or 1 − p, where the expectation in (27) is taken with respect to the chi-squared random
variable U and V , and S(ρ) is given by (15).

5 Simulation study
The purpose of this section is to conduct aMonte-Carlo simulation study to study the per-
formance of the proposed method compared with the widely used MLE based methods
that are available from such software packages as SAS Proc Mixed and R lme. Weera-
handi (2004, Chapter 4) provides simulated results showing serious Type I Error issues
of ML and REML based tests in the context of random effects ANOVA. Whereas, in our
simulation study concerning the regression case, we considered 3,5 and 10 groups and
error variance is fixed at 1. Though not necessary, to minimize the extent of the simu-
lation, sample size of each group is assumed to be equal and set at values n = 10 and
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100. In each of the studies below, we also included one X variable with fixed effect 10 is
included when X takes on normal random numbers with mean 0 and variance 0.1. More-
over, except when more than one random effect is necessary, the Z is set to be taken as
normal random numbers withmean 1 and variance 1. In typical applications where mixed
effects models add value over fixed effects models, the factor variance tends to be smaller
than the error variance, and so we fixed the latter was set at 1 and the former was varied
to have standard deviations at 0.01, 0.1, and 1.

5.1 Testing the variance component

The literature provides comparison of tests available for testing variance components
basically for ANOVA type models only. Here we compare the performance of the pro-
posed generalized test in Section 4 against the two methods available from the R software
package. One widely used test is an REML based method available from the R lme
function with the “interval” procedure, which is an improved REML based Wald-type
confidence interval. The other competing method is the PL (Profile likelihood) based
confidence interval available from R lmer with the “confint” procedure.
Table 1 below shows the Type-I error of alternative tests for testing hypotheses of the

form H0 : σ 2
0 ≤ σ 2

A. When the sample size and the factor variance are both large, REML
method fails due to non-convergence, and so such cases are indicated as NA. It is evident
from Table 1 that the proposed test outperforms both the competing methods under all
scenarios. The REML method seriously misses the intended size of tests when the factor
variance is small and become conservative when the factor variance is large, whereas the
PLmethod is too conservative in all cases. The proposedmethod also becomes somewhat
conservative when the factor variance is also large. The performance of likelihood based
methods somewhat improve as the number of factor levels increases.

Table 1 Type I error of competing tests of H0 : σ 2
A ≥ σ 2

0 with intended size 0.05

ng n σ 2
0 REML PL Proposed

3 10 .01 .254 .014 .043

3 10 .1 .082 .020 .046

3 10 1 .006 .010 .046

3 100 .01 .168 .012 .051

3 100 .1 .011 .008 .054

3 100 1 NA .006 .051

5 10 .01 .281 .021 .042

5 10 .1 .076 .020 .043

5 10 1 .013 .016 .044

5 100 .01 .177 .019 .044

5 100 .1 .022 .017 .044

5 100 1 NA .016 .048

10 10 .01 .300 .031 .047

10 10 .1 .095 .023 .050

10 10 1 .022 .022 .050

10 100 .01 .208 .026 .050

10 100 .1 .034 .028 .050

10 100 1 NA .023 .048
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5.2 Testing fixed effects

The literature does not seem to provide any comparison of tests available for testing fixed
effects of mixed effects regression models, perhaps thinking that their optimality is cov-
ered by the classical theory. Although the situation is not as serious as that of variance
components, the assumption is valid only if the variance components are known. There-
fore, here we compare the performance of the proposed generalized test in Section 5
against the two methods available from software packages such as SAS and R, namely the
REML andML based tests. Again since multiple covariates add no value in understanding
the comparative performance competing tests, we consider one covariate X, whose fixed
effect is denoted as β . The performance was found to vary somewhat with choice of x, and
therefore, to understand the overall performance of competing tests for H0 : β = 0, we
generated X as a 50% mixture of X used in the previous section and one taking on equally
spaced values from -1 to 1.
Table 2 below shows the performance of competing methods as the number of groups

take on typical values 3, 5, and 10, whereas the sample size from each group takes on value
10 and 100. In each case, the performance of competing tests were studied as the factor
variance σA vary from 0.1 to 1.0. It is evident from Table 2 that when number of groups is
small, type I error of MLE based methods tends to be somewhat larger than the intended
size of 0.05, whereas the propose method stay closer to the intended size. The ML test
is worse than the REML test and could be as large as .084, though not as bad as tests on
variance components. When the sample size is small, Type I error of each test tends to
go up with the factor variance, whereas when the sample sizes are large Type I errors of
RMEL and PL methods tend to go down. When the number of groups and the sample
sizes are both large, all three methods behave practically the same.

Table 2 Type I error of competing tests of H0 : β = 0 with intended size 0.05

ng n σA0 REML ML Proposed

3 10 .1 .061 .060 .051

3 10 .5 .068 .079 .054

3 10 1 .072 .084 .060

5 10 .1 .058 .057 .048

5 10 .5 .060 .061 .051

5 10 1 .060 .063 .054

10 10 .1 .053 .055 .048

10 10 .5 .053 .056 .050

10 10 1 .056 .056 .055

3 100 .1 .071 .080 .058

3 100 .5 .056 .062 .052

3 100 1 .054 .055 .052

5 100 .1 .070 .077 .065

5 100 .5 .055 .055 .050

5 100 1 .049 .049 .049

10 100 .1 .055 .058 .054

10 100 .5 .054 .055 .054

10 100 1 .054 .054 .052
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6 Discussion
In this article we have shown how to make inferences in mixed effects models based on
exact distributions of underlying statistics when the covariance structure is compound
symmetric. The simulation studies undertaken in this article have shown the potential in
developing tests and confidence intervals that are better than currently available asymp-
totic methods. Our results also show that there is potential for further improvement of
inferences, especially when factor variances are too large or too small compared to the
error variance.
Our tests and interval estimates are based on the generalized inference approach.

Researchers are encouraged to develop alternative inferences by taking other promising
approaches as Parametric Bootstrap and Fiducial inference with a view towards further
improving the performance of tests, especially when factor variances are large compared
to the error variance. Also desirable is to extend results to widely used and practically
useful other covariance structures.
Gamage et al. (2013) developed generalized prediction intervals for BLUPs of mixed

models. Further research necessary to extend such results to compare two BLUPS in the
same model or BLUPs of two independent models. The results presented in this article
should pave the way for such developments.
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