LETTER TO THE EDITOR

Open Access

BRAF activating mutations involving the β3-αC loop in V600E-negative anaplastic pleomorphic xanthoastrocytoma

Drew Pratt¹, Sandra Camelo-Piragua¹, Kathryn McFadden¹, Denise Leung², Rajen Mody³, Arul Chinnaiyan^{1,4}, Carl Koschmann^{5*} and Sriram Venneti^{1*}

Anaplastic pleomorphic xanthoastrocytoma (A-PXA, WHO grade III) is a newly defined entity with highgrade histopathologic features and a propensity for recurrence [6]. While PXA with low-grade histology (WHO grade II) can harbor a recurrent valine-toglutamic acid (p.V600E) point mutation in BRAF in up to 78% of cases [6], the genomic drivers of A-PXA are poorly understood as the V600E mutation is absent in over half of A-PXAs [4]. Alterations reported to date in V600E-negative cases have included novel BRAF fusions and copy number alterations (Table 1).

The efficacy of therapeutic targeting oncogenically activated kinases in BRAF-mutant cancers depends on structural variations in the kinase domain. For example, the BRAF V600E mutation is often sensitive to kinase inhibitors such as vemurafenib, while $\beta 3-\alpha C$ deletions and non-canonical BRAF mutations are often resistant to this small molecular inhibitor [2]. Therefore, from a therapeutic aspect, it is imperative to define the spectrum of BRAF alterations in these aggressive tumors. Here, we report two newly identified A-PXAs with activating mutations in the $\beta 3-\alpha C$ loop of the BRAF kinase domain discovered through whole-exome, whole-genome, and transcriptome sequencing (Michigan Oncology Sequencing Project [MI-ONCOSEQ]) [8].

The first case is a 5-year-old male presenting with a large $(11.7 \times 7.3 \text{ cm})$ temporoparietal mass with subfalcine and uncal herniation (Fig. 1a). Molecular profiling revealed an oncogenic BRAF in-frame deletion (p.L485 P490delinsF) located adjacent to the β 3- α C loop that results in a helix-constraining conformational change in the kinase domain. The second case is a 23-year-old male with a parietal ringenhancing cystic mass. Sequencing revealed a novel 9 bp tandem duplication (p.V504 R506dup) in the β 3- α C loop that results in a three codon in-frame insertion in the open reading frame (ORF) of BRAF [see Fig. 1a-d and Online Resource for details and representative images from both cases (Additional file 1)]. Consistently, both cases demonstrated MAPK activation with strong expression of phospho-ERK1/2 in tumor cells (Fig. 1g).

Both of the mutations reported here affect the β 3- α C loop in the kinase domain. To function properly, protein kinases must maintain a level of structural flexibility in order to switch between inactive and active states. This conformational change involves two regulatory regions in the catalytic domain: the

* Correspondence: ckoschma@med.umich.edu; svenneti@med.umich.edu

⁵Department of Pediatrics, Division of Pediatric Hematology/Oncology, Mott Children's Hospital at the University of Michigan, Ann Arbor, MI, USA ¹Department of Pathology, University of Michigan, Ann Arbor, MI 48104, USA Full list of author information is available at the end of the article

© The Author(s). 2018 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Referenceª	Number of cases	Method	Alteration (s) (cases/total tested)	Clinical outcome (s)
Mistry et al., 2015	3	WES, aCGH	CDKN2A HD (1/3) TP53 mutation (1/2)	No individual case data available
Phillips et al., 2016	2	NGS	Case 1: NRF1-BRAF (1/2) Case 2: ATG7-RAF1 (1/2) CDKN2A HD (2/2)	Case 1: GTR with recurrence, f/u 48 months, deceased Case 2: GTR with recurrence, f/u 15 months, alive
Alexandrescu et al., 2016	1 ^b	FISH, methylation analysis (450 k)	CDKN2A HD Gains: + 5, 7, 9q, 12p, 14q, 16q, 22q Losses: –1, 6, 13q, 14q, 21q	GTR, no recurrence, f/u 10 months, alive
Hsiao et al., 2017	1	WES, transcriptome	TMEM106B-BRAF	Resection, PFS 6 months, field radiation, contralateral recurrence, STR, progression, chemo with TMZ, stable and alive
Vaubel et al., 2017	6	Chromosomal microarray (OncoScan)	Gains: +7 (3/6), +5 (2/6) Losses: -22 (4/6), -14 (4/6), -13 (3/6), -10 (3/6), -1p (chromothripsis) CDKN2A HD (5/6)	No individual case data available
Korshunov et al., 2017	20 ^{b,c}	Methylation analysis (450 k), targeted sequencing	TERT c124C > T (5/20); CDKN2A HD (8/20)	No individual case data available
Current study	2	WES, WGS, transcriptome	Case 1: BRAF p.L485_P490delinsF; FOXO1 p.A38T; HTR2A p.D48N; CDKN2A HD Case 2: BRAF p.V504_R506dup; KAT6A p.T1210 fs (subclonal) Gains (case 2): + 5, 6, 7, 10, 12, 15 Losses (case 1): -9, 22	Case 1: near-GTR, A9952 (carboplatin, vincristine), f/u 6 months, alive Case 2: subtotal resection, chemoradiation with TMZ, alive at last f/u 4 months post-dx

Table 1 Genomic alterations in BRAF V600E-negative anaplastic pleomorphic xanthoastrocytoma

WES whole exome sequencing, aCGH array comparative genomic hybridization, NGS targeted next-generation sequencing, IHC immunohistochemistry, FISH fluorescence in situ hybridization, WGS whole genome sequencingm, HD homozygous deletion, PM promoter methylation, GTR gross total resection, f/u follow-up, PFS progression-free survival, STR stereotactic radiotherapy, TMZ temozolomide

^asee Supplemental Material for reference citations

^boverlapping cases

^ccases initially diagnosed as epithelioid glioblastoma but clustered with PXA with methylome analysis

activation segment and the α C-helix [2]. During this process, the α C-helix undergoes an "out" to "in" shift that facilitates interaction with the β 3 strand and initiates catalysis [2] (Fig. 1e). Case #1 demonstrated a deletion mutation in the BRAF β 3- α C loop that results in a shortened α C-helix that constrains the loop conformation to a constitutively kinase active "in" state. Similar "in" state activating alterations have been reported in other major signaling pathway kinases including HER2 and EGFR [2]. ß3-aC deletion mutations render tumors resistant to small molecule inhibitors, such as vemurafenib, that bind to and inhibit kinases with an "out" conformation, but are ineffective against the "in" state [1, 2] (Fig. 1e, f). Case #2 contained a mutation in a structural element (R-spine) of the α C-helix [9]. Mutations in the R-spine have been shown to stabilize the active state and result in constitutive kinase activation [3]. However, the effect of this mutation on the conformational state of the kinase domain remains to be determined. Because RAF dimers are often formed in tumors with $\beta 3-\alpha C$ kinase loop alterations, RAF dimer inhibition has been proposed as an alternative therapy for these genetic alterations [10].

Recent reports of clinical responses in V600Emutated A-PXAs with BRAF "out" inhibitors [5, 7] have been encouraging. However, selection of effective targeted therapies requires a mechanistic understanding of oncogenic kinase activation in tumors. We present two A-PXAs that contain BRAF β 3- α C loop alterations that may not be sensitive to traditional BRAF inhibitors. Therefore, treatment approaches for A-PXAs with or without V600E mutations may differ depending on the specific type of BRAF genetic alteration.

Fig. 1 A-PXA with non-volue activating mutations affecting the β_3 -aC loop in BRAF. Post-contrast 11-weighted coronal MR sequence showing a large space-occupying lesion with significant midline shift (**a**). Histologic sections from case #1 demonstrated pleomorphic giant cells (**b**), as well as pseudopalisading necrosis (**c**) and increased mitotic activity (**d**). Illustration of conformational changes of the β_3 strand and aC helix in the kinase domain. The canonical BRAF V600E mutation results in monomeric activity and can accommodate the oncogenic BRAF inhibitor vemurafenib, which only binds when helix aC is "out" (**e**). In β_3 -aC deletion mutations, the β_3 -aC loop is shortened, effectively locking helix aC in the "in" position and conferring resistance to vemurafenib (**f**) (modified with permission from Trends in Cancer, 2 (12), Foster SA, Klijn C, Malek S, Tissue-Specific Mutations in BRAF and EGFR Necessitate Unique Therapeutic Approaches, p. 699–701, 2016, Supplemental Reference [2] [Online Resource]). MAPK signaling pathway activation was confirmed with immunohistochemistry with anti-phospho-p44/42 MAPK [Erk1/2] [Thr202/Tyr204] (**g**)

Additional files

Additional file 1: Clinical details, pathologic work-up, and sequencing methodology used in the current study. Figure S1. Additional histopathology from case #1 showed characteristic eosinophilic granular bodies (EGBs) (a) and an elevated proliferation index (Ki-67) (b). Immunohistochemistry for p16 showed loss of expression in tumor cells with retained expression in non-neoplastic cells (c, arrowhead), consistent with deletion of the INK4a locus. Staining with mutant-specific BRAF (VE1) was negative (d). Figure S2. Case #2 showed lipidized tumor cells and PAS-positive, diastase-resistant EGBs (arrowheads) (a). Nuclear pleomorphism and increased mitotic activity were seen (b, c). Neurofilament stain showing circumscription of the tumor mass (d). BRAF V600E was negative by IHC (e). Figure S3. MI-ONCOSEQ integrative sequencing report elements: somatic point mutations for case #1 (a) and #2 (c). Copy number plots for case #1 (b) and #2 (d). (DOCX 13229 kb)

Acknowledgements

The Venneti lab is supported by grants from NCI K08 CA181475, Mathew Larson, Sidney Kimmel, St Baldrick's, Claire McKenna, Chad Tough, Doris Duke and Sontag Foundations and the University of Michigan Pediatric Brain Tumor Initiative.

Ethics approval and consent to participate

Sequencing studies were performed at the University of Michigan after approval by our Institutional Review Board.

Competing interests

All authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹Department of Pathology, University of Michigan, Ann Arbor, MI 48104, USA. ²Department of Neurology, University of Michigan, Ann Arbor, MI, USA. ³Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA. ⁴Michigan Center for Translational Pathology, Ann Arbor, MI, USA. ⁵Department of Pediatrics, Division of Pediatric Hematology/Oncology, Mott Children's Hospital at the University of Michigan, Ann Arbor, MI, USA.

Received: 22 February 2018 Accepted: 25 February 2018 Published online: 15 March 2018

References

- Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, Yadav V, Mochalkin I, Wong SS, Yue YG, Huber L et al (2016) Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discovery 6:300–315. https://doi.org/10.1158/ 2159-8290.CD-15-0896
- Foster SA, Whalen DM, Ozen A, Wongchenko MJ, Yin J, Yen I, Schaefer G, Mayfield JD, Chmielecki J, Stephens PJ et al (2016) Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell 29:477– 493. https://doi.org/10.1016/j.ccell.2016.02.010
- Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJ, Kornev AP, Taylor SS, Shaw AS (2013) Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154:1036–1046. https://doi.org/10.1016/j.cell.2013.07.046
- Ida CM, Rodriguez FJ, Burger PC, Caron AA, Jenkins SM, Spears GM, Aranguren DL, Lachance DH, Giannini C (2015) Pleomorphic Xanthoastrocytoma: natural history and long-term follow-up. Brain Pathology 25:575–586. https://doi.org/10.1111/bpa.12217
- Lee EQ, Ruland S, LeBoeuf NR, Wen PY, Santagata S (2016) Successful treatment of a progressive BRAF V600E-mutated anaplastic pleomorphic Xanthoastrocytoma with Vemurafenib monotherapy. Journal of Clinical Oncology 34:e87–e89. https://doi.org/10.1200/JCO.2013.51.1766
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathologica 131:803–820. https://doi.org/10. 1007/s00401-016-1545-1
- Migliorini D, Aguiar D, Vargas MI, Lobrinus A, Dietrich PY (2017) BRAF/MEK double blockade in refractory anaplastic pleomorphic xanthoastrocytoma. Neurology 88:1291–1293. https://doi.org/10.1212/WNL.000000000003767
- Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, Kalyana-Sundaram S, Sam L, Balbin OA, Quist MJ et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Science Translational Medicine 3:111ra121. https://doi.org/10.1126/scitranslmed.3003161
- Tse A, Verkhivker GM (2016) Exploring molecular mechanisms of paradoxical activation in the BRAF kinase dimers: atomistic simulations of conformational dynamics and modeling of allosteric communication networks and signaling pathways. PLoS One 11:e0166583. https://doi.org/10.1371/journal.pone.0166583
- Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, de Stanchina E, Abdel-Wahab O, Solit DB, Poulikakos PI et al (2015) BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28:370–383. https://doi.org/10.1016/j. ccell.2015.08.001

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit

