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Abstract

Uncertain network optimization is the study of network optimization with uncertain
data which we often meet in decision making under the presence of uncertainties. The
main purpose of this manuscript is to present a state-of-the-art review on the recent
advances in uncertain network optimization and to show the general uncertain
network optimization models based on an uncertainty theory. Some classical network
optimization topics in an uncertain environment are revisited, and some challenging
topics in future research are addressed in the field of uncertain network optimization.
This paper divides uncertain network optimization into two main directions. One line of
research deals with network optimization problems with an uncertain topology
structure, and another line of research concerns the handling of network optimization
with uncertain weights.

Keywords: Uncertain network; Uncertain graph; Network optimization; Uncertainty
theory; Uncertain programming

Introduction

In real life, we are faced with so many networks such as road network, telecommunication
network, television network, computer network, logistics network, social network, and so
on. In practice, a lot of network optimization problems [1,2] are issued from a wide vari-
ety of the networks. Generally speaking, network optimization is to study the problems
on how to design, manage, control, and optimize the network efficiently. As we can see,
there are many variations of typical network optimization problems such as shortest path
problem [3], minimum spanning tree [4], transportation problem [5], assignment problem
[6], maximum flow problem [7], and so forth. These attractive problems have motivated
many researchers to model the network optimization problems mathematically.

In the abovementioned research, the network optimization problems were usually
investigated in a deterministic environment, in which the capacities of the arcs, the costs
of the transportation, etc., are treated as positive crisp values. However, some indetermi-
nacy factors might occur in the problems. In fact, due to the lack of adequate sample data,
or the detail sample data are not easy to get because of economic reasons or technical
difficulties, the capacities of the arcs and the costs of the transportation are not sharply
known in advance. As a result, the capacity and the cost are described by some empiri-
cal data such as ‘about 2 tons’ and ‘approximately 3 dollars, respectively. In this situation,
it is not suitable to employ the classical models and algorithms to study the network
optimization problems directly.
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Probabilistic approaches are borrowed in the analysis of network optimization prob-
lems. Moreover, some researchers employed probability theory to investigate the stochas-
tic network optimization problems, the stochastic versions of the network optimiza-
tion problems. Williams [8] proposed a stochastic transportation model, in which the
demands were supposed to be random variables. Donath [9] investigated random assign-
ment problems. Hall [10] concerned a problem of finding the least expected travel time
path between two vertices in a network with travel times that are both random and time-
dependent. Nawathe and Rao [11] provided a general approach for the maximum flow
problem in probabilistic communication network. Mulvey and Vladimirou [12] described
the stochastic network optimization models for investment planning. Focusing on com-
munication and queueing systems, Neely [13] presented a modern theory of analysis,
control, and optimization for stochastic networks. In [14], Peer and Sharma defined a
probabilistic shortest path problem and formulated it as a linear programming problem.
Jietal. [15] proposed a new simulation-based multi-objective genetic algorithm approach
to find a portfolio of reliable paths in stochastic networks.

In addition, some optimization problems were founded in the literature on fuzzy
network, such as Chanas and Kolodziejczyk [16], Hanebeck and Schmidt [17], and Wu [18].

Essentially, the indeterminacy phenomena can be divided into two distinct types
according to the present mathematical systems to deal with them. One is stochastic phe-
nomena, and another is uncertain phenomena. When the sample size is too small or even
no sample to estimate a probability distribution, we have to invite some domain experts
to evaluate their belief degree that each event will occur. A lot of surveys showed that
human beings usually estimate a much wider range of values than the object actually takes
[19]. Probability theory is inappropriate in this case because it may lead to counterintu-
itive results [20]. In order to distinguish from randomness, this phenomenon was named
uncertainty [20]. In order to deal with the uncertain phenomena, Liu [21] founded an
uncertainty theory, which has become a branch of axiomatic mathematics for modeling
human uncertainty.

In theoretical aspect, uncertain set (Liu [22,23]), uncertain calculus (Liu [24], Yao [25]),
and uncertain differential equation (Liu [26], Chen and Liu [27], Yao [28]) have been
established. From a practical aspect, uncertain finance (Liu [29], Peng [30], Peng and Yao
[31]), uncertain inference (Liu [22], Gao et al. [32]), uncertain graph (Gao and Gao [33],
Zhang and Peng [34,35]), etc., have also been developed. As a mathematical program-
ming involving uncertain variables, uncertain programming was introduced by Liu [36]
in 2009. After that, many scholars employed uncertain programming to some optimiza-
tion problems in the real world. Yan [37] introduced portfolio selection in an uncertain
environment and proposed two uncertain models. Rong [38] investigated economic order
quantity for inventory based on uncertain programming. Gao [39] studied shortest path
problem with uncertain lengths. Zhang and Chen [40] introduced uncertain program-
ming to project scheduling problem. Furthermore, uncertain programming have also
been used in supply chain design (Ding [41]), facility location problem (Gao [42]), par-
allel machine scheduling (Zhang and Meng [43]), and inverse minimum spanning tree
problem (Zhang et al. [44,45]).

As an interdisciplinary subject of combinatorial optimization and uncertainty theory,
we are interested in considering uncertain network optimization problem. There are two
types of uncertain network optimization problems. One is network optimization with an
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uncertain topology structure. In order to deal with these kinds of uncertain factors, an
uncertain graph was proposed by Gao and Gao [33]. After that, Euler tour [34], cycle index
[46], Hamilton cycle [47], matching [48], connectivity of two vertices [35], and diameter
[49] for an uncertain graph were considered by scholars. Another research field concerns
network optimization problem with uncertain weights, including Chinese postman prob-
lem [50], network flow problem [51,52], optimal assignment problem [53,54], minimum
spanning tree problem [55,56], and shortest path problem [39,57].

Instead of surveying all the researches on uncertain network optimization problems so
far, this paper intends to provide an overview of an uncertain graph with uncertain edges
and uncertain programming models which deal with uncertain network optimization
problems based on an uncertain measure. The authors hope to provide the readers with
some ideas to deal with uncertain factors in a graph and several basic types of uncertain
network optimization models.

The rest of this paper is organized as follows. In the ‘Preliminary’ section, some
necessary preliminary concepts and results extracted from uncertainty theory will be pre-
sented. After that, the classical network optimization problem and stochastic network
optimization problems are introduced. Following that, network optimization with an
uncertain topology structure is presented. In addition, we introduce network optimiza-
tion with uncertain weights, including three kinds of uncertain programming models.
What is more, we study some typical uncertain network optimization problems. Then
a hybrid intelligent algorithm for solving the optimization models in general cases is
introduced. After some topics on further research, some remarks are given in the last

section.

Preliminary

As an efficient tool of modeling the behavior of uncertain phenomena, the uncertainty
theory is employed to deal with uncertain network optimization problems. Uncertainty
theory, proposed by Liu [21], is a branch of mathematics based on normality, duality,
subadditivity, and product axioms. In this section, we are particularly interested in some
related preliminaries from the uncertainty theory.

The first fundamental concept in the uncertainty theory is the uncertain measure that
is interpreted as the personal belief degree (not frequency) of an uncertain event that may
occur.

Let I" be a nonempty set, and L a o -algebra over I'. For any A € L, Liu [21] presented an
axiomatic uncertain measure M{A} to express the chance that uncertain event A occurs.
The set function M{-} satisfies the following three axioms:

(i) Normality) M{I'} = 1;

(@) (Duality) M{A} + M{A€} = 1forany A € L;

(iii) (Subadditivity) For every countable sequence of events {A;}, we have M {U;A;} <
Zi M{Ai}'

For the sake of convenience, the triplet (I', L, M) is called an uncertainty space. Liu
[24] defined a product of the uncertain measure by way of the fourth axiom of uncer-
tainty theory, which makes major differences in operations between uncertainty theory
and probability theory. Let (I'x, Ly, M) be uncertainty spaces for k = 1,2, - - - Write

F=F1XF2X~~-, L=L1XL2X---
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Then the product uncertain measure M on the product o-algebra L is defined by the
following axiom:
(iv) (Product Axiom)

M :H Ak} = /\ My {Ax}
k=1 k=1

where Ay are arbitrarily chosen events from Ly for k = 1,2, - - -, respectively.

An uncertain variable is defined by Liu [21] as a measurable function from an uncer-
tainty space to the set of real numbers. An uncertain variable & can be characterized by
its uncertainty distribution ® : @ —[0, 1], which is defined by Liu [21] as follows

P =M{y el () =a}.

Let £ be an uncertain variable with uncertainty distribution ®. Then the inverse
function ®~! is naturally called the inverse uncertainty distribution of £.
The expected value of uncertain variable £ is mathematically defined by Liu [21] as

“+00 0
El£]= Mgznm—/ M€ < ridr
0 —00

provided that at least one of the two integrals is finite.

Theorem 1. (Liu [58]) Let & be an uncertain variable with uncertainty distribution ®.

If its expected value exists, then

1
E[£]= / & (a)do
0
where ®~1 is the inverse uncertainty distribution of uncertain variable &.

Liu [21] introduced the independence concept of uncertain variables in the following
way. The uncertain variables &1, &, - - - , &, are independent if and only if

M im{fi € Bi}} = llgin M{& € B}
i=1 sizm

for any Borel sets By, By, - - - , By, of 9.
A real-valued function of multiple variables f(x1,x3,---,%,) is said to be strictly

increasing if
f(xlerr e )xn) Sf(yl:yZ; te ;yn)

whenever x; < y;fori =1,2,--- ,nand

F 1%, ,%0) < f1,92: »9n)

whenever x; < y;fori =1,2,-- ,n.
Liu [58] provided the following useful theorem to determine the distribution function of
the strictly increasing function of uncertain variables. Taking advantage of this theorem,

we can transform an indeterminacy model into a deterministic one.
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Theorem 2. (Liu [58]) Let &1, &, - - - , &y, be independent uncertain variables with uncer-
tainty distributions ®1, ©o, - - -, P, respectively. I f is a strictly increasing function, then
& =f(&1,&, -+, &) is an uncertain variable with inverse uncertainty distribution

o o) =f( @7 @), @5 @), , D, @)).

Example 1. Let & and & be independent uncertain variables with uncertainty distri-
butions ®1 and Py, respectively. Since f(x1,x2) = x1 + exp(x2) is a strictly increasing
function, &1 + exp(&2) is an uncertain variable with inverse uncertainty distribution

(@) = 07 (@) + exp(P; ' (@)).

Example 2. Let &1, &5 and &3 be independent and nonnegative uncertain variables with
uncertainty distributions ®1, & and 3, respectively. Since f (x1, %2, x3) = x% 4+ xy X x3 IS
a strictly increasing function, 512 + &y x &3 is an uncertain variable with inverse uncertainty
distribution

U a) = (@7 (@) + @5 (@) x 05 ().

Network optimization

Classical network optimization problem

Classical network optimization problems, including shortest path problem, maximum
flow problem, transportation problem, matching problem, etc., have been researched for
a long time and resulted in many gratifying achievements [59]. In a classical network
optimization problem, the topology structure of the network is deterministic and the
parameters in the network are crisp. With ignoring so complicated factors, the classical
network optimization problems have permeated every aspect of our lives, and the mod-
els of these optimization problems have been widely used in the applications in the real
world.

As we know, a network optimization problem is usually described as a special type of
linear programming model. For simplicity, we use x = (x1,x2,- - ,%,) to represent the
decision vector. Assume that f(x) is the objective function of the network optimization,
and the constrained conditions from the network can be expressed as gj(x) > 0 for j =

1,2,- - ,m. Then the classical network optimization model can be formulated as
min  f(x)
subject to :
g/(x)ZO, j=1)27"')m
xeD

where D emphatically denotes the restricted region for the sake of clarity.

Stochastic network optimization problem
Many real-life networks behave not deterministic but stochastic. Examples can be found
in areas like communication systems, production, maintenance, and logistics systems.
Construction and analysis of stochastic network optimization models rely on techniques
from fundamental probability theory and mathematical statistics.

In stochastic network optimization, it is assumed that x is a decision vector, & is a
random vector related to random variables, and f(x; £) is the objective function to be
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optimized stochastically. Suppose that we have a set of random constraints gj(x; §) > 0,
j=1,2-,m.

Generally, a network optimization problem with random variables can be described by
a stochastic programming model. In order to obtain a decision with minimum expected
objective value subject to a set of chance constraints, the stochastic network optimization
problem can be expressed as

min  E[f(x;§)]

subject to :
Pr{g/(X;E)ZO}EOl]» j=1127"'1m
xeD
where aj,j = 1,2, - - , m are the predetermined confidence levels, and D is the restricted

region.

As mentioned before, there are two kinds of indeterminacy. Probability theory was
developed by Kolmogorov [60] for modeling frequencies, and uncertainty theory was
founded by Liu [21] for modeling belief degrees. This paper aims at providing the general
methodology of modeling uncertain network optimization problems rather than survey-
ing the up-to-date advances in uncertain network optimization, in which the uncertain
factors are dealt with by the uncertain measure. In this paper, we provide the uncertain
network optimization problems in two main directions. One line of research concerns the
handling of network with the uncertain topology structure, which is called an uncertain
graph. Another line of research deals with network optimization with uncertain weights,
such as an uncertain Chinese postman problem [50], uncertain assignment problem
[53,54], and uncertain transportation problem [61-63].

Network optimization with an uncertain topology structure
In a classic graph theory, the vertices and edges are deterministic, either existing or not.
However, with different scenarios from stochastic ones, very often we are lack of observed
data due to economic reasons or technical difficulties. As we stated before, when there do
not exist enough information for us to judge whether two nodes are joined by an edge, we
usually use the belief degree to describe it. Since human beings usually overweigh unlikely
events [64], the belief degree may have much larger variance than the real frequency;
these belief degree data are no more suitable to be dealt with by probability theory. A
counterexample was presented by Zhang and Peng [34].

Based on the analysis mentioned above, Gao and Gao [33] defined the uncertain graph,
in which all edges are independent and exist with some belief degrees in an uncertain

measure.

Definition 1. (Gao and Gao [33]) A simple finite graph of order n is said to be uncertain
if its adjacency matrix is

0 ap -+ o
ay 0 ---agy

apl A -+ 0
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where a;j represents the truth values in the uncertain measure that the edges between
vertices v; and vj exist, i,j = 1,2,- - - , n, respectively.

After that, Gao and Gao [33] discussed the connectivity of the uncertain graph. Briefly,
a graph G is connected if there is a # — v path whenever two vertices u, v of G. For the
uncertain graph, in order to show how likely the uncertain graph is connected, Gao and
Gao [33] defined connectedness index as below.

Definition 2. (Gao and Gao [33]) A connectedness index of an uncertain graph is the

uncertain measure that the uncertain graph is connected.
In addition, a method for calculating connectedness index was given.

Theorem 3. (Gao and Gao [33]) Let G be an uncertain graph of order n and its uncertain
adjacency matrix is

0 app -+ a1y

az 0 -+ agy
A:

apl Ay --- 0

If all edges are independent, then the connectedness index of G is

sup min v;(X), if sup min v;(X) <0.5
(G) = Fx)=11=i<j=n fon=11si<j=n
P I sup min v;(X), if sup min v;(X) > 0.5
f(X):01§i<j§n f(X):11§i<j§n
where
X11 ¥12 ** X1n
X21 X22 * X2
X = s
Xnl Xn2 *°* Xun

x;j € {0, 1}, and v;j are defined by

Ajj, lfo/ =1
1—ay, ifxij =0

vi(X) = {

fori,j=1,2,---,n, respectively,

1, ifeach element of I + X + X% + - - - 4+ X"~1 is positive
fX) = .
0, otherwise.
For more research of the uncertain graph, we may consult Gao [46], Gao et al. [49],
Zhang and Peng [47,48], and so on. Nevertheless, there are many new and fundamental
topics of the uncertain graph needed to be discussed.
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Network optimization with uncertain weights

Assume that the uncertain network is denoted by N = (V, A, &), where V is the node
set, A is the edge set, and the uncertain vector &€ = (&1,&, - ,&,) stands for the
uncertain values corresponding to the edge vector (ej, ez, - - - , e,). Without loss of gener-
ality, &; are considered independent uncertain variables with uncertainty distributions ®;,
i=1,2,---,n, respectively.

For simplicity, we use x = (x1,%2,- - - ,%,) to represent the decision vector, D to denote
the restricted region. Assume the objective function is f(x; £). And the aim of the uncer-
tain network optimization problem is to minimize f(x; ). The constrained conditions
can be originally expressed as gj(x;§) < 0 forj = 1,2,---,m. In accordance with the
practical problems, it is also assumed that gj(x; §) are strictly increasing with respect to

‘51’52” o ,‘i:rl'

Expected value model
In uncertain network optimization, it is difficult to optimize the uncertain objective value
directly. Then an expected value model can be used to obtain a decision with an optimal
expected objective value subject to the expected constraints.

Taking this point of view, we may minimize the expected value of the objective function,

ie.,

min  E[f(x;&)].

To make sense, the uncertain constraints gj(x;§) < 0 for j = 1,2,---,m should be

expressed as:
Elg(x§]<0, j=12--,m.
Based on this modeling idea, the expected value model was constructed by Liu [36]:

min  E[f(x; )]

subject to :
E[g](xig)]S(L j=1’21"')m
xeD.

1)

Taking advantage of properties of the operational law of the uncertain variable, the

model (1) can be represented as

1
min / CDf_l(X;Ol)dOl
0
subject to :

1
—1(x; P —
/0 \IJg/, xa)da <0, j=1,2,---,m

xeD

where <I>J?1 and ‘Ilg7 ! are the inverse uncertainty distributions of f(x;&) and g(x;8),

respectively.

Belief degree-constrained programming model
Belief degree-constrained programming is another method to deal with optimization
problem in an uncertain environment. In order to make a decision so that the objective
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function f(x; &) is minimized in the sense of an uncertain measure, the « criteria can be

taken as
M{f(x8) <f} =«

where the critical value f will be minimized, and « is a predetermined confidence level.
In addition, it is naturally desired that the uncertain constraints gj(x;&) < 0 for j =
1,2, -+, mhold with confidence levels a1, ag, - - - , otyyy, respectively. Then the constrained

conditions can be expressed by chance constraints
Migi(x:€) <0} >, j=12,---,m

Thus, Liu [36] presented the uncertain network optimization model as follows:

min f

subject to :
M{f(x;§) <f) = a v
Migi(x;6) <0} >aj, j=12,---,m
xeD

where a and «; are the predetermined confidence levels.
Taking advantage of properties of the operational law of an uncertain variable, the
model (2) can be equivalently represented as

min CDf_l(x; o)
subject to :
Ly or: P —
qjg] (x7a})§0! ]—1,2,"',}7[
xeD

where 'iIJf_1 and \I/g7 1 are the inverse uncertainty distributions of f(x;&) and gi(x§),
respectively.

Belief degree maximized-constrained programming model

Since there is no way to compare the uncertain objective functions directly, the deci-
sion maker may consider the problem from another point of view. The third criterion
for the decision maker is a belief degree rule. The decision maker may firstly present a
satisfying predetermined maximal value f and then maximize the belief degree that the
objective function f(x; &) is no more than the given value. In the sense of belief degree,
the constrains can be expressed by chance constraints

Migi(x:8) <0} >aj, j=1,2,---,m

Taking this modeling idea, Liu [36] constructed belief degree maximized-constrained
programming model as follows:

max  M{f(x§) <f)

subject to :
Migi(x;6) <0} >aj, j=12,---,m
xeD

where a; are the predetermined confidence levels.
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Equivalently, it can be rewritten as

max  M{f(x;£) <f}

subject to :
Yl e) <0, j=1,2,m
xebD

where l11g7 1 are the inverse uncertainty distributions of g(x:€).

Some uncertain network optimization problems
In this section, we focus on some typical uncertain network optimization problems to
show the applications of the proposed models.

Uncertain Chinese postman problem

Assume N = (V,A,§) is an uncertain network, where V' = {1,2,--- ,n} is the set of
nodes, A = {(i,/)|i,j € V,i # j} is the set of edges, and § = {£;|(i,)) € A,i # j} is the set
of the uncertain length of the edges. We also assume that &;; are independent uncertain
variables with uncertainty distributions &y, i,j = 1,2,-- -, n, respectively. The Chinese
postman problem is to find a shortest route R such that the postman must cover each
street in his area at least once, and then end up at the same place where he begin his route.
Without loss of generality, we assume x;; is a decision variable on the edge (i,/). That is
to say, x;; = 1 means that there exists an edge from i to j in route R; Otherwise, x;; = 0.
In order to obtain a shortest route in the sense of expected value, Zhang and Peng [50]

proposed the following expected value model,

min E Z xii€ij
(i)eA
subject to :
lej— Zx]'izo,iev (4)
ji(i)eA j:Gii)eA
xij +xj;i > 1, (i,)) e A
Xij € {0,1}, (i,)) € A.

The first constraint requires that the route is a cycle, and the second constraint implies
that the route traverses each edge at least once.

If the decision maker prefers treating the problem with a critical value, then the
belief degree-constrained programming model was proposed by Zhang and Peng [50] as

follows:
min W

subject to :

MY DY wE < W >a

(ij)eA (5)
inj— ijiZO, ieV
JiieA Ji(hi) €A
xij +xj; > 1, (i,)) e A

x;; € {0,1}, (G,j))eA

Page 10 of 19
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where W is the «-optimal shortest length defined as min{W|M{ »
(B))eA

xii€ij < W} > o } which means the shortest length the postman can obtain at confidence

level a.
Moreover, we can establish the belief degree maximized-constrained programming
model as follows:

max M > xEj <L
(i)eA
subject to :
Yox— Y x%i=0,ieV )
Jui)EA JiGieA
xijtxi > 1, (i,)) e A
x5 € {0, 1}, (i,j) € A

where L is a threshold value of all the route lengths.

Uncertain optimal assignment problem
In order to model an optimal assignment problem by a graph, some basic concepts of
graph theory are introduced, which are from Bondy and Murty [65].

If the set of vertices of a graph can be partitioned into two subsets X and Y, such that
each edge has one vertex in X and one vertex in Y, such a graph is called a bipartite graph.
The partition (X, Y) is named a bipartition of the graph. A complete graph is one in which
each pair of distinct vertices is joined by an edge. In addition, if a bipartite graph with
bipartition (X, Y) in which each vertex of X is joined by exactly one edge to each vertex
of Y, such a graph is called a complete bipartite graph.

Assume that n workers are available for # jobs in a company, and each worker is qual-
ified for all of these jobs. Consider an uncertain weighted complete bipartite graph with
bipartition (X, Y, §), where X = {x1,%2, - -+ , %4}, ¥ = {y1, 92, -+ ,yu}, and &§ = {&;|x; €
X,y; € Y} is the uncertain weight of the edge. Each &;; indicates the uncertain profit made
by worker x; on job y;. If the profits of the workers in different jobs are different, how can
the decision maker design an assignment plan such that the total profit made by all work-
ers is maximized? This is so-called optimal assignment problem. We also suppose that &;
are independent uncertain variables with uncertainty distributions ®;, i,j = 1,2,--- ,n,
respectively.

In order to model the abovementioned uncertain optimal assignment problem, the
following decision variables are employed

1, if worker x; is assigned to job y;
Xij =
0, otherwise.
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As a simple choice, Zhang and Peng [66] built the following expected value model,

max E |: > x,-j&j:|
1<ij<n
subject to :
Z xijzlr i:1,2;"';n (7)
1<j<n
Y owi=1 j=12---,n
1<i<n
xije{o’l}) i’j=1)2;"'7n

where the first constraint indicates that every worker is assigned to exactly one job, and
the second constraint means that every job is assigned exactly one worker.

Sometimes the decision maker would like to set the specific value as the profit target for
pursuit. In the uncertain environment, the target profit may not be obtained in some sit-
uations. It is natural that the decision maker would accept the inability to reach the target
profit to some extent. However, the target profit must be achieved at a given confidence
level. Based on this idea, Zhang and Peng [53] proposed the a-optimal assignment model
pursing the maximal profit at the uncertain measure not less than a predetermined level.
The o-optimal assignment model is as follows:

max W

subject to :
M > x5 = Wt > a,
1<ij<n
Y oxy=1 i=12--,n
1<j<n
> owi=1,
1<i<nm

x;j € {0,1},

(8)

j=1,2,---,n

i;j:]-)zy"' N

Z xijéijz Wt >ay, the
1<ij<n
second constraint requires that every worker is assigned to exactly one job, and the third

where W is the «-optimal profit defined as max { W|M {

constraint requires that every job is assigned to exactly one worker.

If the decision maker gives the target profit 7T first, then he/she will want to maximize
the belief degree that the uncertain profit is no less than the given target profit. Accord-
ing to this idea, the belief degree maximized-constrained programming model is built as

follows:
max M{ > x;E =T
1<ij<nm
subject to :
Y oag=1 i=12,n 9)
1<j<n
Z xi]'=1, j=1,2,'~-,l’l
1<i<nm
x;€{0,1}, 4j=12,---,n

where T is the predetermined target profit.

Page 12 of 19
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Uncertain transportation problem

It is well-known that the transportation problem is a classical network optimization prob-
lem that has been researched for many years. As a problem in the uncertain environment,
uncertain transportation problems have been studied by Cui and Sheng [67], Sheng and
Yao [61,62] and Zhang and Peng [63] in recent years. Let us take the fixed charge solid
transportation problem as an example.

As a generalization of traditional transportation problem, the solid transportation prob-
lem involves how to transport products from m sources to # destinations by / conveyances
so that the total transportation cost is minimized. The fixed charge transportation con-
sider two types of costs, including the direct cost and the fixed charge. The direct cost is
the cost with respect to per unit transportation amount. When the transportation activity
between a source and a destination by a conveyance occurs, the fixed charge will be paid.
Denote x;; as the quantity transported from source i to destination j by conveyance k.
The corresponding uncertain cost of unit amount and fixed charge are denoted as &;;; and
Nijk» respectively. Let a; be the amount of products in source i which can be transported
to n destinations, l;,' the minimal demand of products in destination j, and ¢, the capacity
of conveyance k.

To structure the mathematical program, the following notations are employed:

1, if Xijk > 0
Yijk =
/ 0, otherwise.

This implies that if x;% > 0, we must add the fixed charge to the total transportation
cost.

For the fixed charge solid transportation problem in the uncertain environment, we
assume that a;, éj, Cr> &ijk, and 1% are independent uncertain variables. Thus, Zhang and
Peng [63] proposed the expected value model as follows:

m n 1

min E Z Z Z(Ei,‘kxi,'k + NijkYijk)
i=1 j=1 k=1
subject to :

E

™=
M~

112
||
—
>~
Il

1

3 (10)
Xijk — by

|
M~

.~.
Il
—
>~
Il

207 j:1,2,---,l’l

xijk—éi:|§0, i=1,2,---,m
1 }

™
M=

xijk—zki|§0, k=1,2,~~~,l
1

_L=1j=
xiijO; yijke{o’l}
i=12,---,m j=12,---,m; k=12,---,1

Under other conditions, the decision maker prefers treating the problem under the
belief degree-constraints. This fact provides a motivation for belief degree-constraint
programming model founded by Zhang and Peng [63] as follows:
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min J_’
subject to :
m n 1 _
M Z Z Z (éijkxijk + nzjkyijk) <fi{za
i=1j=1k=1
n
MAY D xp<aig>ow i=12---,m
j=1k=1
m | 5 (11)
MY D x> b;} >Bj, j=L2-,n
i=1k=1
m n
MY Ywjp <Gy =y k=121
i=1j=1
Xijk >0, Yijk € {0,1}
l=1)21' » M1 ]—112; c 5N k=1,2, ,l

_ _ m n | _
where f is the a-optimal plan defined as min {ﬂM {Z > > i+ niyije) Sf} >« }
i=lj=1k=1

In addition, the belief degree maximized-constrained programming model [63] can be

built in the following way,

n

1k=1

m l
max M { 22 2 Gk + niyir) < fo}

subject to :

n 1 .
M szijkfﬂi

m 1

= 12

MAY Y= by (12)

m
MY
xijk = 0, yyk € {0,1}
i:1, PR 7/ M j:1,21"'1n; k:1127"'7l

xi]'kizk}zyk’ k:112"";l
1

where fj is the predetermined value.

Hybrid intelligent algorithm

In some special cases, we can convert the uncertain programming models into the
corresponding crisp equivalents. But this is not the case in most situations due to the com-
putational complexity of the distributions of uncertain objective function or constrained
function. Nevertheless, if the uncertain functions are complex, then a suitable hybrid
intelligent algorithm may be designed to do this work based on 99-method and genetic
algorithm. In the algorithm, 99-method is used as uncertain simulation techniques for cal-
culating the expected value, uncertain measure, and critical value, and genetic algorithm

is employed for finding the optimal solution.

Page 14 of 19
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99-method

The 99-method was proposed by Liu [58]. It is suggested that an uncertain variable &;
with uncertainty distribution ®; can be represented by a 99-table (see Table 1). In the
first row, 0.01,0.02, - - - ,0.99 are the values of uncertainty distribution ®; of &;. In the
second row, ti, té, e ,tég are the corresponding values of inverse uncertainty distribu-
tion ®; ' Let & = (51,82, , €)X = (x1,%2, -, %), and f(x: &) = f( &1, &)
be a strictly monotone increasing function with respect to &;,&,- - - , ;. Assume that §;
are independent uncertain variables with uncertainty distributions ®;, i = 1,2,--- ,n,
respectively. According to Theorem 2, the inverse uncertainty distribution of f(x; &) is
de_l(x;a) = f(x; @1_1(05), dDZ_I(a), cee, <I>;1(a)). In the following, we will introduce the
methods for calculation expected value E[f(x; £)], uncertain measure M{f(x;€) < fo},
and critical Valuef such that min{flM{f(x; &) 5]7} > al.

Expected value
It follows from Theorem 2 that the inverse uncertainty distribution of f(x; &) is

o) = /0607 (@), P @), @, (@),

which can be expressed in the computer as Table 2.
By using Theorem 1, we have

1
Elf(x;§)]= /0 F06 07 @), @y N @), -, @, (@))da.

Thus we design the procedure for computing E[ f(x; £)] as follows:
Step 1: Set E=0andj = 1.
Step 2: Calculate y; = 0.01f(x; tjl, tjz, cee t]”), and let E := E + y;.
Step 3: Ifj < 99, let j := j + 1. Turn back to Step 2.
Step 4: Report E as the estimation of E[ f(x; §)].

Uncertain measure

As discussed above, the inverse uncertainty distribution <1>J?1(x; a) of f(x;€) can be
expressed as Table 2. Now, the uncertain measure M{f(x;€) < fo} can be approximately
obtained by the following method

Step 1: Seti = 1.

Step 2: Calculate y; = f(x; L‘il, tl.2, St

Step 3: If y; < f, then i <— i + 1, and go back to Step 2.

Step 4: Report o = 0.01i as the estimation of the uncertain measure M{f(x; &) < fo}.

Critical value
Given a predetermined confidence level 0 < & < 1, we need to find the critical value f
such that min{f|M{f(x; §) < f} > a}. Since M{f(x;£) < f} > « can be transformed as

Table 1 The expression of uncertainty distribution of uncertain variable &;
0.01 0.02 0.03 cee 0.99

i i i i
5 H & e log
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Table 2 The expression of inverse uncertainty distribution of uncertain variable f

o <I>f‘1(x;a)
0.01 foet] 62, 1)
0.02 Fxth, 13, 1)
0.03 foGtl, B, 1)
0.99 F(X; 0, to, - - 1 16o)

(Df_l (x;) < f. Thus, forany 0 < a < 1, the critical value f can be approximately obtained
by

<1>f_1(x; 0.01[100c]) + CDf_l(x; 0.017100a7)
5 )

Hybrid intelligent algorithm
As we know, genetic algorithm was first introduced by Holland [68] and has been devel-
oped by many scholars. Many experiments show that genetic algorithm is effective to
solve many optimization problems that are difficult to solve by traditional methods. In
order to solve the proposed uncertain network models in a numerical method, it is feasi-
ble to employ the so-called hybrid intelligent algorithm, which combines 99-method with
genetic algorithm. In the algorithm, the uncertain values are calculated by 99-method,
and alternately the numerical results are embedded into the genetic algorithm for finding
the optimal solution.

Now;, the hybrid intelligent algorithm for solving the uncertain network optimization
problems is summarized as follows.

Step 1: Initialize pop_size chromosomes at random. Calculate the constraint values and
check the feasibility of the chromosomes by 99-method.

Step 2: Update the chromosomes by crossover and mutation operations.

Step 3: Calculate the objective values of the chromosomes by 99-method.

Step 4: Compute the fitness of each chromosome via the objective values, which can be
obtained by 99-method.

Step 5: Select the chromosomes by spanning the roulette wheel.

Step 6: Repeat Step 2 to Step 5 for a given number of cycles.

Step 7: Take the best chromosome as the solution of the problems.

Further research problems

Generally speaking, network optimization problem can be classified into two categories:
Network optimization with an uncertain topology structure (i.e., uncertain graph) and
network optimization with uncertain weights.

Recently, much attention has been paid to the latter research field. The cited references
on uncertain network optimization in this paper almost belong to this area. However, it is
no doubt that there are many problems in the uncertain graph needed to be considered,
such as tree, regular and vertex degrees, etc. In addition, the network optimization with
uncertain weights can be further divided into the following three aspects: 1) Network
optimization with uncertain edge weights; 2) Network optimization with uncertain node
weights; and 3) Network optimization with uncertain both edge and node weights. As far
as we know, the second and the third aspects have been seldom studied up to now.
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Concluding remarks

The uncertain network optimization problem arises from various applications in real life,
which is of both theoretical interest in mathematics and applied aspect in practice. Due
to the existence of uncertainty almost everywhere and almost every time, uncertain net-
work optimization will be widely applied in such various disciplines. In order to deal with
the uncertainty in network optimization, uncertainty theory is employed to model an
uncertain network optimization problem.

It is important to keep the following three things in mind: 1) Many network opti-
mization problems appear indeed in an uncertain world; 2) Uncertainty theory provides
an efficient tool for dealing with uncertain network optimization problems. 3) There
are three types of models for uncertain network optimization with uncertain weights:
Expected value model and belief degree-constrained programming model, as well as belief
degree maximized-constrained programming model.

In a review manner, this paper presented a comprehensive summary on uncertain net-
work optimization and exhibited the general methods for modeling uncertain network
optimization problems. In summary, uncertain network optimization is a new field of

interdisciplinary research with opportunities and challenges.
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