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Abstract 

Background:  BRCAness is a characteristic feature of homologous recombination deficiency (HRD) mimicking BRCA 
gene mutation in breast cancer. We hypothesized that a measure to quantify BRCAness that causes synthetic lethality 
in BRCA mutated tumors will identify responders to PARP inhibitors.

Methods:  A total of 6753 breast cancer patients from 3 large independent cohorts were analyzed. A score was gen-
erated by transcriptomic profiling using gene set variation analysis algorithm on 34 BRCA1-mutation related genes 
selected by high AUC levels in ROC curve between BRCA1 mutation and wildtype breast cancer.

Results:  The score was significantly associated with BRCA1 mutation, high mutation load and intratumoral het-
erogeneity as expected, as well as with high HRD, DNA repair and MKi67 expression regardless of BRCA mutations. 
High BRCAness tumors enriched not only DNA repair, but also all five Hallmark cell proliferation-related gene sets. 
High BRCAness tumors were significantly associated with higher cytolytic activity and with higher anti-cancerous 
immune cell infiltration. Not only did the breast cancer cell lines with BRCA-mutation show high score, but even the 
other cells in human breast cancer tumor microenvironment were contributing to the score. The BRCAness score was 
the highest in triple-negative breast cancer consistently in all 3 cohorts. BRCAness was associated with response to 
chemotherapy and correlated strongly with response to PARP inhibitor in both triple-negative and ER-positive/HER2-
negative breast cancer.

Conclusions:  We established a novel BRCAness score using BRCA-mutation-related gene expressions and found that 
it associates with DNA repair and predicts response to PARP inhibitors regardless of BRCA mutation.
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Background
BRCAness is a phenotype mimicking mutations of 
germline BRCA1 and/or BRCA2 DNA repair gene 
[1] that are involved in all phases of the cell cycle [2], 
which results in homologous recombination deficiency 
(HRD). For instance, somatic mutations of homologous 

recombination repair (HRR) genes such as ATM, ATR, 
PALB2 and RAD51 cause BRCAness [3]. BRCAness was 
reported to predict response to anticancer agents [4]. 
Since poly ADP-ribose polymerase (PARP) is also essen-
tial in DNA repair, PARP inhibitors (PARPis) cause syn-
thetic lethality in tumors with BRCA1 and/or BRCA2 
germline mutations and are used for ovarian, prostate, 
pancreatic, and breast cancer. There is a growing inter-
est whether PARPis could be used for high BRCAness 
patients regardless of BRCA gene mutations.
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To this end, quantification of BRCAness in breast can-
cer is expected to guide the use of PARPis. Although 
several parameters have been reported to estimate 
BRCAness, currently the indication of PARPis in clinical 
practice is still limited to patients with BRCA germline 
mutation status. Given the “central dogma” of molecular 
biology that cellular phenotype is determined from DNA 
to protein through mRNA expression, we hypothesized 
that a score generated by a gene expression profile that 
represents BRCA​ gene mutation will allow us to quan-
tify BRCAness and predict response to agents including 
PARPis.

Here, we aimed to establish a novel BRCAness score 
with BRCAness-related genes by GSVA algorithm and 
study the clinical relevance of BRCAness in breast can-
cer. We hypothesized that the BRCAness score, which 
strongly reflects BRCAness, is associated with tumor 
immune microenvironment, tumor aggressiveness, clini-
cal outcomes, and prediction of response to PARPis.

Materials and methods
Data acquisition of breast cancer
Clinical information and gene expression data were 
obtained from 1903 breast cancer patients in the Molecu-
lar Taxonomy of Breast Cancer International Consortium 
(METABRIC) cohort through cBioportal [5, 6]. Clinical 
information and gene expression data of 3273 breast can-
cer patients in the GSE96058 cohort was obtained from 
the Swedish Breast Cancer Analysis Network (SCAN-B) 
[7]. Clinical and transcriptomic data was also obtained 
on 1069 female breast cancer patients from The Cancer 
Genome Atlas (TCGA) cohort [8]. The Biospecimen Core 
Resource collected and processed the frozen samples 
from treatment naive breast cancers for the TCGA pro-
ject [9, 10]. Genome Sequencing Centers and Genome 
Characterization Centers conducted the RNA-sequenc-
ing. The TCGA data was made publicly available by the 
TCGA Research network. Gene expression data were 
obtained in RSEM format and converted to Transcripts 
Per Million (TPM) by a given gene’s estimated fraction 
of transcripts and multiplying by 106. The GSE75688 
cohort has single-cell RNA-sequencing data of tumor, 
stromal, immune, and myeloid cells in breast cancer [11], 
which was obtained from Gene Expression Omnibus 
(GEO). Because all the data obtained from METABRIC, 
GSE96058 and TCGA are deidentified and displayed in 
public domain, the Institutional Review Board of Roswell 
Park approval was waived.

DNA repair signaling score
To estimate the activity level of DNA repair, we used the 
Hallmark DNA repair gene set, which have 150 DNA 
repair-related genes (supplementary table S1), in the 

Molecular Signatures Database (MSigDB) calculated 
using by Gene Set Variation Analysis (GSVA) algorithm 
[12, 13], as we previously reported [14].

Other scores
The cytolytic activity score (CYT) was calculated using 
expression levels of perforin (PRF1) and granzyme A 
(GZMA) [15]. CYT was used to quantify immune cyto-
lytic activity in tumor microenvironment (TME) rich in 
T cells as we have shown in another study [16]. The frac-
tion of 64 infiltrating stromal and immune cells in each 
tumor were estimated by gene expression profiles using 
xCell algorithm [17], as we previously reported [18–20]. 
The calculations reported by Thorsson et  al. [21] in the 
TCGA cohort were used to analyze the mutation-related 
scores; fraction altered, homologous recombination 
defects (HRD), silent and non-silent mutation rate, single 
nucleotide variation (SNV), indel neoantigens, and intra-
tumor heterogeneity.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) Java software 
(vers. 4.1) was used to conduct GSEA [22] using Hall-
mark collection of MSigDB gene sets [13] to explore the 
cancer biology that enrich to either high or low BRCA-
ness score patients. False discovery rate (FDR) < 25% was 
used to deem statistical significance, as recommended by 
GSEA.

Statistical analyses
All analyses and data plots were conducted using R soft-
ware (vers. 4.1.0) and Microsoft Excel (vers. 16). The 
top tertile was defined as high BRCAness group in each 
cohort (Fig. S1). The Fisher exact test, the Mann-Whit-
ney U test, or the Kruskal-Wallis test were performed for 
group comparison analyses. Survival analysis between 
two groups was shown using the Kaplan-Meier plot with 
the log-rank test. Values of p < 0.05 indicate a statistically 
significant difference.

Results
The novel BRCAness score was established using 34 genes 
with high area under the curve value for BRCA1‑mutation 
in both TCGA and METABRIC cohorts
We analyzed the mRNA expression of all genes for 
patients with BRCA1-mutation and wildtype by receiver 
operating characteristic-area under the curve (ROC-
AUC). We found that the expressions of 34 genes were 
significantly associated with BRCA1-mutation consist-
ently with the AUC level in both cohorts (Fig.  1A and 
Table S2; AUC > 0.650). BRCAness score was generated 
with these 34 genes using GSVA algorithm, similar to 
our previous works [14, 23–25]. In order to assess the 
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performance of this BRCAness score, its correlation with 
DNA repair that is known to be associated with BRCA-
ness, was evaluated. The DNA repair score was calculated 
by GSVA algorithm using the “Hallmark DNA repair” 
gene set of the molecular signatures database (MSigDB) 
as we previously reported [14]. The BRCAness score 
correlated highly with DNA repair score in TCGA and 
GSE96058, but not in METABRIC (Fig.  1B, Spearman 
rank correlation (r) = 0.593, 0.559, and 0.323, respec-
tively). The correlation between the BRCAness score and 
HRD score, which were pre-calculated for the patients 
in the TCGA by Thorsson et al. [21], was also assessed. 
BRCAness and HRD scores were strongly correlated in 
TCGA (Fig.  1B, r = 0.633). Next, to assess the predic-
tive performance of BRCAness score with BRCA1 muta-
tion, ROC-AUC analysis was performed. We found that 
AUC of BRCAness score was 0.709 and 0.735 in TCGA 
and METABRIC, respectively (Fig. 1C). These levels were 
highest compared to other AUC of BRCAness-related 
factors, including DNA repair score, BRCA1 and BRCA2 
gene expression, MKI67, and HRD score in the TCGA 
cohort. These results were validated in the METABRIC 
cohort. The difference in the relationship of BRCAness 

score with DNA repair (Fig.  1B) vs. ROS (Fig.  1C) in 
METABRIC may be explained by the fact that BRCAness 
is not only a mere reflection of DNA repair.

High BRCAness was significantly associated with BRCA1 
mutation and high mutation load, as well as high level 
of DNA repair and MKi67 expression regardless of BRCA1 
mutation
High BRCAness score was significantly associated with 
high BRCA1 mutation rate in both the METABRIC and 
TCGA cohorts (Fig. 2A; both p < 0.001), however, High 
BRCAness score was associated with a trend towards 
higher BRCA2 mutation ratewithout reaching sta-
tistical significance in either of the cohorts (Fig. S2). 
We found that high BRCAness was associated signifi-
cantly with high mutation counts consistently in three 
cohorts (Fig.  2B; p < 0.001). Furthermore, we inves-
tigated the association of the BRCAness score with 
mutation-related scores: fraction altered, silent and 
non-silent mutation rate, single nucleotide variation 
and indel neoantigens, as well as intratumor hetero-
geneity, and HRD. We found that breast cancer with 

Fig. 1  Development of the BRCAness score that correlates with DNA repair and HRD, which has the highest AUC for BRCA1 mutation, in breast 
cancer. A Correlation plots of the AUC level of the BRCAness score with BRCA1 mutation in the METABRIC and TCGA cohorts by Spearman’s 
rank correlation test. Blue shaded areas represent AUC lower than 0.65 in either TCGA or METABRIC. B Scatter plots of the score level between 
the BRCAness score and DNA-repair score in the TCGA, METABRIC, and GSE96058 cohorts, and HRD score in the TCGA cohort. Spearman’s rank 
correlation was used for the analysis. C ROC curve of the BRCAness score, DNA repair score, BRCA1 and BRCA2 gene expression, MKI67 expression, 
and HRD score, with the AUC in the TCGA and METABRIC cohorts. AUC, area under the curve; HRD, homologous recombinant deficient; ROC, 
receiver operating characteristic
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high BRCAness was associated significantly with high 
mutation rates, intratumor heterogeneity and HRD 
score (Fig. 2C).

Next, we compared the distribution of high and low 
BRCAness score with DNA repair score and MKi67 
expression with or without BRCA1-mutation in breast 
cancer. The top tertile was defined as high BRCAness 
groups in each cohort. We found that both DNA repair 
and MKi67 expression were higher in high vs. low 
BRCAness group in BRCA1 mutation breast cancer in 
the TCGA cohort (Fig. 2D). There was no difference in 
either the DNA repair score or MKI67 expression by 
BRCA1 mutation and wildtype regardless of the level 
of BRCAness score. These results were validated by 
the METABRIC cohort and suggest that BRCAness 
score associates better with DNA repair and MKi67 
expression compared with BRCA1 mutation status.

DNA repair and cell proliferation‑related gene sets were 
significantly enriched in high BRCAness breast cancer
As expected, high BRCAness significantly enriched DNA 
repair gene sets consistently in three cohorts (Fig.  3). 
Interestingly, BRCAness uniformly enriched five cell 
proliferation-related gene sets in the Hallmark collec-
tion; Mitotic spindle, MYC targets v1 and v2, G2M 
checkpoint, and E2F targets, as well as unfolded protein 
response, and MTORC1 signaling, consistently in three 
large cohorts.

High BRCAness breast cancer was associated significantly 
with high cytolytic activity and with infiltration 
of anti‑cancerous immune cells
Tumor-infiltrating immune cells are known to be 
attracted to the TME through neoantigens generated 
by tumor mutation burden [26]. We found that high 

Fig. 2  Association of BRCAness score with mutation load, intratumor heterogeneity, and BRCA1 mutation with DNA repair and MKI67 expression 
in breast cancer. A Bar plots of BRCA1 mutation rates by low or high BRCAness in the METABRIC and TCGA cohorts. Fisher’s exact test was used to 
calculate p-values. B Boxplots of mutation counts (per mega base) by low or high BRCAness groups in the GSE96058, METABRIC, and TCGA cohorts. 
C Boxplots of mutation-related scores; fraction altered, silent & non-silent mutation rate, SNV & indel neoantigens, intratumor heterogeneity, and 
HRD, by low or high BRCAness groups. D Boxplots of the DNA repair score and MKI67 gene expression by four groups (MH; BRCA1 mutation with 
high BRCAness, WH; BRCA1 wildtype with high BRCAness, ML; BRCA1 mutation with low BRCAness, and WL; BRCA1 wildtype with low BRCAness) in 
the TCGA (n = 17/336/10/706) and METABRIC (n = 25/603/12/1264) cohorts. The top tertile was used as a cutoff to divide high- from low- BRCAness 
groups. The Mann-Whitney U test and Kruskal-Wallis test were used to calculate p-values. SNV, single nucleotide variation
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BRCAness tumor was associated significantly with high 
infiltration of several anti-cancerous immune cells, such 
as M1 macrophages, T helper (Th) type 1 cells, CD4+ 
memory T cells, and dendritic cells (Fig. 4A; all p < 0.001), 
as well as B cells and Th2 cells (p = 0.002 and < 0.001, 
respectively), in TCGA (Fig.  4A). These results were 
validated by METABRIC and GSE96058 cohorts (Sup-
plemental Fig. S1). M2 macrophage infiltration did not 
significantly differ between the two groups in any cohorts 
(Fig.  4A and Fig. S3). High BRCAness tumor was asso-
ciated significantly with high infiltration of CD8+ T cells 
in METABRIC and GSE96058, although no significant 

association was observed in TCGA (Fig.  4A and Sup-
plemental S1). High BRCAness tumor was significantly 
associated with several immune-related scores includ-
ing lymphocyte infiltration signaling, tumor infiltrat-
ing lymphocytes regional fraction, and interferon 
(IFN)-γ response, in TCGA (Fig.  4B; p < 0.001, =0.027, 
and < 0.001, respectively). Further, high BRCAness tumor 
was associated significantly with high cytolytic activ-
ity (CYT) consistently in the three cohorts (Fig.  4C; all 
p < 0.001). Lastly, high BRCAness tumor was associated 
significantly with high level of immune checkpoint index 
(ICI) score, that represents the overall expression of 

Fig. 3  Hallmark GSEA of high BRCAness in breast cancer. Enrichment analysis of gene signaling pathways which have significant difference 
between low and high BRCAness consistently in three cohorts; TCGA, METABRIC, and GSE96058 cohorts. The top tertile was used as cutoff to divide 
high- or low- BRCAness groups. FDR, false discovery rate; NES, normalized enrichment score

Fig. 4  Breast cancer with a high BRCAness score was associated significantly with high levels of anti-cancerous immune cell infiltration, 
and cytolytic activity. Boxplots comparing low or high BRCAness breast cancers in the TCGA, METABRIC, and GSE96058 cohorts. A Infiltrating 
anti-cancerous immune cells; CD4+ memory T cells, CD8 T+ cells, Th1 cells, DC, and M1 macrophages, and pro-cancerous immune cells; Th2 cells, 
Tregs, M2 macrophages, and B cells, and (B) immune-cell-related score; lymphocyte infiltration signature, TIL regional fraction, and IFN-γ response, 
by low and high BRCAness tumors in the TCGA cohorts. C Cytolytic activity score (CYT) (D) Immune checkpoint index (ICI) score by low and high 
BRCAness score in the TCGA cohort. The top tertile was used as cutoff to divide high- or low- BRCAness groups. The Mann-Whitney U test was used 
to calculate p-values
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immune checkpoint molecules in the TCGA cohort and 
validated in GSE96058 cohort (Fig. 4D and supplemental 
Fig. S4; both p < 0.001).

Immune cells in the TME contributed to BRCAness in breast 
cancer
We measured BRCAness in cell lines with or without 
BRCA mutations in Cancer Cell Line Encyclopedia data-
base (CCLE; https://​www.​broad​insti​tute.​org/​ccle) and 
found that they did not match exactly (Fig.  5A). Super-
vised clustering analysis of the cell lines using BRCA-
ness score gene expressions demonstrated similar result 
(Fig. S5). Given the difference in the association of BRCA 
mutation and BRCAness between human samples (Fig. 1) 
and cell lines (Fig. 5A), we hypothesized that the BRCA-
ness is determined not only by cancer cells but also by 
the other cells in the TME. To this end, we utilized single 
cell sequence dataset from GSE75688 cohort and found 
that although BRCAness score was the highest in cancer 
cells, other cells in the TME including stromal, T cell, B 
cell, and myeloid cells, also contributed to the BRCAness 
score (Fig. 5B; p < 0.001).

High BRCAness was associated significantly 
with triple‑negative breast cancer (TNBC) and higher 
pathological grade, and good response to chemotherapy 
and PARP inhibitor in both ER‑positive/HER2‑negative 
breast cancer and TNBC
BRCAness was significantly higher in TNBC compared 
to the other breast cancer subtypes consistently in three 
independent cohorts (Fig. 6A; p < 0.001). BRCAness was 
significantly associated with high Nottingham pathologi-
cal grade consistently in 3 cohorts (Fig. 6A; all p < 0.001).

Next, we investigated whether BRCAness is associ-
ated with drug response. Correlation between BRCA-
ness score and AUC of response to olaparib, a PARPi, 
was assessed using CCLE. BRCAness and AUC to 
olaparib showed positive correlation in both TNBC and 
ER-positive/HER2-negative subtypes (r = 0.489 and 
0.771, respectively), although no significant difference 
was observed, most likely due to very small number of 
cell lines (Fig.  6A, both p > 0.05). In order to assess the 
clinical relevance, the association of BRCAness with 
response to neoadjuvant chemotherapy was also inves-
tigated. BRCAness score showed moderate correlation 

Fig. 5  The association of the BRCAness score with BRCA mutation in breast cancer cell lines. A Bar plots of BRCAness score by 37 breast cancer cell 
lines in CCLE data base. Orange, green, and blue bars show BRCA1-mutation, BRCA2-mutation, and wildtype, respectively. B Boxplots of BRCAness 
score by different cells, including stromal cells, myeloid cells, B cells, T cells, and cancer cells, in bulk tumor in GSE75688 cohort. P-values were 
calculated by the Kruskal-Wallis test

https://www.broadinstitute.org/ccle
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with pathological complete response (pCR) rate in both 
TNBC and ER-positive/HER2-negative breast can-
cer (Fig.  6B, AUC = 0.624 and 0.714, respectively) in 
GSE25066 cohort, which received anthracycline and tax-
ane neoadjuvant chemotherapy (n = 508). Furthermore, 
it was strongly correlated with pCR after treatment with 
durvalumab and olaparib in both subtypes in GSE173839 
cohort (Fig.  6C, AUC = 0.815 and 0.715, respectively). 
These results suggest that high BRCAness was associated 
with aggressive phenotype, and drug response particu-
larly to PARPi olaparib.

Discussion
The Phase 3 OlympiAD trial found significant improve-
ment of overall response rate and progression-free sur-
vival in germline BRCA mutation metastatic breast 
cancer with Olaparib compared from chemotherapy 
[27]. Similarly, the phase 3 EMBRACA trial reported sig-
nificant improvement in progression-free survival and 
response rate in germline BRCA mutation metastatic 
breast cancer with Talozaparib compared from chemo-
therapy [28]. OlympiA adjuvant phase 3 randomized trial 
found significant improvement in 3-year invasive and 
distant disease-free survival in germline BRCA mutation 
with oral Olaparib compared from placebo [29]. Olapa-
rib Extended, phase II study showed that PARPi is effec-
tive for metastatic breast cancer with germline PALB2 or 
somatic BRCA mutations [30].

Reduction of BRCA expression by modulating E2F 
transcriptional factors, cyclin-dependent kinases changes 
in methylation of histones [1], or disruption of other 
DNA damage response effectors [31] can impair HRR 
resulting in BRCAness [32]; however, its phenotype 
remains poorly defined [3]. Somatic mutations of HRR 
genes were thought to associate with BRCAness [33]. 
Partial or total loss of these genes increases sensitivity to 
DNA cross-linkers and PARPis [34, 35]. These findings 
suggest that BRCAness may be determined by accumula-
tion of many markers that each may be present in only a 
small fraction of tumors. Whole exome sequencing com-
bined with transcriptome profiling has found that altera-
tions in at least one HRR gene were present in about 50% 
of high grade serous ovarian cancer where this may be 
mediated by RNA polymerase regulator CDK12, which is 
required for the transcription of key HRR-related genes 

such as BRCA1, ATR, FANCI, and FANCD2 [36]. Whole-
exome and transcriptome profiling of 150 metastatic 
castration-resistant prostate cancer found that more 
than 19% of them have at least one mutation in BRCA1, 
BRCA2, ATM and CDK12 [37]. To date, several studies 
utilized germline BRCA gene mutation-associated muta-
genic gene signatures to identify BRCAness in BRCA 
wildtype tumors. Konstantinopoulos et  al. generated a 
BRCAness gene expression profile using transcriptome 
and BRCA1 and/or BRCA2 mutations [38]. Larsen et al. 
generated a transcriptional signature to predict BRCA-
mutated cancers [39]. Given the concept of BRCAness, it 
was reasonable to utilize a number of genes that impair 
HRR, rather than single genes such as BRCA1 or BRCA2. 
We used mRNA expression of 34 genes to establish the 
BRCAness score. Among them, some genes have func-
tions related to BRCAness shown in the study. For exam-
ple, PSMD2 (26S proteasome non-ATPase regulatory 
subunit 2) is responsible for substrate recognition and 
binding. Disturbances in the signaling is involved in mis-
folded protein species and contribute to inflammatory 
response and systemic DNA damage responses leading 
to malignancies [40]. PTP (protein tyrosine phosphatase) 
family are known to be signaling molecules that regulate 
a variety of cellular processes including cell growth, dif-
ferentiation, mitotic cycle, and oncogenic transformation, 
and propose to function as a tumor suppressor in cancer 
[41]. TRIP13 (Thyroid receptor-interacting protein 13) 
has a role in cell cycle arrest and cancer progression [42].

The novelty of our study is that we established a novel 
BRCAness score based on transcriptome validated with 
multiple independent large human cohorts. To establish 
the score, we first showed that the score reflects the biol-
ogy of BRCAness in multiple ways. We were then able to 
show a clinically significant association of the score with 
response to PARPi using a completely different cohort. 
Our BRCAness score strongly correlated with biologi-
cally aggressive cancer that enriched all 5 cell prolifer-
ation-related gene sets and unfolded protein response 
signaling and associated with TNBC subtype. This is 
consistent with the previous reports that familial-BRCA1 
mutant tumors segregate strongly with basal subtype [43, 
44], which indicates that basal-type sporadic tumors and 
familial-BRCA1 tumors could have a similar biology [45]. 
Despite the fact that BRCA mutation is an important 

(See figure on next page.)
Fig. 6  Association of BRCAness with clinical factors and drug response in breast cancer. A Box plots of BRCAness score by ER-positive/
HER2-negative, HER2-positive, and TNBC, in METABRIC, TCGA, and GSE96058. The Kruskal-Wallis test was used to calculate p-values. B Correlation 
plots of the level of BRCAness and drug sensitivity AUC for olaparib in TNBC and ER-positive/HER2-negative breast cancer cell lines in CCLE data 
base. Spearman’s rank correlation test was used to perform the analysis. ROC of BRCAness score with AUC in TNBC and ER-positive/HER2-negative 
breast cancer in (C) GSE25066 cohort (Regimen; taxane and anthracycline) and (D) GSE173839 cohort (Regimen; Durvalumab and olaparib). AUC, 
area under the curve; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; ROC, Receiver operating characteristic; TNBC, triple 
negative breast cancer
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Fig. 6  (See legend on previous page.)
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factor affecting DNA repair, there was no significant dif-
ference in any of the Hallmark gene set enrichment when 
comparing BRCA mutation with BRCA wildtype breast 
cancers. We speculated that this may be due to presence 
of cancers with BRCAness in the BRCA non-mutation 
group.

DNA damage and genomic instability are known to be 
closely related to immunity. BRCA mutated tumors have 
higher mitotic count and lymphocyte infiltration [46]. 
Unstable cancer genome creates various mutations that 
produce neoantigens [47]. Therefore, immunity may be 
particularly important in BRCA germline mutation carri-
ers with dysfunctional DNA repair and HRD [48]. Mela-
noma and lung cancer with germline BRCA mutation are 
already known to be successful candidates for immune 
checkpoint inhibition due to their high tumor muta-
tional burden [49]. Even though our BRCAness score 
was generated based on BRCA1 mutation tumors, this 
relationship was not always the case in breast cancer cell 
lines. This is because BRCAness is embodied not only by 
cancer cells, but also by immune and stromal cells that 
exist in the TME. Studies using cell lines are essential 
for unraveling the mechanisms; however, it is critical to 
recognize that it does not always mimic the human can-
cer with its TME. Our group has extensive experience 
in animal models including syngeneic models [50] and 
patient-derived xenograft mouse models using human 
breast cancer patient samples [51], however, none of 
them is able to completely replicate human tumors. On 
the other hand, in the analysis using human samples, the 
BRCAness score showed a strong correlation with drug 
response, especially, after treatment with PARPi in the 
TNBC subtype. Therefore, we cannot help but speculate 
that our BRCAness score that is generated using large 
cohorts with human tumors, is able to detect the group 
of patients who would benefit with the use of PARPi that 
cannot be identified just by testing for BRCA mutation, 
and therefore, hopefully can be used as a predictive bio-
marker not only for patient with BRCA mutation but also 
for patients who are BRCA wildtype in the future stud-
ies. This study is not free from limitations; this is a ret-
rospective study using transcriptomics data alone and 
lacks protein confirmation using gold standards, such 
as flow cytometry or immunohistochemistry. Although 
there is no doubt that it will be ideal to obtain protein 
confirmation, we argue that even a gold standard such 
as immunohistochemistry is not almighty. Microscopic 
assessments by human judgment are prone to subjectiv-
ity and hence have limited reproducibility. It has been 
well demonstrated that variation in staining intensities 
[52] such as hotspots [53], and the mode of microscopic 
evaluation [54] are at least part of the reasons for the dis-
cordant results by the observers. Biomarkers that have 

been clinically utilized in recent years, such as Oncotype 
DX, use transcriptomic data, which enables objective 
evaluation of gene expression. Focusing on the transcrip-
tome may provide hints to solve clinical problems, such 
as difficulty of grasping BRCAness from BRCA muta-
tions alone. Another limitation what we found was the 
correlation between BRCAness and BRCA1 mutation of 
the tumor where we are unable to distinguish germline 
from somatic mutation. Because Olaparib is indicated 
for breast cancer patients with germline mutations, it is 
clinically important to make that distinction, although 
Olaparib has also shown clinical efficacy in tumors 
with somatic BRCA 1/2 mutation per the findings of 
the TBCRC 048 clinical trial [30]. We speculate that the 
BRCAness score may correlate with germline mutations 
since it strongly correlated with the response to Olapa-
rib; however, this remains to be proven. Furthermore, a 
prospective clinical trial is essential to validate the use of 
BRCAness score as predictive biomarker for PARPi.

Conclusions
We established novel BRCAness score using mRNA 
expression of BRCA-mutation-related genes, and found 
that it associates with DNA repair, immunity, mutation 
load, and drug response in breast cancer.
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