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Abstract 

The analysis of biomarkers in biological fluids, also known as liquid biopsies, is seen with great potential to diag‑
nose complex diseases such as cancer with a high sensitivity and minimal invasiveness. Although it can target any 
biomolecule, most liquid biopsy studies have focused on circulating nucleic acids. Historically, studies have aimed 
at the detection of specific mutations on cell-free DNA (cfDNA), but recently, the study of cell-free RNA (cfRNA) has 
gained traction. Since 2020, a handful of cfDNA tests have been approved for therapy selection by the FDA, however, 
no cfRNA tests are approved to date. One of the main drawbacks in the field of RNA-based liquid biopsies is the low 
reproducibility of the results, often caused by technical and biological variability, a lack of standardized protocols and 
insufficient cohorts. In this review, we will identify the main challenges and biases introduced during the different 
stages of biomarker discovery in liquid biopsies with cfRNA and propose solutions to minimize them.
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Background
In the past few years, there has been an increased interest 
in finding minimally invasive methods for disease-spe-
cific biomarker detection [1]. Following this trend, liquid 
biopsies are becoming promising alternatives to replace 
more invasive diagnostic methods such as tissue biopsies 
or image-based methods in the future. Although liquid 
biopsies can theoretically be applied to any biomolecule 
in any biological fluid, during the last decades there 
has been an increase in the studies that target circulat-
ing nucleic acids in blood [2–5]. Although the discovery 
and validation of these biomarkers require a consider-
able economic effort, their implementation in the clini-
cal practice will be cheap, since the process only requires 
the obtention of a blood sample, but the true economi-
cal relief of this method is yet to be determined [6]. Liq-
uid biopsies will constitute a great advantage for early 

detection, since adherence to the current screening tests 
are one of the major problems of the healthcare system.

Even though other biofluids are of special interest for 
certain diseases (urine for prostate or bladder cancer [7, 
8], or cerebrospinal fluid for brain diseases, such as Par-
kinson’s disease or some variants of brain cancer [9, 10]), 
for the majority of diseases, studies have focused only on 
blood and the fractions derived from it (plasma, serum 
and platelets). For this reason, in this review we have 
focused on circulating biomarkers in blood.

To date, most studies on circulating nucleic acids have 
centered on diagnosis, prognosis and response to treat-
ment in oncology using cell-free tumor DNA (ctDNA). 
These are molecules of DNA shed by the tumor and pre-
sent in the circulation [11]. CtDNA biomarkers provide 
information about specific mutations and are of spe-
cial interest for targeted therapy: treatment with drugs 
directed to those specific mutations present only in the 
tumor cells [12]. Highlighting their potential, several 
ctDNA-based screening tests have been approved for the 
clinical practice during the last years, with many more 
currently undergoing clinical trials [13]. Although prom-
ising, there is one main limitation associated with the 
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translation of ctDNA-based screening tests to the clinic: 
the abundance of ctDNA in blood is directly linked to 
tumor burden. CtDNA derives exclusively from tumor 
cells, and it is secreted into the extracellular milieu either 
during the processes of cellular death or through active 
export [14]. These nucleic acids are biologically informa-
tive, but present important limitations for early detec-
tion in early cancer stages or in diseases with low tumor 
cells [15, 16]. Unlike ctDNA, cell-free RNA (cfRNA) is 
released from cancerous and non-cancerous cells. It can 
derive from non-transformed tissues such as stroma or 
from the immune system responding to the presence of 
tumors, both of which can be highly informative for the 
diagnosis [17].

Changes in RNA expression in cells are a dynamic 
process that can reflect tissue damage or disease [18]. 
Moreover, the study of cfRNA is not merely based on the 
differential abundance of a set of specific genes, but also 
on additional factors such as pathogenic alternative splic-
ing [19] or A-to-I RNA editing [20], changes that are not 
detectable in the genome, only in the transcriptome. Due 
to these limitations, there has been a rising interest in the 
field of cfRNA over ctDNA in the last few years.

The field of cell-free RNA biomarkers has mostly 
focused on the study of microRNAs (miRNAs) as bio-
markers of disease in the circulation due to their higher 
stability in blood [21]. However, there is a rising interest 
in the study of long RNAs (> 200 nt), including but not 
limited to messenger RNAs (mRNAs) and long non-cod-
ing RNAs (lncRNAs). As an example of this, lately some 
studies have suggested circulating biomarkers based on 
long RNAs for diseases such as fetal congenital heart 
defects [22], Alzheimer’s disease [23] and lung cancer 
[24]. However, none of these have reached the level of 
validation necessary to reach the clinic yet.

Although more technically challenging, there is one 
main advantage associated with the study of long RNAs: 
the number of known long RNAs is much higher than 
that of known miRNAs (37,911 known long RNA genes 
between mRNAs and lncRNAs [25] vs 4571 between 
hairpin and mature miRNA sequences) [26]. This is 
also the case in biofluids, where the number of mRNAs 
detected is between 5 and 450 times the number of miR-
NAs detected [27]. As a result of this higher number of 
RNAs, the potential to obtain biomarkers that reliably 
assess the state of a specific disease using these biomol-
ecules is much higher.

Despite its promising future, the field of liquid biopsies 
is young and still strongly biased by technical and biolog-
ical limitations. In this review, we will identify the main 
challenges associated with the use of cell-free long RNAs 
for the discovery of diagnostic biomarkers. For that pur-
pose, we have listed the different steps involved in long 

RNA biomarker discovery starting from blood collection 
to data analysis, highlighting the main limitations associ-
ated with each step (Figs. 1 and 2).

Plasma and serum as main biofluids
Blood carries oxygen to all organs in the body and is also 
the vessel of biological information shed into the circula-
tion. This complex biofluid contains immune and blood 
cells, blood-clotting factors, proteins, lipoproteins, extra-
cellular vesicles (EVs), cell fragments and nucleic acids, 
among other types of biomolecules [28]. In blood, cfRNA 
is either encapsulated inside microvesicles or forming 
ribonucleoprotein complexes [29]. To reduce RNA con-
tamination from blood cells, the most common approach 
is to use serum (the fraction of blood remaining after the 
blood clotting) or plasma (the acellular fraction of the 
blood) instead of whole blood.

Although intrinsically different, there is limited infor-
mation about which biofluid provides more biologically 
relevant information. Promising results have derived 
from both the study of serum and plasma. Even though 
not studied in depth, some groups reached opposite 
conclusions while attempting to quantify the differ-
ences associated with the analysis of serum vs plasma. 
For instance, Dufourd et  al. suggested that circulating 
miRNA profiles of healthy subjects may not be affected 
by the type of biofluid studied [30] while others have pro-
posed that miRNA profiles of serum and plasma are not 
comparable and can influence subsequent analyses [31]. 
An advantage of using plasma is that Klaas et al. reported 
higher amounts of cfRNA in plasma compared to serum 
[32]. Although the reason for this difference is unclear, 
the authors suggested that cfRNA could adhere to the 
blood clot during coagulation, resulting in a reduction in 
the cfRNA quantity.

Whether using plasma or serum, a common limitation 
of the study of these biofluids for biomarker discovery is 
the release of RNAs derived from red blood cells (RBC) 
and/or platelets during sample processing [33]. Regard-
ing this, during blood clotting, a necessary step for serum 
isolation, RNAs are released from blood cells and plate-
lets, affecting the circulating RNA spectrum [34, 35]. 
However, to separate plasma from other blood compo-
nents, blood cells and platelets have to be removed with 
several centrifugation steps. At this point, an incorrect 
centrifugation or handling of the samples could result in 
cellular contamination [36].

In order to assess the compositional bias induced by 
platelet-derived EVs on the plasma transcriptome, Kim 
et al. [37] examined the variation of exosomes and cfRNA 
in human plasma due to blood processing and freeze-
thaw effect. They discovered a significant reduction in 
the 1000-3000 nm EVs in platelet-free plasma samples, 
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showing an ex  vivo platelet EV release. Moreover, they 
show that while post-thaw processing reduces the 
amount of platelet-derived EVs, it irreversibly affects the 
cfRNA profile. These results suggest that banked plasma 
samples with different degrees of platelet removal could 
be incomparable.

While hemolysis controls are more common than 
platelet assessment, there is still a lack of consensus 
about the optimal steps necessary to quantify the pres-
ence of RBC RNA. In an attempt to characterize the 
effect of hemolysis during the study of circulating RNA 
biomarkers, Kirschner et  al. [38] suggested the addition 

of a pre-analytical step to quantify RBC lysis using a spec-
trophotometer. According to their results, blood samples 
with low absorbance at 414 nm, wavelength characteris-
tic of oxyhemoglobin [39], had similar levels of miR16, a 
miRNA often present in RBC and found in abundance in 
hemolytic samples.

Despite the absence of studies performed on cfRNA, a 
study found that for cellular RNA freeze-thaw cycles have 
a detrimental effect on the quality of the RNA obtained 
downstream, resulting in significantly shorter fragments 
[40]. Additionally, other studies have also suggested that 
storing plasma samples at − 80 °C leads to degradation of 

Fig. 1  Schematic timeline of all the steps involved in the development of cfRNA biomarkers. (1) Biofluid isolation: after obtaining blood from the 
patients and centrifugation to get plasma or serum, it is necessary to perform a hemolysis control to measure the contamination by cellular lysis. (2) 
RNA isolation: prior to the processing of plasma/serum, it is recommended to add external RNA molecules to act as proxies for correct RNA isolation 
(spike-ins). After isolation of the nucleic acids and before further processing, a step of DNAse digestion is required to limit the contamination 
of the sample with co-purified DNA. A final step of RNA quantification is required before moving forward to (3) library preparation. To improve 
reproducibility, a different set of spike-ins are added before starting the process of preparing the RNA for sequencing, and rRNA, lacking biological 
information, is depleted from the samples. Once the libraries are prepared and quantified, the next step is to sequence them. During this step, it 
is also possible to add an exogenous library (PhiX), to measure technical variability and ensure reproducibility. (4) Bioinformatic analysis: after the 
initial quality control of the sample, the data is processed and the expression of several genes linked to a specific phenotype through differential 
expression analysis or machine learning, to develop a robust biomarker model
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the nucleic acids over time [41]. This is of special interest 
for the study of long RNAs, which are remarkably more 
prone to degradation than miRNAs in plasma [21].

In summary, the obtention of plasma or serum from 
whole blood can result in contamination from different 
cellular sources, such as platelets or erythrocytes. Avoid-
ing and assessing cellular contamination, with correct 
processing and quality controls, is a critical step in order 
to prevent and monitor the introduction of unwanted 
biases that could lead to wrong conclusions. In addi-
tion, avoiding freeze-thaw cycles and long-term storage 
improves the quality of the RNA extracted, leading to 
more robust and reproducible results.

RNA isolation
The cfRNA obtained from a blood sample represents 
an approximation to a snapshot of the transcriptome of 
the individual. However, the use of different method-
ologies for RNA isolation leads to biases that can mask 
any relevant biological information.

The most common strategy for RNA isolation from 
biofluids is based on RNA extraction kits designed 
and optimized for plasma and/or serum. Commercial 
column-based kits are more commonly used than tra-
ditional guanidium-thiocyanate or phenol-chloroform 
methods. Classic methods tend to favor the isolation 
of selective RNA populations and often lead to reduced 
quantities of RNA [42]. However, the widespread use of 

different kits has led to intrinsic technical differences 
associated with kit-dependent biases. Li et  al. showed 
that different cfRNA isolation kits yield different RNA 
quantities. They also found kit-dependent biases linked 
with the recovery of long RNAs and issues with detect-
ing some of the most common mRNAs. Their results 
highlight the importance of selecting the best approach 
to isolate RNA depending on the end goal of the study 
[43].

One major concern regarding RNA isolation from 
plasma is DNA contamination. The majority of cfRNA 
isolation kits recover a fraction of the cfDNA present in 
the biofluid [43]. During library preparation, DNA con-
tamination is amplified along with RNA affecting the 
results [44]. To minimize this bias, the most common 
strategy is the incorporation of an additional step where 
the samples are treated with DNAse. This can be done 
before the extraction (on-column) [45] or after [27].

In order to limit the effect of other technical biases 
associated with RNA isolation, some groups have pro-
posed the addition of exogenous RNAs as controls to 
compare the efficiency of the RNA extraction [46, 47]. 
Spike-ins are exogenous RNAs with similar GC content 
to endogenous RNAs with sequences not found in the 
human genome. They are added to the samples prior to 
RNA isolation in a known concentration [48] and their 
detection is useful to assess biases introduced during 
RNA isolation. Spike-ins have been successfully used to 

Fig. 2  Overview of the main challenges in the process of biomarker discovery  and specific steps to minimize them 
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compare RNA profiles across biofluids, allowing absolute 
quantification and revealing a 10,000 fold difference in 
concentration [27].

The quantity and quality of input RNA has a strong 
impact on downstream processes [49]. However, there 
is a lack of consensus on which is the best method to 
quantify blood-derived RNA. To date, the most com-
monly used methods to measure the quality and quantity 
of RNA are based on spectrophotometry such as Qubit 
[50] and Nanodrop [51]; or on capillarity, like the Bio-
analyzer [52]. These methods were developed to assess 
the concentration of RNA in cellular samples and they 
are less accurate when evaluating the highly fragmented 
samples derived from blood. Additionally, other groups 
have proposed the incorporation of PCR-based methods 
in biomarker discovery pipelines. They use the abun-
dance of specific genes in blood as internal controls to set 
a minimum concentration of RNA [53]. This approach 
accepts the lack of reproducible quantification methods 
when starting from very low input RNA and attempts 
only to confirm the abundance of certain genes above a 
threshold.

Different strategies for RNA isolation are linked to dif-
ferent recovery rates and to the enrichment of selective 
RNA types. However, several strategies are available to 
minimize these biases: consistency in the extraction kit 
used, comparison of the RNA extraction efficiency with 
spike-ins, assessment of samples with low RNA quality 
and removal of DNA contamination.

Library preparation and sequencing
During the last decade, RNA sequencing (RNA-seq) has 
become the gold standard methodology for biomarker 
discovery. It allows the detection of known and novel 
transcripts and their quantification in a sample, with 
higher sensitivity and accuracy than other methods, such 
as microarrays [54]. While years ago the costs associ-
ated with this methodology were high, the drop in prices 
for sequencing has opened the door for the application 
of NGS to biomarker discovery and as a screening tool. 
To adapt to this new field, multiple protocols for library 
preparation have been developed to perform RNA-seq 
starting from very low RNA inputs.

Approximately 80% of the cellular RNA is riboso-
mal RNA (rRNA) [55], and this number is even bigger 
in cfRNA, with more than 90% of the RNA found in 
the circulation belonging to this type of RNA [45]. In 
order to remove high concentrations of rRNA, there 
are two methods: polyA enrichment or rRNA deple-
tion. However, only the rRNA depletion step is viable 
in this case, due to the high fragmentation of the 

RNA in plasma and lack of polyA tail in most of the 
cfRNA molecules [56].

During library preparation, another step leading to 
the introduction of biases is adaptor ligation and PCR 
amplification. Due to secondary structures and enzyme 
affinity, some sequences are more prone to ligate to 
adaptor sequences and amplify than others [57, 58]. In 
order to reduce this bias, many protocols have incorpo-
rated the use of Unique Molecular Identifiers (UMIs) 
in the early stages of library preparation. UMIs are ran-
dom sequences of 4-10 nt that are ligated to the DNA/
RNA molecules before PCR amplification [59]. The use of 
UMIs allows the identification of PCR-duplicated reads 
that originate from the same initial molecule, and the in 
silico correction of this clonal amplification. Addition-
ally, if the UMIs are incorporated before adaptor liga-
tion, they can also help minimize adaptor ligation biases. 
When compared to traditional in silico removal of tech-
nical duplicates [60], the presence of UMIs has shown to 
improve reproducibility in differential gene expression 
analysis, especially when starting from a very low input 
[58, 61], as in the case of cfRNA samples.

Following the same rationale used to evaluate biases 
during RNA isolation, spike-ins are also useful in meas-
uring technical variability introduced during library 
preparation. Similar to the spike-ins used to assess RNA 
isolation, they are added at a known concentration to 
correct for the amplification bias during library prepara-
tion [48] and can be useful to quantify and normalize in 
silico the sequencing output.

Finally, another possible step of bias introduction 
is the sequencing of the libraries. Often, batch effects 
are observed when samples used in the same study are 
sequenced in different rounds [62]. Commercially avail-
able control libraries can be added at known concen-
trations to measure the reproducibility of sequencing 
and later used to mitigate batch effects. The most com-
mon example is the PhiX Control Libraries, generated 
from the PhiX virus [63]. These spike-in libraries have 
two functions. First, they act as positive controls of the 
sequencing run, ensuring clustering reaction and gener-
ating a number of clusters depending on the quantity of 
the spike-in added. And second, as a technical control for 
sequencing accuracy, aligning the sequences to the refer-
ence genome of the spike-in library.

In summary, the main problems associated with library 
preparation and sequencing are PCR amplification and 
batch effects caused by technical variability. However, the 
use of UMI sequences and spike-ins to minimize this bias 
has become very prevalent in RNA-seq studies during 
the last years and has shown to increase the reproducibil-
ity of the results [64].
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Bioinformatics analysis
One of the most challenging steps in biomarker discov-
ery using RNA-seq is the computational analysis of the 
generated data. This analysis allows to correctly inter-
pret the molecular processes that occur in the patient. 
Bioinformatics analysis goes from data quality control to 
transcript quantification and various downstream analy-
ses. However, since the results of the analysis are closely 
linked to the input quality of the data, quality assessment 
is a critical step in this workflow [65].

One of the most prevalent issues with the processing of 
raw RNA-seq data is normalization. It consists in correct-
ing in silico for technical biases that could mask biologi-
cal information [66]. RNA-seq is the most used tool to 
measure gene expression, although unlike other methods 
like RT-qPCR, it does not allow for absolute quantifica-
tion. A normalization based on spike-in controls, added 
at the library preparation step, is one of the methods 
used to achieve absolute quantification of the transcrip-
tome in cellular RNA [67]. This method is also shown to 
be highly reproducible in plasma samples [64]. However, 
some studies have found that spike-in normalization can 
translate to poor results due to the high variability in the 
spike-in amplification [68, 69]. Due to this, some groups 
are opting for a normalization of the samples accord-
ing only to library size and gene length [45, 70]. UMI 
deduplication corrects for PCR biases and allows for the 
counting of RNA molecules in a sample, thereby improv-
ing reproducibility [61].

Once the raw data is processed, the identification of 
potential biomarkers can follow two different routes: 
comparative analysis of cfRNA profiles and machine 
learning (ML) methods. The former strategy is the sim-
plest: it consists in finding genes whose expression is 
associated with a phenotype. This approach attempts to 
determine the presence of a disease or its prognosis only 
from the expression of a few genes. An example of this 
methodology is the recent study of Rasmussen et  al., 
where they found a signature of 7 RNAs associated with 
preeclampsia, a condition marked by maternal hyperten-
sion that is a significant cause of maternal morbidity. This 
signature has a positive predictive value of 32.3%, higher 
than the current clinical state-of-the-art models [2]. The 
latter, ML-based approach, is more complex as it involves 
the application of ML algorithms to detect biomarker sig-
natures predicting the likelihood of a phenotype. A ML 
signature combines multiple genes selected by ML algo-
rithms and determines the presence of a disease or its 
prognosis. An ML-based signature normally has higher 
sensitivity and specificity than a signature coming from 
comparative analysis of cfRNA profiles [71], presumably 
because ML algorithms automatically assign a weight 
to every gene in order to maximize the accuracy of the 

classification. An example of this methodology is the 
study of Wang et al., where they found a panel of 57 RNA 
biomarkers that could detect COVID-19 infection with 
98.1% accuracy [72].

In relatively small datasets, ML algorithms tend to 
generate models that fit artificially the initial cohort of 
samples, causing poor replication of the results in new 
cohorts of patients. This is especially prevalent in omics 
data, where the number of variables is very high [73]. This 
process is known as overfitting. To mitigate this, some of 
the most used methods are cross-validation and model 
simplification [74]. Cross-validation is a resampling 
method that uses a fraction of the data to evaluate the 
performance of the algorithm, whereas model simplifica-
tion consists in reducing the number of genes included in 
the signature. This strategy of cross-validation and model 
simplification has already been used by multiple studies 
for diagnosis or prognosis of diseases.

Additionally, other research groups have proposed new 
approaches to enhance the reproducibility of the find-
ings. For instance, Larson et al. [45] have focused on the 
study of “Dark channel” biomarkers, which are genes not 
expressed in non-cancer plasma, upregulated in cancer 
samples and detected in multiple samples to improve 
specificity and reduce drastically the number of false 
positives. Vorperian et  al. [75] also proposed an inter-
esting alternative method. They have identified the tran-
scriptomic fingerprint of a certain number of cell types 
and used these profiles to deconvolute the cell types of 
origin of cfRNA. Using this approach it could be possible 
to narrow down the set of genes studied to focus only on 
those derived from the organ of interest, thus improving 
reproducibility and reducing variability.

On the one hand, the comparative analysis of cfRNA 
profiles is easier to implement in the clinical practice 
than more complex ML signatures due to its lower cost 
and improved practicality. On the other hand, ML sig-
natures tend to have higher accuracy. Both methods are 
useful in obtaining signatures of high value for diagnosis 
and prognosis.

Limitations of cfRNA biomarker discovery
The main issues limiting the applicability of liquid biop-
sies as screening and diagnostic tools in the clinic are 
technical and biological reproducibility biases. This is 
often linked to a lack of gold standard methods for sam-
ple processing and data analysis [76]. Due to the high 
technical variability observed between research groups, 
different studies often find unrelated RNA signatures for 
the same disease and type of sample. This lack of repro-
ducibility is one of the major problems that the field is 
facing, with many RNA signatures entering clinical trials 
but none reaching the clinic so far. To try and mitigate 
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this lack of standardization, the Global Biological Stand-
ards Institute (GBSI) published an article in 2014 to 
raise awareness about the lack of reproducibility and the 
urgent need for standards in cancer research, especially 
for high-throughput screening methods [77]. Since then, 
numerous efforts have focused on methodological stand-
ardization, such as the implementation of data reposito-
ries or the creation of reference RNA spike-in controls 
[76].

Besides the technical bias introduced during sam-
ple handling, external factors such as age or gender of 
the individual, have a strong effect on the cfRNA profile 
[78]. To control for these biases, every step of the study 
must be well controlled and documented, with balanced 
cohorts in all of these factors [79]. In cases where it is not 
possible to have balanced cohorts, these external factors 
should be accounted for in the statistical analysis.

A biological limitation of the study of cfRNA is that 
the interpersonal variability is very high [80], with some 
individuals showing a consistently higher expression 
of certain genes than others. Although their results are 
preliminary, they highlight the importance of a consist-
ent normalization method to account for this biological 
variability.

Current challenges in the field of RNA‑based liquid 
biopsies
According to a recent market research study, the liquid 
biopsy industry is expected to exceed 5.8 billion dol-
lars by 2026 [81], although few cfDNA tests are already 
in use in the clinical practice [82]. In 2020, the FDA 
already approved three cfDNA-based tests and, of these, 
Guardant Health’s Guardant360 CDx is the first one to 
use next generation sequencing for diagnosis [83]. Since 
the field of cfRNA is still young, there are no diagnostic 
tests based on RNA approved for the use in the clinical 
practice yet. There are many challenges to be addressed 
to translate an RNA-based liquid biopsy biomarker into 
the clinic, although several studies are currently under-
going clinical trials [84–88]. A robust and standardized 
methodology needs to be established, assessing all the 
possible biases that can alter the results. This will lead 
to more reproducible results and more robust statistical 
models.

One of the main challenges in the field of liquid biop-
sies is caused by a limitation on the number of donors in 
the training cohorts. Most of the studies comparing cases 
with controls use small retrospective cohorts to detect a 
disease after it is clinically reported [52, 89–91], which 
is suboptimal for biomarkers for early diagnosis. Only a 
handful of prospective studies have attempted popula-
tion screening to find undiagnosed patients [92]. This 
approach, although optimal for diagnostic biomarker 

discovery and validation, requires the screening of a sig-
nificant part of the population (depending on disease 
prevalence) and a great budgetary effort. The technical 
and economical requirements for such an attempt are 
beyond the grasp of most research centers and the bio-
markers discovered in the first cohorts are not strong 
enough to pass an initial step of validation and attract 
big-pharma companies. Although multiple collaborative 
consortia are created to compile biological data for spe-
cific pathologies (such as the NCI Cohort Consortium for 
cancer), the lack of standardized methods often leads to 
results that highlight technical differences over biologi-
cally relevant biomarkers.

Another important aspect for the incorporation of 
liquid biopsies into the clinical practice is the ability of 
the physicians to be able to interpret the results of the 
biomarker model. This can be an arduous task for the 
medical staff that is not proficient in bioinformatics and 
statistical analysis. For this purpose, several research 
centers and companies have created cloud computing 
pipelines that take directly the sequencing data and gen-
erate comprehensive reports [93, 94].

Conclusions
The field of liquid biopsies, and more specifically cell-free 
long RNA liquid biopsies is promising, but still young. 
With a relatively reduced number of studies published, 
there are candidate biomarkers undergoing clinical tri-
als, but none have been approved by the regulatory agen-
cies at the moment. In the last few years, there has been 
an increasing interest in liquid biopsy-based biomarkers 
using RNAs. However, it has been only in the last 5 years 
that the focus has started to switch from miRNAs to long 
RNAs, leading to the discovery of new disease-associated 
RNAs. Although there is still much work left to do to 
translate long cfRNA into clinical practice, a number of 
recent promising results suggest that long cfRNA-based 
liquid biopsies could be one of the next big revolutions in 
the field of screening and diagnosis.
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