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Long noncoding RNA LIPH‑4 promotes 
esophageal squamous cell carcinoma 
progression by regulating the miR‑216b/
IGF2BP2 axis
Yuhang Xiao1,2, Jinming Tang1,3, Desong Yang1,3, Baihua Zhang1,3, Jie Wu1,3, Zhining Wu1,3, Qianjin Liao4, 
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Abstract 

Introduction:  Esophageal squamous cell carcinoma (ESCC) represents a major malignancy with poor clinical out-
comes. Long noncoding RNAs (lncRNAs) are known to regulate the development and progression of multiple cancers. 
However, how lncRNAs are involved in ESCC is currently undefined.

Methods:  LIPH-4 levels in ESCC tissue specimens and cells were assessed by qRT-PCR. The biological function of 
LIPH-4 was examined in cell and animal studies, applying CCK-8, EdU, colony formation and flow cytometry assays as 
well as xenograft model experiments. The underlying mechanisms of action of LIPH-4 were explored through bioin-
formatics, luciferase reporter assay, RNA-immunoprecipitation assay and immunoblot.

Results:  We identified a novel lncRNA, LIPH-4, which showed elevated amounts in ESCC tissues and positive correla-
tions with increased tumor size and poor prognosis in ESCC patients. Functional studies showed that LIPH-4 pro-
moted the growth, mediated cell cycle progression and inhibited apoptosis in ESCC cells in vitro, and promoted tumor 
growth in mice. In terms of mechanism, LIPH-4 could bind to miR-216b and act as a competing endogenous RNA 
(ceRNA) to induce the expression of miR-216’s target gene IGF2BP2. LIPH-4 played an oncogenic role in ESCC through 
the miR-216b/IGF2BP2 axis.

Conclusions:  This study suggested that LIPH-4 functions as a novel oncogenic lncRNA by acting as a ceRNA for miR-
216b to regulate IGF2BP2, indicating LIPH-4 likely constitutes a prognostic biomarker and therapeutic target in ESCC.
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Background
Esophageal cancer is the seventh most commonly 
diagnosed cancer (604,100 new cases) and the sixth 
commonest cause of cancer-related mortality (544,076 

deaths) around the world in 2020 [1]. Two main EC 
types are known, including esophageal adenocar-
cinoma and esophageal squamous cell carcinoma 
(ESCC), which have quite distinct epidemiology and 
etiology [2]. ESCC, which usually originates from the 
lining of the esophageal squamous epithelium and 
occurs predominantly in the upper and mid-esoph-
agus, is the predominant form of EC worldwide. In 
China, EC is the fourth leading cause of cancer-related 
death, more than 90% of the EC cases are ESCCs [3]. 
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Despite the remarkable improvement in treatment, 
ESCC prognosis remains poor, with 5-year survival 
below 20%, mostly because of late diagnosis, common 
metastasis and rapid tumor progression [4, 5]. Addi-
tionally, the precise genetic and molecular mecha-
nisms of ESCC remain unknown [6]. Consequently, 
a better understanding of the mechanism underly-
ing ESCC formation and progression is required for 
improving early diagnosis and therapy.

Long non-coding RNAs (lncRNAs) represent RNAs 
with > 200 nucleotides lacking overt protein-coding 
capacity [7]. LncRNAs exert their functions via diverse 
mechanisms, e.g., recruiting chromatin modification 
complexes to the chromatin, interacting with RNA 
including microRNAs (miRNAs), and interacting 
with proteins [8]. Mounting evidence suggests lncR-
NAs might be critical modulators in multiple biologi-
cal processes, including development, differentiation 
and carcinogenesis [9]. For instance, lncRNA CASC9 
has high expression in ESCC and induces metastasis 
by increasing LAMC2 amounts via interaction with 
the CREB-binding protein [10]. LncRNA APCDD1L-
AS1 is identified as the most significantly upregulated 
lncRNA in icotinib-resistant lung adenocarcinoma 
cells, and promotes icotinib resistance through inhibit-
ing autophagic degradation of EGFR via the miR-1322/
miR-1972/miR-324-3p-SIRT5 axis [11]. In addition, 
most recent evidences have shown some lncRNAs 
contain short open reading frames that can be trans-
lated into biologically active small peptides [12]. The 
lncRNA HOXB-AS3 binds ribosomes and encodes a 
highly conserved 53-aa peptide named HOXB-AS3, 
which can act as a tumor suppressor and inhibit colon 
cancer cell proliferation, migration, and invasion [13]. 
A novel small peptide SPAR, which encoded by the 
lncRNA LINC00961, is localized to the late endosome/
lysosome and interacts with the lysosomal v-ATPase to 
negatively regulate mTORC1 activation [14]. Although 
multiple lncRNAs contribute to tumor formation and 
progression in ESCC, the involvement of most lncR-
NAs in ESCC remains undefined.

In our previous report, we performed lncRNA 
microarray assays to analyze lncRNAs with deregu-
lated expression in ESCC tissues in comparison to 
adjacent noncancerous tissues, and identified some 
specific lncRNAs that might participate in ESCC for-
mation and progression [15]. A new highly expressed 
lncRNA, LIPH-4 (NONHSAT093780), was shown to 
rank the top 10 upregulated lncRNAs. Herein, lncRNA 
LIPH-4 was identified in ESCC and its levels, clinical 
importance, function and underpinning mechanism in 
ESCC were examined.

Materials and methods
Clinical samples
Totally 53 clinical ESCC and adjacent noncancerous 
tissue samples (> 2.0  cm from the tumor edge) were 
obtained during surgery at the Hunan Cancer Hospital of 
Central South University from January 2015 and Decem-
ber 2016. No patients underwent preoperative therapy. 
The samples underwent snap freezing in liquid nitrogen 
and stored at -80 °C. The collection and utilization of tis-
sue samples had approval from the ethics committee of 
Hunan Cancer Hospital, conforming with current regu-
lations. Each participant provided signed informed con-
sent. The clinicopathologic features of all patients with 
ESCC are listed in Table 1.

Cell lines
Human ESCC cells (TE-1, Eca109, KYSE30, KYSE150, 
KYSE410 and KYSE510), and human normal esophageal 
epithelial HET-1A cells were obtained from the Institute 
of Cell Research, Chinese Academy of Sciences (Shang-
hai, China). KYSE30 cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) with 10% fetal bovine 
serum (FBS, Hyclone, USA) and 1% PenStrep (100 U/mL 
Penicilium and 100 μg/mL Streptomycin), the other cell 
lines were cultured in RPMI 1640 containing 10% FBS 
and 1% PenStrep. All cells were maintained in a humid 
atmosphere containing 5% CO2 at 37 °C.

Table 1  Relationship between LIPH-4 expression and 
clinicopathologic parameters of 53 ESCC patients

Characteristics Number
of case

lnc-LIPH-4 P value

High(n = 26) Low(n = 27)

Age(years) 0.8967

   < 60 28 13 15

   ≥ 60 25 13 12

Tumor size 0.0030**

   < 5 cm 34 11 23

   ≥ 5 cm 19 15 4

Histological grade 0.6963

  low and Middle 20 11 9

  high 33 15 18

Tumor invasion depth 0.1763

  T1 + T2 18 6 12

  T3 + T4 35 20 15

Lymph node metastasis 0.3997

  negative 23 9 13

  positive 30 17 13

Clinical stage 0.8967

  I and II 28 14 14

  III and IV 25 12 13
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Lentivirus construction and cell transfection
For stable overexpression of LIPH-4 and Insulin-like 
growth factor 2 mRNA-binding protein 2 (IGF2BP2), 
LIPH-4 and IGF2BP2 expression plasmids were con-
structed by inserting the related cDNA sequences 
into the Ubi-MCS-SV40-EGFP-IRES-puro lentiviral 
vector (Genechem, China). For stable knockdown of 
LIPH-4 and IGF2BP2, siRNA constructs for LIPH-4 or 
IGF2BP2 were obtained by cloning the DNA sequences 
targeting LIPH-4 or IGF2BP2 into the hU6-MCS-CBh-
gcGFP-IRES-puromycin plasmid, which were intro-
duced in a lentiviral vector (Genechem, China). For 
lentivirus transfection, cells were incubated with viral 
particles overnight with 10  μg/mL polybrene (Sigma-
Aldrich, USA). Then, the specimens were incubated 
for 14 days with 2 μg/ml puromycin to establish stable 
transfectants. MiR-216b-5p mimics and inhibitors were 
provided by Hanbio (Shanghai, China) and transient 
transfection utilized lipofectamine 3000 (Invitrogen, 
USA) as directed by the manufacturer. The sequences 
of siRNA were listed in Supplementary Table 1.

Cell counting Kit‑8 (CCK‑8) assay
ESCC cells underwent seeding in a 96-well plate at 
2 × 103/well and incubated for 4  days. Daily, 10  μl of 
CCK-8 solution was supplemented per well and incu-
bated for 1 h at 37 °C before absorbance measurement 
at 450 nm.

Colony formation assay
Totally 103 ESCC cells underwent seeding into a 
35-mm dish and incubation for 14  days. Cell colonies 
were fixed with 4% formalin for 15  min and stained 
with 0.1% crystal violet. Colonies with > 50 cells were 
imaged by light microscopy and counted with Image J.

5‑ethynyl‑2’‑deoxyuridine (EdU) assay
The EdU assay was carried out with EdU Cell Prolif-
eration Kit with Alexa Fluor 555 (Epizyme, China) as 
directed by the manufacturer. Briefly, ESCC cells were 
cultured in a 24-well plate overnight. Then, the EdU 
reagent was added for 2  h at 37  °C, followed by cell 
fixation (4% formalin), permeabilization (0.5% Triton-
X-100, Sigma) and Hoechst 33,342 counterstaining. A 
fluorescence microscope was utilized for analysis.

Flow cytometry assay
Cells underwent culture in 6-well plates for 24  h cul-
ture, followed by overnight fixation at 4  °C in 70% 
ethyl alcohol. The specimens were assessed with Cell 
Cycle and Apoptosis Analysis Kit (Beyotime, China) as 
directed by the manufacturer. Cell cycle analysis was 

carried out with a FACS Calibur flow cytometer (BD 
Biosciences, USA).

Cell culture was performed in 6-well plates for 24  h, 
and the apoptotic rate was examined with the Annexin-
VFITC apoptosis detection kit (BD, USA) according to 
the inserted protocol. Analysis was performed with a 
FACS Calibur flow cytometer.

RNA extraction and quantitative reverse transcription 
polymerase chain reaction (qRT‑PCR)
Total RNA extraction from tissue and cell samples was 
carried out with TRIzol (Invitrogen, USA) following the 
kit’s protocol. LncRNAs and mRNAs were assessed with 
a SYBR Green PCR Kit (Takara, Japan), using GAPDH 
as an internal control gene. A miDETECT A Track Kit 
(RiboBio, China) was utilized to detect microRNAs, with 
U6 for normalization. The 2−△△Ct method was utilized 
for data analysis. Primer sequences were listed in Supple-
mentary Table 2.

Subcellular fractionation
Cytoplasmic and nuclear fractions were obtained with a 
PARIS Kit (Invitrogen, USA) as directed by the manufac-
turer, and qRT-PCR was performed to quantitate LIPH-4 
mRNA, with U6 and GAPDH as nuclear and cytoplasmic 
controls, respectively.

Western blot
Total protein was obtained from cell samples with the 
RIPA buffer (Beyotime, China) supplemented with pro-
tease inhibitor cocktail tablet (Roche, Switzerland). 
Western blot was carried out with rabbit antibodies tar-
geting IGF2BP2 (1:5000, Abcam, UK), cyclinD1 (1:1000, 
Abways, china), AKT (1:1000, Abways, china), p-AKT 
(1:1000, Abways, china), and GAPDH (1:5000, ZENbio, 
China) antibodies. HRP-conjugated IgG (1:5000, Beyo-
time, China) was utilized as secondary antibodies. The 
ECL-Plus reagent (Millipore, USA) was utilized for devel-
opment. GAPDH was used for normalization.

Xenograft model
4–5-week-old female BALB/c nude mice (n = 6/group) 
were housed under specific pathogen-free conditions. 
To establish the xenograft model, stably transfected cells 
(5 × 106 in 0.2 ml PBS containing 10% Matrigel (BD Bio-
sciences, USA) were injected by the subcutaneous route 
into the mouse armpit. Each tumor was measured every 
3  days with digital calipers to derive tumor volume as 
length × width2/2. Euthanasia was performed at 4 weeks, 
and the final volume and weight of each tumor were 
assessed. The tumors were paraffin embedded, followed 
by hematoxylin and eosin (H&E) staining or immunohis-
tochemistry (IHC). Experiments involving animals had 
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approval from the Animal Ethics Committee of Hunan 
cancer hospital, following The Guidelines for the Care 
and Use of Laboratory Animals.

Luciferase reporter assay
Bioinformatics tools were utilized for predicting poten-
tial miR-216b binding sites of LIPH-4- and IGF2BP2-
3ʹ-UTR (Starbase v2.0, RegRNA2.0, miRcode and 
microRNA.org). Human 293 T cells were co-transfected 
with 160 ng of empty pmirGLO-LIPH-4-wt/mut or pmir-
GLO-IGF2BP2-wt/mut and 5  pmol miR-216b mimic or 
miR-NC utilizing Lipofectamine 3000 (Invitrogen, USA) 
strictly following the manufacturer’s recommendations. 
After 48 h of incubation, Dual-Luciferase Reporter Assay 
System (Promega, USA) was utilized for luciferase activ-
ity assessment in triplicates experiments.

RNA immunoprecipitation (RIP) assay
An EZ Magna RNA immunoprecipitation Kit (Milli-
pore, USA) was applied as directed by the manufacturer. 
In brief, KYSE510 cells underwent lysis with RIP lysis 
buffer. The resulting cell lysates were added to magnetic 
beads linked to anti-Ago2 antibodies (Millipore, USA) 
or control anti-IgG for overnight incubation at 4 °C. The 
immunoprecipitated RNA was isolated and assessed by 
qRT-PCR.

Statistical analysis
Data are mean ± standard deviation from three assays or 
more, performed independently. SPSS 18.0 (SPSS, USA) 
and GraphPad Prism 6 (GraphPad, USA) were utilized 
for data analysis. The Pearson chi-square test was utilized 
to assess associations of LIPH-4 expression with clinico-
pathological variates. Kaplan–Meier curve analysis was 
used to assess survival, and the log-rank test was used for 
comparisons. Differences between groups were analyzed 
by Student’ s t-test. P < 0.05 was deemed statistically 
significant.

Results
LIPH‑4 upregulation in ESCC patients correlates with poor 
survival
We previously carried out RNA transcriptome sequenc-
ing of five ESCC and adjacent noncancerous tissue 
specimens by microarray experiments. Totally 1,032 
upregulated lncRNAs (> twofold, p < 0.05) and 1,344 
downregulated lncRNAs were identified(< 0.5-fold, 
p < 0.05). Among these lncRNAs, LIPH-4, which is a 472-
bp transcript localized in human chromosome 3q27.2, 
ranked as one of the top remarkably upregulated lncR-
NAs. To further examine LIPH-4 expression, qRT-PCR 
was performed to assess LIPH-4 amounts in 53 paired 
ESCC tissue and adjacent noncancerous tissue speci-
mens. LIPH-4 was significantly overexpressed in 81.13% 
(43 of 53 paired) of the ESCC tissue samples versus the 
respective normal tissue samples (P < 0.001, Fig.  1A and 
B). Then, the associations of LIPH-4 expression with clin-
icopathological features of ESCC cases were evaluated. 
We found LIPH-4 expression was associated with tumor 
size (P < 0.05; Fig. 1C). Patients with tumor size exceeding 
5 cm had elevated LIPH-4 amounts, whereas those with 
tumor size below 5  cm had reduced LIPH-4 expression 
(Table 1). No relationships were found between LIPH-4 
expression and other clinicalparameters, including age 
(< 60, ≥ 60), histological grade (low and middle, high), 
tumor invasion depth (T1 and T2, T3 and T4), and lymph 
node metastasis (negative, positive).

To examine the prognostic potential of LIPH-4, over-
all survival (OS) rates were analyzed. Kaplan–Meier 
curve analysis demonstrated elevated LIPH-4 amounts 
were markedly associated with decreased overall sur-
vival (P < 0.01). Overall, the above data suggested elevated 
LIPH-4 constituted a factor reflecting tumor progression 
and reduced survival in ESCC.

LIPH‑4 induces ESCC cell growth in vitro
To further examine LIPH-4 expression, we deter-
mined the gene expression of LIPH-4 by qRT-PCR in 

Fig. 1  Expression of LIPH-4 in ESCC tissues, cells and its clinical significance. A-B Relative expression levels of LIPH-4 in ESCC and adjacent 
noncancerous tissue samples assessed by qRT-PCR (n = 53). C The correlation between LIPH-4 expression and tumor size. (D) Relative expression 
levels of LIPH-4 in human ESCC and esophageal epithelial HET-1A cells (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001
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ESCC cells, including TE-1, Eca109, KYSE30, KYSE150, 
KYSE410 and KYSE510 cell lines alongside the noncan-
cerous esophageal  epithelial HET-1A cells. The results 
demonstrated LIPH-4 amounts were markedly elevated 
in all six ESCC cells compared with HET-1A cells (all 
p < 0.05, Fig. 1D). The KYSE510 cell line with the highest 
LIPH-4 expression levels and the KYSE150 cell line with 
relatively low LIPH-4 expression levels were selected for 
subsequent assays.

To examine the biological function of LIPH-4 in ESCC 
progression, loss- and gain-of-function assays were car-
ried out. In KYSE510 and KYSE150 cells, siRNA-induced 
silencing and plasmid-based overexpression were per-
formed to manipulate LIPH-4 expression, and qRT-PCR 
was performed for validation (Fig.  2A). Functionally, 
CCK-8 assay demonstrated LIPH-4 overexpression pro-
moted KYSE150 cell proliferation, whereas LIPH-4 
knockdown reduced KYSE510 cell proliferation, in com-
parison with that of their counterpart controls (Fig. 2B). 
In agreement, the EdU assay revealed LIPH-4 silenc-
ing reduced ESCC cell proliferation, whereas its over-
expression promoted ESCC cell proliferation (Fig.  2C). 
Additionally, the clonogenic assay showed LIPH-4 over-
expression increased the clonogenic survival of KYSE150 
cells, and LIPH-4 silencing remarkably decreased clone 
formation in KYSE510 cells (Fig. 2D).

LIPH‑4 affects cell cycle progression and apoptosis in vitro
Flow cytometry was then performed to analyze the 
impact of LIPH-4 on cell cycle progression and apoptosis. 
The results showed LIPH-4 overexpression in KYSE150 
cells induced the G1 to S phase cell cycle transition, 
whereas LIPH-4 knockdown in KYSE510 cells increased 
the amount of cells in the G0/G1 phase, in comparison 
with respective negative controls (Fig.  3A). Meanwhile, 
the apoptotic rate was markedly decreased after LIPH-4 
overexpression in KYSE150 cells, and elevated following 
LIPH-4 silencing in KYSE510 cells (Fig. 3B).

LIPH‑4 sponges miR‑216b
To explore the mechanism by which LIPH-4 controls 
ESCC progression, we firstly assessed its localiza-
tion, because the function of a lncRNA depends on its 
subcellular distribution [16]. By analyzing the cyto-
plasmic and nuclear RNA fractions of ESCC cells, 
LIPH-4 was mainly detected in the cytoplasmic frac-
tion (Fig. 4A). Multiple cytosolic lncRNAs function as 
miRNA sponges via competitive binding to miRNAs 
[17]. Thus, bioinformatics software were employed for 
predicting miRNAs that could potentially target LIPH-
4. As a result, miR-216b-5p, an important tumor sup-
pressor [18], was predicted to have putative LIPH-4 
binding sites (Fig.  4B). To further validate the binding 

Fig. 2  LIPH-4 affects ESCC progression in vitro. A LIPH-4 expression was detected by qRT-PCR in KYSE150 cells transfected with LIPH-4, and KYSE510 
cells transfected with two LIPH-4 siRNAs (n = 3). Cell proliferation was analyzed by B CCK-8, C immunofluorescence analysis with Edu, and D colony 
formation assay (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001
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of miR-216b to LIPH-4, luciferase reporter vectors con-
taining wild-type LIPH-4 (pmirGLO-LIPH-4-wt) and 
LIPH-4 with mutation of the miR-216b-binding site 
(pmirGLO-LIPH-4-mut) were constructed. Figure  4C 
shows 293  T cells co-transfected with the miR-216b 
mimic and LIPH-4-wt, but not LIPH-4-mut, exhibited 
significantly decreased luciferase activity. In addition, 
RIP assay results showed LIPH-4 and miR-216b were 
significantly enriched in AGO2-containing micro-rib-
onucleoprotein complexes, suggesting that the AGO2 
protein bound directly to LIPH-4 and miR-216b in 

ESCC cells (Fig.  4D). Moreover, qRT-PCR demon-
strated miR-216b expression was reduced in 53 ESCC 
tissue pairs (P < 0.001, Fig.  4E), and Pearson analysis 
revealed miR-216b and LIPH-4 amounts were nega-
tively correlated (r = -0.4517, p = 0.0007, Fig. 4F). Taken 
together, these findings indicated LIPH-4 sponged 
miR-216b.

LIPH‑4 acts as a ceRNA in IGF2BP2 regulation
We further investigated the mechanism by which LIPH-4 
mediates the progression of ESCC. LncRNAs participate 

Fig. 3  LIPH-4 affects ESCC cell cycle and apoptosis in vitro. A Apoptotic rates of ESCC cells after transfection with LIPH-4 or si-LIPH-4, examined by 
FACS analysis (n = 3). B The proportion of ESCC cells in G1, S, and G2/M phases after transfection with LIPH-4 or si-LIPH-4, examined by FACS analysis 
(n = 3). *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 4  LIPH-4 acts as a sponge of miR-216b in ESCC cells. A Relative LIPH-4 expression levels in nuclear and cytosolic fractions of KYSE510 cells, 
measured by qPCR. U6 (nuclear retained) and GAPDH (exported to cytoplasm) were used as controls (n = 3). B Sequence alignment of miR-216b 
with binding sites in the wild-type (LIPH-4-wt) and mutant-type regions of LIPH-4 (LIPH-4-mut). C Relative luciferase activity in 293 T cells was 
assessed after co-transfection with the reporter plasmid (LIPH-4-wt or LIPH-4-mut) and miRNAs (miR-216b or NC mimics) (n = 3). D RIP assay was 
performed with an anti-Ago2 antibody. The levels of LIPH-4 and miR-216b were determined by qRT-PCR and presented as fold enrichment in Ago2 
relative to IgG immunoprecipitates (n = 3). E Relative expression levels of miR-216b in ESCC and adjacent noncancerous tissue samples assessed by 
qRT-PCR (n = 53). F Negative correlation between miR-216b and LIPH-4. *P < 0.05, **P < 0.01, ***P < 0.001
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in the lncRNA-miRNA-mRNA crosstalk, and function 
by affecting the respective downstream targets [19, 20]. 
Bioinformatic analysis using public prediction algorithms 
indicated a possible binding site of miR-216b at the 
3’UTR of IGF2BP2 (Fig.  5A). qRT-PCR assays revealed 
IGF2BP2 level was much higher in ESCC tissues than 
that in adjacent tissues (Fig. 5B). Pearson analysis showed 
a negative correlation between miR-216b and IGF2BP2 
in ESCC samples (r = -0.4596, p = 0.0005, Fig.  5C), 
and LIPH-4 and IGF2BP2 were positively correlated 
(r = 0.7552, p < 0.0001) (Fig.  5D). Next, dual luciferase 
reporter assays showed IGF2BP2 was directly targeted 
by miR-216b (Fig.  5E). Following that, western blot 

analysis showed that LIPH-4 overexpression upregulated 
IGF2BP2 expression, whereas LIPH-4 knockdown down-
regulated IGF2BP2 expression in ESCC cells. (Fig. 5F). In 
addition, the IGF2BP2 downstream effector phosphoryl-
ated AKT (S473) and the cell cycle-related protein cyclin 
D1 were increased after LIPH-4 overexpression. The lev-
els of p-AKT (S473), cyclin D1 were diminished following 
knockdown of LIPH-4.

To confirm that the above mRNA and lncRNA com-
peted for miRNA binding, IGF2BP2 amounts were 
assessed. We observed decreased IGF2BP2 expression 
in KYSE150 cells upon transfection with the miR-216b 
mimic and increased IGF2BP2 amounts in KYSE510 cells 

Fig. 5  LIPH-4 regulates IGF2BP2 through miR-216b in ESCC cells. A Sequence alignment of miR-216b with binding sites in the wild-type 
(IGF2BP2-wt) and mutant-type regions of IGF2BP2 (IGF2BP2-mut). B Relative expression levels of IGF2BP2 in ESCC and adjacent noncancerous tissue 
samples assessed by qRT-PCR (n = 53). C Negative correlation between miR-216b and IGF2BP2. D Positive correlation between LIPH-4 and IGF2BP2. 
E Relative luciferase activity in 293 T cells was assessed after co-transfection with the reporter plasmid (IGF2BP2-wt or IGF2BP2-mut) and miRNAs 
(miR-216b or NC mimics) (n = 3). F IGF2BP2, cyclinD1, AKT, p-AKT protein levels in KYSE150 cells transfected with LIPH-4 and in KYSE510 cells 
transfected with si-LIPH-4, assessed by immunoblot. G IGF2BP2 protein levels in KYSE150 cells transfected with LIPH-4 and miR-216b mimic, and 
KYSE510 cells transfected with si-LIPH-4 and miR-216b inhibitor, measured by immunoblot. *P < 0.05, **P < 0.01, ***P < 0.001
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after transfection with miR-216b inhibitor in comparison 
with the respective control groups, as assessed by immu-
noblot (Fig.  5G). Furthermore, the increased IGF2BP2 
protein levels following LIPH-4 overexpression were 
reversed after co-transfection with the miR-216b mimic. 
Additionally, upon co-transfection with si-LIPH-4 and 
the miR-216b inhibitor, si-LIPH-4 induced downregu-
lation of IGF2BP2 was reversed. The above results sug-
gested that LIPH-4 functioned as a ceRNA for regulating 
IGF2BP2 by sponging miR-216b.

IGF2BP2 is responsible for the tumor‑promoting effects 
of LIPH‑4
To investigate whether IGF2BP2 contributed to LIPH-
4-induced ESCC cell growth, rescue assays were carried 
out. The CCK-8 and Edu assays demonstrated IGF2BP2 
knockdown partially abolished LIPH-4 overexpression-
induced growth acceleration in KYSE150 cells (Fig.  6A 
and B). By contrast, overexpression of IGF2BP2 recov-
ered the proliferative ability of LIPH-4 stable knockdown 
KYSE510 cells. Similarly, the clone formation assay dem-
onstrated IGF2BP2 silencing partly rescued LIPH-4 over-
expression-induced reduction of clonogenic survival, and 
the effect of LIPH-4 knockdown on the clonogenic sur-
vival of KYSE510 cells was also partially rescued by over-
expression of IGF2BP2 (Fig.  6C). Jointly, these findings 
indicated LIPH-4 promoted ESCC progression through 
regulation of IGF2BP2.

LIPH‑4 promotes growth of ESCC in vivo
To further confirm LIPH-4’s oncogenic role in vivo, stably 
LIPH-4 or si-LIPH-4 transfected ESCC cells were admin-
istered by subcutaneous injection into BALB/c nude 
mice for constructing a xenograft model. Unsurpris-
ingly, LIPH-4 overexpression starkly induced the tumor 
growth of KYSE150 cells in nude mice, with remarkably 
increased tumor size and weight in comparison with the 
negative control group. Conversely, significant reduc-
tions of both tumor volume and weight were observed in 
the LIPH-4 knockdown KYSE510 group in comparison 
with the control group (Fig.  7A-C). Xenograft tumors 
generated from LIPH-4-silenced cells had lower LIPH-4 
expression and tumors formed from LIPH-4 overex-
pressing cells had higher LIPH-4 expression than that 
in tumors from control cells (Fig. 7D). Additionally, IHC 
demonstrated the xenografts from LIPH-4 knockdown 
cells had reduced Ki67 and IGF2BP2 expression, whereas 
the LIPH-4 overexpression group showed elevated Ki67- 
and IGF2BP2-positivity rates compared with control cells 
(Fig.  7E). Taken together, the above findings suggested 
that LIPH-4 significantly promoted the tumor growth of 
ESCC in vivo.

Discussion
Increasing evidence reveals lncRNAs play a critical role 
in ESCC progression [21]. Besides well-characterized 
lncRNAs, potential critical lncRNAs mediating ESCC 
formation and progression should be examined. In our 
previous report, lncRNA microarray assay was carried 
out for analyzing the profiles of ESCC tissues in com-
parison with adjacent noncancerous tissues and identi-
fied a novel upregulated lncRNA, LIPH-4 [15]. In the 
present work, the function and mechanism of LIPH-4 
in ESCC were examined. We demonstrated that LIPH-4 
amounts were increased in ESCC tissue specimens and 
cells. Enhanced LIPH-4 expression showed positive 
correlation with larger tumor size and reduced OS in 
ESCC. Therefore, this work identified a novel ESCC-
associated lncRNA LIPH-4, which was positively asso-
ciated with reduced patient survival in ESCC.

Loss- and gain-of-function experiments suggested 
LIPH-4 silencing suppressed cell proliferation, colony 
formation and cell cycle progression, while inducing 
apoptosis in cultured ESCC cells. Meanwhile, LIPH-4 
overexpression produced the opposite effects. In  vivo 
xenograft assays demonstrated LIPH-4 knockdown 
reduced ESCC tumor growth in mice, while LIPH-4 
overexpression promoted ESCC tumor growth. Jointly, 
the above findings indicate an oncogenic role for 
LIPH-4 in ESCC.

In terms of mechanism, emerging evidence demon-
strates that the modulatory effects of lncRNAs strongly 
depend upon their location in cells [22]. lncRNAs that 
located in cytoplasm can serve as a natural miRNA 
sponge, subsequently regulating miRNA targets and 
modulating their functions [23, 24]. We found that 
LIPH-4 is primarily expressed in the cytoplasm of 
ESCC cells. Next, bioinformatics analysis revealed that 
miR-216b might have potential LIPH-4 binding sites. 
MiR-216b is considered a tumor suppressor in diverse 
malignancies [25, 26]. In agreement, LIPH-4 and miR-
216b levels were inversely correlated in ESCC. Fur-
thermore, luciferase reporter and RIP assays confirmed 
miR-216b as a direct LIPH-4 target.

IGF2BP2, belonging to the conserved IGF2 mRNA 
binding protein family, regulates subcellular RNA local-
ization, stability and translation [27, 28]. It is known 
IGF2BP2 is highly expressed and induces progression 
in multiple malignancies [29], including esophageal 
cancer [30, 31]. Here, IGF2BP2 was shown to directly 
target miR-216b in ESCC cells. IGF2BP2 was positively 
and negatively correlated with LIPH-4 and miR-216b 
in ESCC tissue samples, respectively. Notably, LIPH-4 
upregulated IGF2BP2 in ESCC cells, while miR-216b 
had the opposite effect. Importantly, the effect of ESCC 
cell proliferation induced by LIPH-4 overexpression 
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Fig.6  LIPH-4 regulates ESCC progression through IGF2BP2. Cell proliferation was analyzed by A CCK-8, B immunofluorescence analysis with Edu, 
and C colony formation assay in KYSE150 cells transfected with LIPH-4 and si-IGF2BP2, and in KYSE510 cells transfected with si-LIPH-4 and IGF2BP2 
(n = 3). *P < 0.05, **P < 0.01, ***P < 0.001
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or knockdown were reversed by IGF2BP2 silencing or 
restoration. Overall, this study provides a new evidence 
that the LIPH-4/miR-216b/IGF2BP2 axis is involved in 
ESCC growth.

Conclusions
In summary, our findings identified a novel upregu-
lated lncRNA LIPH-4, which functions as an onco-
genic lncRNA during ESCC progression and reveals a 
ceRNA regulatory pathway in which LIPH-4 upregulates 
IGF2BP2 expression by sponging miR-216b. Collectively, 
these data suggested that LIPH-4 might be a potential 
prognostic biomarker and therapeutic target for ESCC.
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