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Abstract 

Even more than 50 years after its initial description, bronchopulmonary dysplasia (BPD) remains one of the most 
important and lifelong sequelae following premature birth. Tremendous efforts have been undertaken since then to 
reduce this ever-increasing disease burden but a therapeutic breakthrough preventing BPD is still not in sight. The 
inflammatory response provoked in the immature lung is a key driver of distorted lung development and impacts 
the formation of alveolar, mesenchymal, and vascular structures during a particularly vulnerable time-period. During 
the last 5 years, new scientific insights have led to an improved pathomechanistic understanding of BPD origins and 
disease drivers. Within the framework of current scientific progress, concepts involving disruption of the balance of 
key inflammatory and lung growth promoting pathways by various stimuli, take center stage. Still today, the number 
of efficient therapeutics available to prevent BPD is limited to a few, well-established pharmacological interventions 
including postnatal corticosteroids, early caffeine administration, and vitamin A. Recent advances in the clinical care of 
infants in the neonatal intensive care unit (NICU) have led to improvements in survival without a consistent reduction 
in the incidence of BPD. Our update provides latest insights from both preclinical models and clinical cohort studies 
and describes novel approaches to prevent BPD.
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Introduction
More than 50 years ago, bronchopulmonary dysplasia 
(BPD) was first described by Northway, Rosan, and Por-
ter [1]. Even after more than five decades of scientific 
progress, the overall BPD disease burden is high in the 
newborn population but a dramatic shift in infants at 

high risk and BPD pathology occurred since the original 
publication. Although in the past, even comparatively 
mature preterm infants were vulnerable to the develop-
ment of lung emphysema, fibrosis, and high mortality 
characteristic of the “old” BPD, the implementation of 
antenatal steroids and postnatal surfactant therapy in the 
1980s and 1990s has led to both improved outcomes for 
late preterm infants and the increasing survival of infants 
born as early as 22–24 gestational age. This so-called 
new BPD is characterized by less severe tissue injury, but 
more or less distinct disturbance of further lung develop-
ment in the late canalicular and saccular stage [2].

Large cohort studies have demonstrated that low ges-
tational age at birth and low birthweight [3] constitute 
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major determinants of the risk for BPD; however, genetic 
predisposition [4], including male sex and maternal dis-
orders including pre-eclampsia/HELLP (hemolysis, 
elevated liver enzyme levels, low platelet count), intrau-
terine growth restriction [5], and nicotine consump-
tion [6] also impact on the likelihood to develop BPD. 
Besides the need for mechanical ventilation and oxygen 
supplementation, intrauterine and postnatal infections 
nowadays constitute important contributors to BPD. The 
presence of a patent ductus arteriosus and NICU man-
agement variations including fluid and nutritional supply, 
antibiotic regimens, and measures to prevent postnatal 
infections and necrotizing enterocolitis (NEC) including 
the provision of human milk constitute further variables 
impacting on the risk for BPD [2, 7–9].

Nowadays, the gas exchange of most preterm infants 
can be stabilized after birth but most of these tiny 
infants experience a more or less dramatic deteriora-
tion of their lung function requiring escalation of res-
piratory support and oxygen fractions applied [10]. It 
is well accepted that the respiratory course is deter-
mined by the extent of the inflammatory response 
in the immature lung provoked or strengthened by 
the multiple pre- and postnatal risk factors and pro-
inflammatory stimuli [10–12]. The ever-increasing 
number of publications on BPD reflects the need for 
further gain in knowledge [13]. It was already elabo-
rated in the original description of BPD that all com-
partments of the lung, the epithelium, the endothelium, 

and the mesenchyme get affected during the evolution 
of BPD pathology. This leads to a reduced surface for 
gas exchange, rarefication of pulmonary vessels, and 
pathologic composition of the lung interstitium [1]. 
Therefore, addressing the BPD challenge requires a 
comprehensive pathomechanistic understanding pre-
sented within the second chapter of our review and 
needs to acknowledge the multifactorial origins of BPD 
summarized in Fig. 1.

The pulmonary inflammatory response
Within the last two decades, the general concept of 
inflammation of the immature lung leading to BPD in 
preterm infants has not been changed (Fig. 2). Results 
obtained from various experimental models of BPD 
have demonstrated that infectious insults, oxygen tox-
icity, and mechanical ventilation cause the characteris-
tic pathological features of BPD with distorted alveolar 
and vascular growth and unfavorable changes in the 
composition of the mesenchyme and mesenchymal 
cell transdifferentiation [14]. In rodents studied using 
a model of hyperoxia-induced BPD, the extent of lung 
developmental aberrations is determined by the frac-
tion and duration of oxygen supplementation [15]. BPD 
pathology gets aggravated when hyperoxic episodes are 
combined with hypoxemic events that frequently occur 
in preterm infants and further boost reactive oxygen 
species production and subsequent inflammation [16].

Fig. 1  Central pre- and postnatal risk factors for BPD development. The key contributors to the development of BPD are split into prenatal and 
postnatal risk factors (scheme developed from our previous review on the topic [12])
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Dysbalance of pro‑inflammatory cytokines and of lung 
growth promoting factors
The inflammatory reaction is characterized by the excess 
production of pro-inflammatory cytokines including 
interleukin-1β (IL-1ß), interleukin-6 (IL-6), interleukin-8 
(IL-8) and tumor necrosis factor-α (TNF-α), granulocyte 
colony-stimulating factor, macrophage inflammatory 
proteins, and monocyte chemoattractant proteins while 
anti-inflammatory cytokines like interleukin-10 get 
downregulated [12, 17]. Recent data from a study in very 
preterm infants indicate that the inflammatory response 
commences early after birth and precedes the deterio-
ration of lung function [17]. For transforming growth 
factor-β (TGF-β), excess production was ascribed to 
pro-inflammatory activity and apoptosis induction but 
anti-inflammatory and immunosuppressive functions 
as well as growth promoting functions have also been 
confirmed [16, 18]. Further complexity arises when the 
inflammatory stimulus is not investigated within single 
hit models that do not reflect the clinical scenario. Either 

pretreatment with antenatal steroids or pre-exposure to 
ureaplasma species abrogated the intra-uterine inflam-
mation induced by lipopolysaccharides [19, 20]. There-
fore, the complexity of TGF-β signaling offers a prime 
example of how the role of a specific cytokine is not nec-
essarily uniform and can be affected by both physiologi-
cal and pathophysiological stimuli what will be detailed 
later in this section.

The overexpression of pro-inflammatory cytokines is 
counterbalanced by the suppression of growth promot-
ing cytokines. Probably vascular endothelial growth 
factor A (VEGFA) constitutes the most prominent and 
best studied candidate for vascular development, while 
platelet-derived growth factor AA (PDGF-AA) was pri-
marily related to mesenchymal stem cell (MSC) function 
and insulin like growth factor 1 (IGF-1) with alveolar epi-
thelial and endothelial cells [21–23]. This cytokine and 
growth factor dysbalance is not restricted to the lung. 
Convincing evidence is available that describes a close 

Fig. 2  The inflammatory response in the immature lung as key event leading to bronchopulmonary dysplasia. Mechanical ventilation, oxygen 
supply and infections induce a pro-inflammatory response in the immature lung. This pro-inflammatory overweight disrupts the balanced network 
of growth signal pathways and leads to characteristic features in the lung that affect the epithelium, the mesenchyme and the endothelium 
(scheme developed from our previous review on the topic [12])
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correlation between pulmonary dysfunction and changes 
in systemic blood protein profile patterns [11].

Attraction of innate immune cells to the immature lung
Upregulation in the expression of pro-inflammatory 
mediators attracts alveolar macrophages and neutro-
phils that constitute the prevailing leukocyte fractions 
of the innate immune response. The pro-inflammatory 
cytokines in the lung induce a switch from the initial 
anti-inflammatory M2 to the inflammatory M1 polariza-
tion status. The resulting predominance of the inflamma-
tory M1 polarization status perpetuates and augments 
the inflammatory response among others by the release 
of further pro-inflammatory cytokines [24]. Neutrophils 
have also been shown to exert lung injury through the 
release of multiple proteases including metalloprotein-
ases and elastase [12]. Neutrophil extracellular trap for-
mation is one recently discovered hallmark leading to 
lung injury [25]. Furthermore, prevention of neutrophil 
influx following hyperoxia reduced reactive oxygen spe-
cies (ROS) levels in the newborn rat lung and the severity 
of lung injury [26]. Besides macrophages and neutrophils, 
mast cells and reactive T cells were ascribed contributing 
functions to BPD pathology and it will be important to 
dissect the interplay between the different pro-inflamma-
tory cell populations [12]. Plenty of observational data are 
available from biosample studies in preterm infants that 
were mostly performed around the turn of the century. 
The results of these studies have consistently demon-
strated an association between excessive pro-inflamma-
tory responses and suppression of growth factor signaling 
pathways [27]. Consultation of the upcoming and latest 
datasets from preclinical rodent models helps to further 
clarify the contribution of specific cytokines and targets 
to BPD pathology.

Dysbalance of the cytokine signaling network 
in the immature lung
Major advances within the last 5 years have confirmed 
that precise and complex signaling crosstalk occurs 
between the three compartments of the lung during both 
physiological conditions and BPD development. Exces-
sive activation of TGF-β signaling pathways leads to the 
suppression of PDGF receptor α mediated pulmonary 
myofibroblast function and VEGFA secretion. In this 
way, excessive inflammation is linked with dysregulation 
of vascular development [22]. This relationship can also 
be illustrated by the finding that disturbance in fibro-
blast growth factor 10 (FGF10) function is implicated in 
unfavorable alterations in alveolar epithelial cell proper-
ties that resulted in the reduction of type II cells in the 
lung and impaired production of surfactant proteins B 
and C [28]. The interconnection of FGF10 deficiency with 

improper lung vascular development was documented in 
the identical animal model with both rarefication of the 
number of blood vessels and abnormal muscularization 
noted. These findings are reflective of the pathological 
phenotype of infants with BPD associated pulmonary 
hypertension [29]. Furthermore, spatial and temporal 
regulations of growth signaling need to be considered 
when putting the focus on lung development in the late 
canalicular and saccular stage that is beyond the scope 
of our review. Further details and the available data on 
the further pathways including sonic hedgehog and Wnt 
signaling have been superbly detailed elsewhere [13].

Phenotype distortion of lung resident mesenchymal stem 
cells
Although the essential role of lung MSCs in physiologi-
cal lung development was identified as early as the 1990s, 
the therapeutic potential of exogenously applied umbili-
cal cord derived MSCs has emerged as an exciting area 
of focus in BPD research [30]. All the studies on primary 
MSC from preterm infants confirmed the tight associa-
tion between distorted lung resident mesenchymal stem 
cell phenotype and BPD [31, 32]. Again, the TGF-β and 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NFκB) signaling pathways were identified as key 
drivers of MSC pathology [32, 33]. As demonstrated, 
redirection of MSC phenotype alterations is in princi-
ple feasible but awaits further detailing in therapeutic 
intervention studies in in vivo models [32]. More sophis-
ticated strategies than simply inhibiting the excessive 
NFκB response will be described later in this section.

Dual function of inflammatory cytokine signaling 
pathways during lung development and injury
As stated above, more and more cytokines and pathways 
get discovered that both contribute to physiologic lung 
development but can aggravate lung injury when over-
stimulation occurs. Perhaps the longest known connec-
tion is that of TGF-β signaling. While Smad-3 knockout 
mice displayed a normal lung phenotype at birth, mor-
phological changes characterized by enlarged terminal 
air spaces became apparent on postnatal day 7. In the 
term born mouse, this time point corresponds approxi-
mately to the early phase of alveolarization that begins 
between 34 and 36 weeks postmenstrual age (PMA) in 
humans [18, 34]. This is in line with the previous obser-
vation of dynamic regulation of TGF-β signaling in 
mice and men during lung development [35]. Excess in 
TGF-β in tracheal aspirates of ventilated preterm infants 
was associated with BPD and lung epithelial TGF-β1 
overexpression led to arrested lung development in the 
rodent model [36, 37]. Further details were recently pro-
vided from mice with a mesenchyme-specific deletion of 



Page 5 of 12Holzfurtner et al. Molecular and Cellular Pediatrics             (2022) 9:7 	

TGF-β1. Here, embryonic lung branching morphogenesis 
was disrupted resulting in lung hypoplasia [38]. Inversely, 
the hyperactivation of the connective tissue growth fac-
tor (CTGF)-β-catenin signaling pathway downstream of 
TGF-β1 by hyperoxia was associated with the charac-
teristic features of BPD lungs. Inhibition of this axis by 
CTGF neutralizing antibodies or pharmacological inhibi-
tion of β-catenin both attenuated aberrations in alveolar 
and vascular lung development [39, 40].

Similarly, the disruption of NFκB signaling resulted in 
distortion of further alveolar and vascular lung devel-
opment [41]. The detailed examination of NFκB action 
revealed that the inhibitor of nuclear factor kappa-B 
kinase beta (IKKβ) but not IKKα was the predominant 
regulator of angiogenic function and pulmonary angio-
genesis [42]. In line, knockout mice for TNF-α displayed 
reduced NFκB activation when subjected to mechanical 
ventilation in moderate hyperoxia and more aggravated 
lung inflammation and apoptosis induction [18]. The 
essential role of NFκB to preserve the lung from injury 
was extended to the situation of lipopolysaccharide 
(LPS)-induced inflammation mimicking gram-negative 
infections. Here, inhibition of NFκB aggravated the sup-
pression of alveolarization and pulmonary angiogenesis, 
a finding that was attributed to increased expression 
of macrophage inflammatory protein 2 (MIP-2). This 
mediator acted directly to inhibit pulmonary endothelial 
cell function, a step that initiated the aberration of nor-
mal lung development [43]. As for the hyperoxic injury, 
inhibition of IKKβ prevented the pro-inflammatory 
response of macrophages [44]. Further complexity on the 
topic arises from one recent publication on macrophage 
derived IL-6 signaling. Here, the loss of IL-6 was asso-
ciated with better preserved alveolar epithelial type II 
cell survival and elastic fiber assembly while myofibro-
blast differentiation was reduced [45]. These findings 
are in contrast to those published by another group that 
reported a more pronounced inflammatory response and 
increased severity of lung injury in IL-6 knockout mice 
exposed to hyperoxia [46]. The results are in line with 
the knowledge on the diverse functions of IL-6 that can 
exert anti-inflammatory and reparative effects or pro-
inflammatory responses depending on the signal trans-
duction pathway [47]. This ambiguity on IL-6 accentuates 
the concerns that pro-inflammatory cytokines in gen-
eral have divergent functions during lung injury. Further 
evaluation is urgently needed whether pro-inflammatory 
cytokine targeting can evolve as a novel safe therapeutic 
approach.

From all these studies, it comes clear that the pro-
inflammatory cytokines that activate NFκB or TGF-β 
signaling contribute to proper lung development under 
physiologic conditions but aggravate lung injury under 

excess activation. The key event of MSC phenotype alter-
ations in this context as the origin of aberrant further 
lung development comes more and more into the focus 
of researchers [32, 33]. The original concept to block pro-
inflammatory activity to overcome the deleterious effects 
on lung development needs to be substituted by the more 
sophisticated approach to restitute the physiologic situ-
ation of a balanced signaling network where excess acti-
vation of any partner involved leads to dysregulation and 
aggravation of lung injury.

Strategies to promote lung development 
and to attenuate the pro‑inflammatory response
The tremendous progress in preclinical knowledge and 
the pathomechanistic understanding of the origins of 
BPD contrasts the factum that no novel therapeutic was 
added to the short list of medications to prevent BPD 
since our first review on the topic five years ago [12]. 
In this section, we will provide a short overview on key 
advances during the last 5 years and on actually ongoing 
research directions. For the level of statistical significance 
and confidence intervals, we refer the reader to the origi-
nal publications.

Therapeutic interventions of proven efficacy within clinical 
trials
Still today, the well-studied medical interventions are 
limited to postnatal corticosteroids and postnatal caf-
feine and vitamin A [16, 30]. The clinical trials on inhaled 
nitric oxide to prevent BPD more than 10 years ago were 
the last series testing a new medication to prevent BPD 
but failed to display a benefit on mortality, the pulmo-
nary and neurodevelopmental outcome [48]. In addition, 
the combination of inhaled nitric oxide (iNO) together 
with repeated surfactant application did not demon-
strate any benefit [49]. These completely negative results 
despite highly promising perspectives from preclini-
cal studies might have discouraged researchers to pur-
sue the direction toward new therapeutics. Results of a 
recent phase 2 randomized controlled trial designed to 
evaluate the potential of rhIGF-1/rhIGFBP3 administra-
tion to reduce retinopathy of prematurity (ROP) in pre-
term infants born before 28 weeks gestational age (GA) 
(n = 121) showed that although there was no significant 
reduction in the primary outcome, this intervention was 
associated with a significant reduction in the incidence of 
severe BPD [50]. These results are not surprising taking 
into account the observed reduction of IGF-1 levels in 
preterm infants after birth and during the first weeks of 
life and the beneficial effects of IGF-1 therapy in rodent 
studies on lung development [21, 51, 52]. Of course, this 
initial study needs confirmation in adequately powered 
randomized controlled trials and the mitogen functions 
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of IGF-1 need critical monitoring as is currently intended 
within an open label controlled three-arm phase 2b study 
on safety, optimal dosing, and efficacy (NCT03253263).

The avenue to further targeted interventions
Although the evidence for safety and efficacy is currently 
lacking, the results of the IGF-1/IGFBP3 pilot trial might 
be useful in encouraging the pursuit of therapeutic strat-
egies involving lung growth promoting cytokines rather 
than previous approaches that were focused on the use 
of anti-inflammatory agents. During the recent years, 
several further candidates have been evaluated in detail 
in preclinical models. One of the most promising candi-
dates was VEGFA, as disruption of pulmonary vessel for-
mation is a hallmark of BPD pathology that was ascribed 
to the suppression of VEGFA. The application of VEGFA 
improved lung structures following hyperoxia but was 
accompanied by increased vessel leakage and pulmonary 
edema in the acute phase of injury. These results must be 
seen in the context of the physiologic function of VEGFA 
in vascular development that is to instigate branching 
of blood vessels by increasing permeability. Therefore, 
this activity needs to be counterbalanced by appropriate 
angiopoietin signaling that safeguards vascular integ-
rity [53]. Confirming this interrelation of action, simul-
taneous application of angiopoietin-1 by gene transfer 
prevented the vascular vessel leakage [54, 55]. Further 
concerns about the therapeutic potential of modulating 
the hypoxia induced factor (HIF)-1α-VEGFA axis arose, 
when mice with stable overexpression of HIF-1α-subunit 
in the distal epithelium were exposed to hyperoxic injury. 
The stable overexpression of HIF-1α increased the levels 
of VEGFA family members and angiopoietins but failed 
to improve lung structures and resulted in poorer lung 
function [56]. Further promising growth factor candi-
dates are currently thoroughly investigated for their 
therapeutic potential to prevent or treat BPD. The thera-
peutic potential of PDGF receptor-α signaling was con-
firmed in haploinsufficient mice where intrapulmonary 
treatment with PDGF-AA rescued the more pronounced 
lung injury by mechanical ventilation and oxygen toxic-
ity [22]. Another highly promising candidate constitutes 
FGF-10. Detailed studies in transgenic newborn docu-
mented the beneficial effects on the lung epithelium and 
vessel formation [28, 29]. Research on further candi-
dates comprise epidermal growth factor (EGF), keratino-
cyte growth factor (KGF) and hepatocyte growth factor 
(HGF) but are still at the onset of a thorough evaluation. 
One so far mostly neglected need is to establish not only 
preventive strategies but to document the therapeutic 
potential to counteract the arising pathologies of BPD as 
most preterm infants are already exposed to lung injuries 
in utero or shortly after birth.

Overall, the track to growth factor treatment to pre-
vent or treat BPD is still a long journey maybe with the 
exception of IGF-1. It needs to be established whether 
the selective intervention into one cytokine pathway 
can be as effective as the broadly acting corticosteroids 
that are still today the choice of therapy to abrogate the 
inflammatory response in the immature lung provoked 
by oxygen, mechanical ventilation, and infection. Over-
all, postnatal corticosteroid application > 7 days of life 
are highly effective and at least for dexamethasone a 
clear benefit to prevent BPD at 36 weeks corrected age 
has been demonstrated [57]. In contrast, early corticos-
teroid application prior to 7 days of life poses dramatic 
risks for neurodevelopmental impairment and cerebral 
palsy and should therefore not be used [58, 59]. Admin-
istration of caffeine within the first week of life is another 
intervention with documented benefit to reduce the BPD 
burden that is supported by large scale randomized con-
trolled trial data [60]. Although the action of caffeine in 
the prevention of BPD has been largely ascribed by cli-
nicians to occur through the stabilization of respiratory 
drive [61], data from preclinical studies has indicated that 
benefits may also be derived through the antioxidant and 
anti-inflammatory properties of this now commonly used 
medication [62, 63]. These data are not surprising taking 
into account the contribution of ROS induction by infec-
tion and oxygen therapy to the proinflammatory response 
in the lungs of preterm infants and BPD [64–66].

Infections, pathologic microbiota structures, 
and probiotics application
In the context of inflammation, nosocomial infec-
tions represent another entity that increase the risk for 
BPD and act via the identical pathomechanisms. On 
the other hand, exposure to the powerful anti-inflam-
matory and immunomodulatory properties of human 
milk constitutes a key non-pharmacological interven-
tion suggested to reduce the incidence of BPD [67]. 
These data should be expected when the pathomecha-
nisms of BPD are taken into consideration. One fur-
ther dimension came into the focus of research during 
the recent years, the shape of the preterm’s microbi-
ome. It is highly accepted that the provision of human 
milk shapes the bacterial milieu in the preterm infant 
toward Bifidobacteria and Lactobacillus species while 
the predominance of potentially pathogenic germs is 
impeded [9]. Therefore, human milk feedings may act 
to reduce the incidence of BPD by protecting infants 
from nosocomial infections and NEC. But even in the 
absence of infection events, the shift of the microbiota 
structures toward an anti-inflammatory milieu might 
contribute to the risk reduction by human milk. In line, 
antibiotic exposure with the selection of pathogenic 



Page 7 of 12Holzfurtner et al. Molecular and Cellular Pediatrics             (2022) 9:7 	

bacterial species increases the risk of BPD in clinical 
studies [68, 69]. Recent data from a prospective rand-
omized controlled trial specify the risk toward expo-
sures longer than the first 2 days of life [70]. While 
germ-free mice were partially protected from injury 
caused by hyperoxia [71], exposure to ampicillin dur-
ing the pre-natal and immediate post-natal period 
was found to be associated with increased severity of 
hyperoxia induced alveolar simplification and dysregu-
lated vasculogenesis [72]. In contrast to the benefits for 
sepsis and necrotizing enterocolitis, probiotic bacteria 
administration did not result in any benefit for the lung 
so far although specific microbial compositions of tra-
cheal aspirates were associated with the development 
of BPD independent of the occurrence of pneumonia 
[9, 73]. This discrepancy might be explained by the fact 
that probiotics fail to stabilize the microbial milieu in 
the upper airway that seems to be of greater relevance 
for the lung than that in the gut [7]. Although so far not 
marked by success, a healthy microbiome and modula-
tion of the bacterial milieu in utero and in the preterm 
infant constitutes a highly promising approach taking 
into account the tremendous disease burden arising 
from prematurity until aging [74, 75]. Recent data indi-
cate that the approach to the lung and the gut might 
need different strategies although both entities arise 
from the identical bud [7, 73, 75].

Maternal risk factors and BPD
Altogether, these data indicate that external factors 
impact on the inflammatory milieu and the risk of BPD. 
Therefore, the focus on the environmental contributors 
might be another strategy toward efficient risk reduc-
tion for BPD. While diabetes in pregnancy does not 
increase the risk for BPD, maternal nicotine exposure 
does [76, 77]. Pre-pregnancy no smoking prevention 
programs and the avoidance of exposure of the preterm 
infant to the substances of tobacco smoke are further 
suited strategies. As intensification of smoking preven-
tion programs will not terminate the intrauterine expo-
sition, prenatal therapeutic interventions can constitute 
an additional approach to reduce the disease burden of 
BPD. Here, results from randomized controlled trials 
with prophylactic vitamin C supplementation for preg-
nant smoking women revealed improved pulmonary 
function and decreased wheezing episodes in mostly 
term born infants [78, 79].

Although a completely different pathomechanism 
with primary action on vascular development via vas-
cular growth inhibiting factors, the prevention of 
preeclampsia/HELLP or strategies to prevent the injury 

by soluble Fms-like thyrosinkinase-1 (sFlt-1) constitute 
another area of perspective [80].

Anti‑inflammatory approaches with documented 
preclinical efficacy
Despite the long list of therapeutic strategies, that proved 
efficacious in rodent models but failed to translate into 
new efficient clinical therapeutics, it needs to be men-
tioned at this point that several anti-inflammatory strat-
egies proved their potential as novel targeted therapies 
that deserve further evaluation within the preclinical 
setting [81]. Firstly, interleukin-1 receptor antagonists 
(IL-1Rα) reduced the overall pulmonary cellular inflam-
matory response and pro-inflammatory cytokine levels of 
IL-1β, IL-6, MIP-1α, MIP-1β, and MIP-2 [82]. Secondly, 
biochemical Ras-related C3 botulinum toxin substrate 1 
(Rac-1) inhibition and the irreversible caspase-1 inhibi-
tor Ac-YVAD-CMK both attenuated the inflammation-
induced IL-1β release and inflammasome activity in the 
lung exposed to hyperoxia underlining the potential of 
such targeted approaches [83, 84]. Thirdly, targeting 
IL-6 release from inflammatory macrophages in the lung 
seems highly promising [45].

Targeting the pathologic processes downstream of 
the initiation of the inflammatory response constitutes 
another attractive approach toward prevention of lung 
injury. To give one example, elafin is the specific inhibi-
tor of lung elastase that is a contributor to lung injury in 
the execution phase [85]. Either intrapulmonary elafin 
treatment in newborn mice or mice genetically modified 
to express elafin in their vascular endothelium were par-
tially protected from the injurious insults and defective 
late lung development. Of notice, the pathologic activa-
tion of the pathways of TGF-β and NFκB, the influx of 
inflammatory cells, and apoptosis induction in the lung 
were partially prohibited [86, 87]. These data hint toward 
the potential success of strategies that aim at disrupting 
the vicious circle and self-reinforcement of inflammation. 
The continuation of studies on the therapeutic potential 
of elafin in newborn mice exposed to prolonged hyper-
oxia underlined its potential of repetitive application 
[88]. The results obtained from all experimental settings 
evaluating elafin are highly promising because they are 
consistent and reproducible. But VEGFA signaling and 
pulmonary vessel formation were not rescued by elafin 
treatment underlining the need for detailed studies on 
all three lung compartments when evaluating molecular 
mechanisms and targeted interventions [86].

Lastly, the upcoming research area on MSC to pre-
vent BPD needs to be mentioned here. They are deemed 
to be particularly promising due to their broadly acting 
anti-inflammatory and growth promoting properties [30, 
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89]. Preclinical studies conducted using a variety of small 
rodent BPD models have demonstrated high therapeutic 
efficacy for MSC-based interventions even when treat-
ment is applied after lung injury has occurred [24, 90]. 
MSC-derived exosomes (extracellular vesicles = EVs) are 
currently investigated as the next level of MSC research 
due to their lower immunogenicity and smaller size. 
These EVs contain all key anti-inflammatory and immu-
nomodulatory mediators that explains their comparable 
efficacy to the direct MSC application [30]. One actual 
study in rodents further specified one main effect of EV 
action where EVs restored a non-inflammatory pheno-
type of lung myeloid cells by phenotypical and epigenetic 
reprogramming [91]. These data open the frame toward 
restoration of lung functional capacities even after intrau-
terine affection of the lung or immediate postnatal insults 
before a therapeutic intervention can be started. But as 
for many other therapies, the documentation of superior-
ity in the clinical setting is still missing. Latest data from 
non-rodent models argue toward a careful consideration 
of aspects like cell preparation, timing, and dosing to 
reach finally a superiority in the clinical setting [30, 89]. 
The highly promising results obtained in rodents await 
confirmation in higher developed animal species like 
lambs and primates and clinical trials in preterm infants. 
So far, one phase 1 study intended for safety issues doc-
umented a benefit for BPD while the subsequent phase 
2 study of the same group confirmed the safety but did 
not detect an effect on BPD [92, 93]. Future studies are 
ongoing that can advance the scientific knowledge of the 
therapeutic potential of MSC [94].

Outlook and research directions in ongoing clinical 
trials
Over the last 5 years, we have seen a tremendous gain 
in knowledge on the pathomechanisms of BPD and the 
complexity of its disease origins. But on a short-term per-
spective, we do not expect novel targeted interventions 
to revolutionize clinical therapy as many hurdles includ-
ing the successful conductance of randomized controlled 
multicenter studies will take at least several years or 
even a decade before a benefit for the lung can be estab-
lished. In the meantime, the optimization of established 
therapeutics including  antenatal steroids to reduce the 
severity of respiratory distress after birth and studies 
on established therapeutics like vitamin A remain most 
promising within the pharmacologic approaches [95]. 
One just published smaller randomized controlled trial 
on oral vitamin A instead of the established approach of 
intramuscular application delivered disappointing results 
as high dose vitamin A did not reduce the overall BPD 
incidence and BPD severity distribution despite improv-
ing vitamin A blood levels [96, 97]. Therefore, still today 

as demonstrated during the last decade, optimization of 
ventilatory strategies, non-invasive surfactant applica-
tion, and oxygen provision remain most promising to 
guide future treatment directions in the short run [66, 
98, 99]. Besides the avoidance of mechanical ventila-
tion, the stabilization of infants within the oxygen satu-
ration targets is another promising strategy as hyperoxic 
and hypoxic episodes both aggravate lung injury. Sev-
eral randomized controlled trials have been started into 
this direction. The OPTTIMMAL study aims to find 
the positive end-expiratory pressure (PEEP) level that is 
best suited to avoid intubation and mechanical ventila-
tion within the first days of life when the immature lung 
is particularly vulnerable [100]. As another example, the 
Fi02C study investigates the automatically controlled 
titration of oxygen fractions by the respirator based on 
the actual oxygen saturation of the preterm infant during 
the total phase of respiratory support [101]. Furthermore, 
studies like the COSGOD III trial and the SafeBoosC III 
trial on tissue oxygenation of the brain during resuscita-
tion in the delivery room and during respiratory support 
in the NICU respectively were designed to provide novel 
insights into the optimization of tissue oxygen satura-
tion monitoring [102, 103]. In this context, the recent 
secondary analysis from the Canadian oxygen trial pro-
vided novel insights onto the association of the number 
and duration of hypoxemic episodes of preterm infants 
during their NICU stay and the later development of 
severe BPD [104]. Due to the observational character of 
the analysis, this study was not able to clarify the mecha-
nistic link between hypoxemic episodes and BPD. The 
increased number of events can just reflect the more 
severe injury status of the lung in these infants. Here, the 
Pre-Vent study aims to precise the effects and mecha-
nisms of ventilatory control to the adverse respiratory 
outcome [105].

From all these studies, we await novel insights into the 
origins and causes of BPD and which research direc-
tions are the most promising to further optimize the 
ventilatory strategies in preterm infants to reduce the 
burden of BPD.
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