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Abstract 

Childhood asthma derives from complex host-environment interactions occurring in the perinatal and infant period, a 
critical time for lung development. Sphingolipids are bioactive molecules consistently implicated in the pathogenesis 
of childhood asthma. Genome wide association studies (GWAS) initially identified a link between alleles within the 
17q21 asthma-susceptibility locus, childhood asthma, and overexpression of the ORMDL sphingolipid biosynthesis 
regulator 3 (ORMDL3), an inhibitor of de novo sphingolipid synthesis. Subsequent studies of pediatric asthma offer 
strong evidence that these asthma-risk alleles correlate with early-life aberrancies of sphingolipid homeostasis and 
asthma. Relationships between sphingolipid metabolism and asthma-related risk factors, including maternal obesity 
and respiratory viral infections, are currently under investigation. This review will summarize how these perinatal and 
early life exposures can synergize with 17q21 asthma risk alleles to exacerbate disruptions of sphingolipid homeosta-
sis and drive asthma pathogenesis.
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Introduction
Asthma is a heterogenous, chronic condition clinically 
identified by episodic shortness of breath, wheeze, and 
sometimes cough [1]. Once thought of as a single dis-
ease, asthma is now recognized as a spectrum of immu-
nopathology culminating in a final common pathway of 
chronic airway inflammation, reversible airway obstruc-
tion, increased mucus production, and airway hyper-
reactivity. Globally, over 300 million people are affected 
by asthma and though the disease can occur at any age, 
it most often develops in childhood [2, 3]. Globally, 
asthma is a leading cause of childhood chronic illness 
[4]. The epidemiologic burden, which traditionally fell 

to metropolitan areas in high-income countries, is now 
increasing in low-income countries who also shoulder 
a disproportionate amount of asthma-related morbid-
ity and mortality [2]. Available interventions to both 
prevent and treat severe asthma require frequent and 
expensive interactions with the health care system which 
limit school participation, work productivity, and overall 
quality of life [5]. Children with severe asthma are more 
likely to have symptoms persist through adulthood. The 
risk of adult-onset chronic obstructive pulmonary dis-
ease (COPD) is strongly associated with childhood defi-
ciencies in lung function, measured by spirometry [2, 6, 
7]. It remains unclear if the trajectory connecting child-
hood asthma and long-term respiratory morbidity can 
be reversed [8]. However, there is mounting evidence 
that exposures in the peri-natal and infant period serve 
as priming events for abnormal lung growth and lung 
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inflammation, reflecting a possible avenue for childhood 
asthma prevention.

Classification systems for pediatric asthma have 
evolved significantly, and with them, the spectrum of 
asthma investigation. Chronic airway inflammation was 
previously considered the foundation of the two other 
key disease features, airway hyperresponsiveness and air-
way remodeling. Previous characterizations focused on 
the presence or absence of atopic, T-helper type 2 (Th2) 
cell inflammation [9–12]. Briefly, the Th2 pathway begins 
with allergen stimulation of Th2 cytokines (IL-4, IL-5, 
IL-9, IL-13) which trigger IgE release by B cells, which 
together promote histamine and leukotriene release by 
mast cells and eosinophilic inflammation [13]. General 
dampening of this inflammatory response by steroids or 
therapies targeting specific mediators within this path-
way, i.e., leukotriene inhibitors and anti-IgE, IL4, or 
monoclonal antibodies, have been greatly effective for 
some but also revealed a broad group of pediatric non-
responders with seemingly non-atopic and/or non-ster-
oid responsive disease [14, 15].

The limitations of allergy-based asthma therapies have 
driven efforts to develop more personalized methods 
for disease monitoring and treatment, beginning with 
the characterization of disease “endotypes.” With the 
advancement of high throughput technologies evolved a 
comprehensive approach, including genetic, metabolic, 
molecular, and clinical characteristics, to define more 
granular endotypes (Fig. 1) [8, 10, 16, 17]. This led to the 
increased recognition of non-Th2 inflammatory path-
ways including, Th1 and Th17, and the complex regula-
tion of cells and cell mediators traditionally considered 
Th2. A subgroup of children with asthma display airway 
eosinophilia without associated Th2 cytokines [18]. Spu-
tum transcriptomics has linked this type of airway eosin-
ophilia to gene signatures from metabolic, ubiquitination, 
and mitochondrial function pathways [19]. The full range 
of asthma endotypes is beyond the scope of this review 
and is described in detail elsewhere [15, 20–22]. Despite 
the application of multi-omic technologies and related 
advances in asthma classification and treatment algo-
rithms, therapy-resistant phenotypes persist, and early-
life therapies have yet to change the long-term disease 
trajectory. Given the significant implications of child-
hood asthma on life-long respiratory health, there is an 
urgent need to address the origins of childhood disease. 
It is within this framework that sphingolipid metabolism 
has become a topic of interest for a fresh look on patho-
genesis and therapies of childhood asthma.

Sphingolipids are bioactive molecules increasingly 
recognized in lung inflammation and airway hyperre-
activity. Besides asthma, sphingolipids have been impli-
cated in a host of chronic pulmonary disorders including 

bronchopulmonary dysplasia, chronic obstructive pul-
monary disease (COPD), and cystic fibrosis [4]. In the 
context of asthma, attention turned to sphingolipids after 
genome-wide association studies (GWAS) reproduc-
ibly associated childhood asthma, and early-life wheeze 
with single-nucleotide polymorphisms (SNPs) within the 
region of chromosome 17q21 and increased expression 
of the sphingolipid synthesis regulator ORMDL3 [23–
25]. Since then, aberrations in sphingolipid metabolism 
and gene expression have been seen in pediatric asthma 
cohorts [26, 27]. Animal models and in vitro studies have 
connected sphingolipid metabolism to clinical features 
of asthma, including airway hyperreactivity [28, 29]. This 
review will summarize the principal findings support-
ing a pathway from genetic and perinatal disruptions of 
sphingolipid metabolism to childhood asthma.

Genetic dysregulation of sphingolipid metabolism 
in childhood asthma
ORMDLs regulate de novo sphingolipid synthesis, which 
begins with the condensation of serine and palmitoyl 
CoA by serine palmitoyltransferase (SPT) in the endo-
plasmic reticulum (Fig. 2). In humans, ORMDL3 engages 
SPT, blocking its substrate pathway and suppressing 
its activity [30, 31]. GWAS studies showed ORMDL3 
expression is increased with asthma risk alleles [23, 32], 
suggesting SPT inhibition is relevant to asthma patho-
genesis. Though the genetic regulation of sphingolipid 
homeostasis is complex, and the mechanisms linking 
ORMDL3 to asthma are incompletely understood, there 
is mounting evidence that shifts in sphingolipid hemo-
stasis have an important role in childhood asthma and 
early-life wheeze.

Sphingolipids are a ubiquitous and diverse class of 
amphipathic lipids comprised of a hydrophobic sphingoid 
base attached to a hydrophilic group which can consist 
of hydroxyl groups or, for more complex species, phos-
phates, and sugar residues [33]. Sphingolipids gain their 
complexity from the variable arrangement of these com-
ponent parts. In mammalian cells, there are five known 
sphingoid bases with over twenty known arrangements 
of fatty acids, alkyl chain lengths, degrees of saturation, 
and hydroxylation. Sphinganine, the reduced product of 
the SPT catalyzed reaction, can be phosphorylated or 
deacylated to generate sphinganine-1-phosphate (Sa1P) 
or dihydroceramides, respectively. During the final step 
of the de novo synthesis, dihydroceramides are converted 
to ceramides. Ceramides, the nexus of sphingolipid 
metabolism, are the precursor to sphingomyelins, sphin-
gosine, and sphingosine-1-phosphate (S1P) (Fig.  2) and 
more complex glycosphingolipids (not shown).

Studies measuring sphingolipid levels show consistent 
differences between children with asthma and children 
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without asthma, though the relative direction of this 
difference varies by tissue compartment. Higher levels 
of ceramides and dihydroceramides were detected in 
exhaled breath condensates [34], serum [35], and plasma 
[27] of children with asthma. In a cohort of 5–17-year-
old children, those with asthma displayed lower levels 
of sphingolipids in their blood cells. This finding was 
especially pronounced in children with non-allergic 
asthma. In this cohort, reduced blood sphingolipids 
are also associated with 17q21 asthma-associated risk 
alleles, specifically SNPs rs7216389 and rs8076131. Using 

heavy-isotope serine, metabolic labeling of the periph-
eral blood mononuclear cells from these children showed 
asthma and genotype-dependent decrease in de novo 
sphingolipid synthesis [27].

A study of two longitudinal mother-baby cohorts, the 
Copenhagen Prospective Study of Asthma in Childhood 
(COPSAC2010) and the Vitamin D Antenatal Asthma 
Reduction Trial (VDAART), also associated sphingolipid 
levels with early-life asthma. The study included plasma 
metabolomics at 6 months, 1 and 6 years, and transcrip-
tomic analysis of nasal brushings at age 6. Interestingly, 

Fig. 1  Expanding landscape of pediatric asthma investigation. Clinical features of wheeze, breathlessness, and cough were first related to the 
triad of airway inflammation, bronchoconstriction, and mucus production, followed by increased understanding of T-helper (Th) cell-associated 
pathways linking allergen exposure and Th2 cell cytokines to airway eosinophilia and mast cell degranulation. Neutrophil dominant airway 
inflammation was also identified and related Th1 and Th17 pathways, mediated by interferon γ and IL-17, respectively. Applied to samples from 
large pediatric asthma cohorts, technologies based on high throughput sequencing and mass spectrometry have revealed surprising, but 
correlative, genomic, and metabolic disturbances in connection with constitutive elements of the multiple inflammatory pathways. This includes 
the association of 17q21 SNPs with alterations to sphingolipid gene expression and metabolism in children with non-atopic asthma.



Page 4 of 10Wasserman and Worgall ﻿Molecular and Cellular Pediatrics            (2021) 8:22 

at age 6, asthma risk alleles were associated with reduced 
expression of the SPT subunits Sptlc1 and ssSPTa. The 
human SPT complex is composed of two large subu-
nits, Sptlc1 and Sptlc2, and one small regulatory subunit, 
ssSPTa. This small subunit stabilizes the catalytic subu-
nit Sptlc2 by altering its substrate specificity and greatly 
increases enzyme activity [31]. The association of the 
17q21 risk alleles with lower expression of SPT subu-
nits could point to an additional sphingolipid-regulatory 
mechanism associated with these genotypes. Relatedly, 
at age 6, there was also an inverse relationship between 
plasma Sa1P and airway resistance; and lower plasma 
Sa1P levels positively associated with 17q21 asthma 
risk alleles. Most interesting however is that the authors 
found a correlation between lower plasma sphingolip-
ids (ceramides and sphingomyelins) at 6 months and the 
likelihood of asthma onset by age 3. The study clearly 
associates childhood asthma, 17q21 asthma genotypes 
with de novo pathway, but additionally suggests that dis-
ruptions in sphingolipid synthesis are present in infancy 
and predictive of later disease [26].

Sphingolipids are an integral part of plasma mem-
branes, where they form discreet domains responsible 
for cellular processes including protein trafficking, sig-
nal transduction, and virus budding [36]. Outside of the 
plasma membrane, sphingolipids also serve as signaling 

molecules for a host of pathways including apoptosis 
[37], cytoskeletal reorganization, and cellular inflamma-
tion [36, 38]. While clinical studies correlate childhood 
asthma with alterations in sphingolipid production, ani-
mal and in vitro studies offer more granular insight into 
specific sphingolipid-lung interactions.

Animal models have connected ORMDL3 and sphin-
golipids to clinical features of asthma. ORMDL3 over-
expressing mice display increased airway reactivity and 
airway remodeling, including increased airway smooth 
muscle, subepithelial fibrosis, and mucus [34, 39, 40]. 
Similar effects are seen with targeted inhibition of de 
novo sphingolipid synthesis. Both SPT haploinsufficient 
mice and wild-type mice treated with the SPT inhibi-
tor myriocin display increased airway reactivity in the 
absence of allergic sensitization and airway inflammation 
[9, 28], suggesting a negative effect of lower sphingolipid 
synthesis on airway smooth muscle cells.

Increased ORMDL3 expression, both in mice and 
human lung epithelial cells, is associated with increased 
ceramide levels [34]. The sphingolipid mediator S1P 
is one of the most extensively studied sphingolipids in 
asthma [33, 41]. S1P is generated from the phosphoryla-
tion of sphingosine by one of two sphingosine kinases 
(SphK1 and SphK2). S1P modulates an array of biologi-
cal processes and functions as both, intracellular second 

Fig. 2  Pathways of Sphingolipid Metabolism. De novo synthesis begins with condensation of serine and palmitoyl CoA by serine 
palmitoyl-CoA transferase (SPT), the rate-limiting step in the production of 3-ketosphinganine, which is immediately reduced to sphinganine by 
ketodihydrosphingosine reductase (KDHR). Sphinganine can be phosphorylated by sphingosine kinases (SPHK) to sphinganine-1-phosphate or 
acylated by ceramide synthases (CERS) to form dihydroceramides. Dihydroceramides are converted to ceramides by dihydroceramide desaturase 
(DEGS), which are subsequently recycled as sphingosine, also by CERS, or converted to sphingomyelins by sphingomyelin synthase (SMS). 
Additional abbreviations SPP-1 (S1P phosphatase), and SMase (sphingomyelinase).
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messenger and extracellular ligand for five known G 
protein-coupled receptors, S1PR1-5, [8]. SphKs and 
S1PRs are ubiquitously expressed, including in bronchial 
epithelial and airway smooth muscle cells [42]. Both S1P 
and SphK are associated with key pathogenic features 
of asthma including airway smooth muscle cell hyper-
responsiveness and lung inflammation [9, 43]. In mice, 
administration of exogenous S1P increased airway resist-
ance, bronchial contraction, and recruitment of inflam-
matory cells, namely mast cells and eosinophils [44]. 
Both ceramides and S1P emerge from the recycling/sal-
vage pathway of sphingolipid synthesis. There is evidence 
to suggest that inhibition of the de novo sphingolipid syn-
thesis pathway results in a compensatory upregulation of 
the recycling/salvage pathways [45]. In context with the 
observations from clinical cohorts, there is strong evi-
dence that childhood asthma can evolve from a complex, 
integrated disruption of sphingolipid hemostasis.

External factors influencing sphingolipid homeostasis
17q21 asthma risk alleles alter sphingolipid synthesis 
gene expression, leaving these pathways vulnerable to 
further disruption. Extrinsic factors, separately related 
to asthma, can influence sphingolipid synthesis. This 
includes perturbations of the host microbiome, maternal 
diet and obesity, and respiratory viruses. In the presence 
of 17q21 risk alleles, these elements may synergize to 
become the “second hit” necessary to shift sphingolipid 
metabolism toward asthma pathogenesis.

Maternal obesity during pregnancy
The in utero period is a critical time in lung develop-
ment with long-term consequences for respiratory disor-
ders [46–51]. There is strong evidence to support a link 
between childhood asthma and maternal obesity during 
pregnancy [50–63]. Large cohorts of mother-child dyads 
have shown an association between maternal obesity and 
early life bronchodilator use [58], but not atopic eczema 
or hay fever [55], suggesting that maternal obesity con-
fers a non-atopic asthma phenotype. Interestingly, the 
VDAART study also found a relationship between child-
hood asthma and maternal sphingolipids in the third 
trimester. The risk of asthma correlated positively with 
maternal blood sphingomyelins levels and was inverse 
with maternal blood Sa1P [64]. The relationship between 
maternal obesity and sphingolipids requires further 
investigation, as both are strongly linked to non-atopic 
childhood asthma and early life wheeze.

Host microbiome
Since the proposal of the “hygiene hypothesis” by David 
Strachan in 1989, there have been extensive efforts to 
determine the contribution of the host-microbiome to 

asthma pathogenesis and immune dysregulation. Stra-
chan postulated that improved standards of living and 
hygiene followed the reduction in household infections 
and also, increased risk of allergy [65]. Lack of infection 
resulted in poorly developed mechanisms of immune 
regulation including an unchecked Th2 dominant 
response. Interestingly, the Protection against Allergy 
Study in Rural Environment (PASTURE) found that the 
17q21 genotypes that provide a risk for the develop-
ment of asthma in wheezing infants also allow for envi-
ronmental protection to allergen exposure [66]. It is well 
documented that patients with asthma display a relative 
dysbiosis of their lung, nasopharyngeal, and gut microbi-
omes [67, 68], even before the onset of the disease [69, 
70]. Multiple studies have correlated the bacterial profile 
of infant stool, including colonization with Clostridium 
difficile and Escherichia coli and low levels of Bifidobac-
teria, with asthma development [71–73]. In both humans 
and mouse models, shifts in the gut microbiota have been 
associated with alterations to immune cell composition 
[74] and inflammatory mediators [75]. The field has pro-
gressed beyond bacterial community characterization to 
mapping host-microbe interaction and with that the met-
abolic consequences of the bacterial dysbiosis, including 
altered sphingolipid metabolism [76].

Bacterial sphingolipid synthesis is limited to members 
of the Bacteroidetes and selected Proteobacteria spe-
cies. These bacteria are abundant in the mammalian gut 
where they can engage in a metabolic cross-talk with the 
host [77]. Previous studies have demonstrated the immu-
nomodulatory activity of B. fragilis derived polysaccha-
rides stimulation of CD4+ T cells and correction of Th1/
Th2 imbalances [78]. A recent study found Bacteroides-
derived sphingolipids are both sensed and incorporated 
into gut epithelial cell sphingolipid pathways [77]. In the 
gut, these bacterial sphingolipids can drive the recruit-
ment and proliferation of invariant natural killer cells 
[76], a subset of T cells linked to multiple models of 
asthma [79]. Importantly, a recent report from the Baby 
Biome study found Cesarean section and intrapartum 
antibiotic use can significantly reduce the presence of 
Bacteroides species in the infant fecal microbiome [80]. 
These findings connect the intrapartum environment 
to microbiome-derived disturbances of sphingolipid 
homeostasis with meaningful implications for asthma 
development.

The infant gut microbiota is sensitive to multiple peri-
natal and early life exposures including maternal obesity, 
mode of delivery, gestational age, systemic antibiotics, 
breast vs formula feeding, cigarette smoke, household 
members, and pets. The relative contribution of each 
is currently under investigation. Efforts to reconstitute 
with gut microbiome with probiotics supplementation 
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of Lactobacillus and Bifidobacterium with some studies 
showing reduction of asthma severity and others showing 
no effect [81].

Recently, studies have also shown that changes in the 
airway microbiome are associated with bronchiolitis in 
infants and young children [82–84]. Bronchiolitis shares 
several features of asthma, including airway inflamma-
tion and wheezing. Metabolomic analysis of nasopharyn-
geal samples from a cohort of infants hospitalized with 
bronchiolitis found a correlation between severe disease 
and upregulation of sphingolipid metabolism. Strepto-
coccus, a dominant genus in the airway of infants with 
bronchiolitis, is positively associated with ceramide 
(18:2/16:0) and sphingomyelin (16:1/16:0) [85]. In the 
case of bronchiolitis and asthma, it remains to be deter-
mined if changes to sphingolipid metabolism precede 
or follow changes to the microbiome. It is clear however 
that the airway microbiome and metabolome are altered 
in the setting of early-life lower respiratory disease.

Respiratory viruses
Viral pathogens are responsible for most acute asthma 
attacks. There is substantial evidence that common res-
piratory viruses are not only a source of asthma-related 
morbidity, but also critical to disease inception. Infec-
tion with respiratory syncytial viral (RSV) [86] or 
human rhinovirus (HRV) [87] in the first 3 years of life 
significantly increases the risk of asthma later in child-
hood [88]. Epidemiologic studies have unmasked tem-
poral relationships between early life viral infection and 
later allergen sensitization. Animal models have further 
revealed enhanced allergen sensitization and allergic air-
way inflammation following infection with influenza [89], 
RSV and HRV [90].

Both RSV and HRV interact with the sphingolipids 
during infection. RSV utilizes ganglioside GM1 in the 
assembly and release of viral particles [91]. RSV can also 
stimulate neutral ceramidase and SphK1 in lung epi-
thelial cells prolonging their survival and in term, viral 
infection [92]. GWAS studies found early-life RV ill-
ness significantly strengthened the relationship between 
17q21 asthma risk alleles and childhood asthma [93], 
suggesting RV is an important catalyst in asthma devel-
opment. In  vitro studies have exposed interactions 
between RV and sphingolipid synthesis. RV infection 
increases ceramide sphingolipids in epithelial cells [94]. 
Silencing of ORMDL3 in airway epithelial cells increases 
de novo sphingolipid synthesis and decreases expression 
of ICAM-1, the receptor for the majority of RV strains 
[95]. Inhibiting SPT also increases epithelial cell ICAM-1 
expression [95] and RV replication [96]. These studies 
suggest genetic dampening of SPT activity may augment 

cellular responses to RV, allowing viral infection to fur-
ther disrupt sphingolipid synthesis.

Therapeutic manipulation of the sphingolipid pathway
Collectively, these studies suggest infancy and the peri-
natal period represent a vulnerable time for children with 
17q21 asthma risk alleles. The maternal metabolome, 
with its many influences, along with common intrapar-
tum and early-life exposures can irrecoverably offset 
their suboptimal sphingolipid homeostasis. The ques-
tion that emerges is if the sphingolipid synthesis pathway 
can serve as a novel therapeutic target for both, preven-
tion, and treatment of childhood asthma. Pharmacologic 
modification of sphingolipid metabolism in mice can 
attenuate asthma symptoms. Intranasal administration 
of FTY720, a structural analog of sphingosine, which can 
be phosphorylated by SphK and then act as an antago-
nist for S1PRs, reduces airway inflammation and hyper-
reactivity [34]. Similar effects can be elicited by inhibition 
of SphK1 [97]. To overcome the effects of decreased 
sphingolipid de novo synthesis a recent study trialed 
fenretinide, a dihydroceramide desaturase inhibitor that 
indirectly stimulates the de novo pathway, and GlyH-101, 
a chloride channel blocker that increases levels of mul-
tiple sphingolipids by an unknown mechanism [29, 98]. 
Both agents increased de novo sphingolipid metabolites 
in lung epithelial cells and reduced agonist-induced con-
traction in proximal and peripheral airways [29]. These 
studies suggest pharmacologic both induction of the de 
novo pathway and antagonizing some effects S1P are via-
ble options for mitigating airway hyperreactivity.

Conclusion
Asthma is a major cause of morbidity for children around 
the world. Multi-omic analyses of large pediatric cohorts 
have exposed several connections between sphingolip-
ids and asthma/early life wheeze. These suggest asthma 
evolves from dynamic shifts in sphingolipid homeostasis, 
beginning with 17q21 asthma risk alleles and advancing 
with critical perinatal exposures that exacerbate genetic 
disruptions of sphingolipid metabolism. Maternal factors 
including weight, diet, mode of delivery, and intrapar-
tum antibiotic use can directly and indirectly, via the gut 
microbiome, alter sphingolipid production. Post-partum, 
respiratory viral infections, and alterations of the air-
way microbiome can worsen these aberrations (Fig.  3). 
Together, these factors appear to tip the homeostatic bal-
ance toward lower de novo sphingolipid synthesis and 
increasing S1P.

Since the initial identification of 17q21 as an asthma 
risk region for childhood asthma, much attention has 
focused on how factors regulated and expressed in this 
region relate to the pathogenesis of childhood asthma. 
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As a basic mechanism, genetically altered sphingolipid 
metabolism in children who are carriers of 17q21 
asthma risk genotypes is thought to lead to functional 
effects on airway resistance and may act as a predispos-
ing factor for the development of asthma. Study results 
in recent years suggest a strong association of 17q SNPs 
with the phenotype of persistent and intermediate 
wheezing in childhood, but not to allergic disease. It is 
possible that a specific form of childhood asthma exists 
that is characterized by decreased sphingolipid concen-
trations associated with 17q21 gene variants. Animal 
models suggest direct pharmacologic manipulation of 
the sphingolipid pathway can reset this balance. More 
work is needed to understand the role of sphingolipids 
in childhood asthma, as means of both preventing and 
treating this common disease.
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