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Abstract 

Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite 
significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopatho-
logically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely 
preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand 
the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent 
advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in path-
ways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular 
matrix, and microRNAs.
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Introduction
Bronchopulmonary dysplasia (BPD) was first described 
54 years ago by Northway et al. [1], but it still continues 
to be one of the most serious causes of mortality and 
morbidity in the neonatal intensive care unit (NICU). 
Despite significant advancements in neonatology over 
the last couple of decades including more gentle meth-
ods of invasive mechanical ventilation (IMV), increasing 
use of non-invasive ventilation, surfactant replacement 
therapy etc., the incidence of BPD remains quite high 
[2]. This is partly attributable to the increased survival of 
extremely low birth weight infants as BPD is more com-
monly seen in the infants born at < 28 weeks gestational 
age (GA) [3]. Before the advent of surfactant and gentler 
ventilation modes, “old BPD” occurred due to oxygen 
injury and mechanical ventilation and was characterized 
by abnormal vascularization, with obliteration of vessels 
and pulmonary fibrosis. On the other hand, the “new 
BPD” has minimal alveolar septal fibrosis, a lesser degree 
of airway damage as compared to its old counterpart, 

and is characterized by alveolar simplification and dys-
morphic microvasculature [4]. Other findings reported 
include bronchial and bronchiolar smooth muscle hyper-
plasia, as well as altered number of neuroendocrine cells 
[5]. Although we have made major strides in understand-
ing the patho-mechanics of the origin of BPD, we have 
limited therapies available to manage established BPD [6, 
7]. In addition to the well-known antenatal and perina-
tal factors that affect BPD, such as genetic susceptibility, 
immature lung and surfactant homeostasis, intrauterine 
and perinatal infections [7], recent literature has impli-
cated various mediators of impaired alveolarization and 
dysregulated vascularization in the perinatal origins of 
BPD [8–10]. The postnatal therapies used in the NICU 
to manage respiratory failure with IMV and oxygen use 
further lead to inflammation and maladapted lung devel-
opment [6]. This review will focus on studies of lung 
growth restriction caused by placental insufficiency, the 
role of placental infection as well as selected mediators 
of impaired alveolarization and dysregulated vasculariza-
tion, and their impact on the development of BPD. This 
narrative review was written after a careful and thorough 
literature review using PubMed, and focused on pub-
lished studies in the last 10 years.
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Pathogenesis of BPD
BPD is a complex and multifactorial disease of prema-
turity, where a multitude of intra-uterine and extra-
uterine factors are implicated in its pathogenesis. The 
strongest predictor of BPD is infant’s GA at birth [11]. 
The most commonly accepted mechanism of BPD 
development is ascribed to lung injury and inflam-
mation in immature lungs occurring after post-natal 
exposure to hyperoxia and IMV, in the presence of pla-
cental insufficiency and other predisposing antenatal 
factors [12]. Recent advances in BPD show that it may 
occur even after minimal exposure to these post-natal 
therapies [13]. It is likely that placental insufficiency as 
well as other placental factors that initiate intrauterine 
inflammatory processes is interrelated with post-natal 
exposures in the pathogenesis of BPD [8, 14].

Role of antenatal placental factors in the development 
of BPD
Inflammation
Increased levels of pro-inflammatory cytokines in 
amniotic fluid and fetal cord blood are known to be 
independent risk factors for BPD [13]. A meta-analysis 
of 59 studies, involving 15,000 infants confirmed an 
association between histologic chorioamnionitis (CA) 
and development of BPD [15]. The Alabama Preterm 
Birth Study, found no association between BPD and 
CA; however, in the same study, umbilical cord blood 
culture positive for Ureaplasma spp. was associated 
with  an increased risk for BPD [16]. A nested case-
control study found a protective effect of CA on BPD 
in the absence of postnatal sepsis and prolonged ven-
tilation, but demonstrated an increased risk for BPD in 
infants exposed to histologic CA who were exposed to 
IMV and postnatal sepsis [17]. Lastly, a cohort study 
involving preterm infants < 32 weeks gestation, con-
cluded that in infants exposed to histologic CA there 
was a decreased response to surfactant therapy and 
prolonged need for ventilation, which led to increased 
risk for BPD [18]. Hence, we can conclude that CA 
increases the risk for premature preterm birth, which 
in turn is one of the most important risk factor for 
development of BPD. In addition, CA likely induces a 
chronic inflammatory process that predisposes the lung 
to post-natal injuries [13]. In preterm infants who later 
developed BPD, the cord blood levels of inflammatory 
markers, interleukin-6 (IL-6), and monocyte chemot-
actic protein-1 (MCP-1) were shown to be significantly 
elevated [19, 20]. Table  1 lists selected inflammatory 
mediators in the pathogenesis of BPD and the trends in 
their expression levels in BPD.

Role of chronic placental insufficiency
Several epidemiologic studies have demonstrated asso-
ciations between intrauterine growth restriction (IUGR), 
preeclampsia (PE), hypertensive disorders of pregnancy, 
maternal smoking, and other antenatal factors with sus-
ceptibility to BPD [30]. It is postulated that if there is 
sustained disruption of lung development initially, it can 
lead to abnormal lung structure, even in the absence of 
additional postnatal stressors, e.g., exposure to hyperoxia 
and IMV. Alternatively, interactions between antenatal 
stresses may alter susceptibility to postnatal stressors, 
thereby increasing the risk of developing BPD [31]. An 
observational study reported a twofold increase in mor-
tality (both early and late) and increased risk for BPD in 
small for gestational age (SGA) infants born at or below 
32 weeks GA [32]. Another study demonstrated that 
preterm infants born with IUGR, remain at high risk for 
late respiratory morbidities and lung function at school 
age [33]. The ELGAN investigators evaluated prenatal 
predictors of BPD in neonates born before 28 weeks GA 
and found fetal growth restriction to be an independent 
risk factor for BPD, after controlling for other risk fac-
tors. In this study, markers of placental inflammation 
and infection were not associated with increased risk of 
BPD [34]. In a separate cohort of neonates born at GA < 
29 weeks, Keller et al. showed that IUGR was associated 

Table 1  Selected molecular mediators involved in the 
pathogenesis of bronchopulmonary dysplasia (BPD). Adapted 
from [21]

Molecular mediator Levels associated 
with increased risk 
of BPD

Inflammatory mediators (cytokines/chemokines) [19, 20]

  IL-6: interleukin-6 Higher

  MCP-1: monocyte chemotactic protein-1 Higher

  GCSF: granulocyte colony stimulating factor Lower

  IL-1β: interleukin 1 beta Higher

  IL-8: interleukin 8 Higher

  TNF-α: tumor necrosis factor alpha Higher

  IFNγ: interferon gamma Higher

Growth factors

  TGF β: transforming growth factor β [22] Higher

  CTGF: connective tissue growth factor [23] Higher

  PDGF: platelet-derived growth factor BB [24] Higher

  KGF: keratinocyte growth factor [25] Lower

  HGF: hepatocyte growth factor [26] Lower

  FGF: fibroblast growth factor [27] Lower

Vascular mediators

  VEGF: Vascular endothelial growth factor [28] Variable

  Ang 2: angiopoetin 2 [29] Higher
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with increased odds of persistent respiratory morbidity at 
1-year corrected age [35].

These studies implicate the critical role of altered pla-
cental structure and function in the pathobiology of BPD. 
Placental insufficiency related to IUGR and PE is associ-
ated with fetal growth restriction. Experimental stud-
ies have demonstrated impaired angiogenic and growth 
properties of endothelial cells derived from human IUGR 
placentas, which may be related to decreased aryl hydro-
carbon receptor nuclear translocator (ARNT) expression 
[36]. Further work on cord blood biomarkers showed that 
decreased vascular endothelial growth factor (VEGF) and 
soluble VEGF receptor 1 (sFlt-1) levels are strongly asso-
ciated with IUGR and are predictive of BPD in preterm 
infants [37]. Mestan et al. demonstrated that examination 
of placental tissue for vascular lesions that reflect mater-
nal vascular  underperfusion (MVU) after preterm birth 
provides a unique approach to predict the subsequent 
risk for BPD [38]. They also reported that cord blood 
biomarkers, like granulocyte colony stimulating fac-
tor, placental growth factor, and VEGF-A are decreased 
in association with placental findings of MVU and are 
associated with subsequent diagnoses of BPD [39]. The 
developing fetal lung may share certain structural and 
functional aspects with the placenta. These anatomical 
and pathophysiological similarities between placenta and 
lung may reflect changes in the developing premature 
lung, and may present an important insight in under-
standing the neonatal lung biology [31]. Various cord 
blood biomarkers studied in preterm infants, such as 
decreased VEGF, that is suggestive of impaired angiogen-
esis, is also strongly linked with findings of placental vas-
cular lesions on histology and is further associated with 
a higher risk for BPD with pulmonary hypertension (PH) 
[37, 39, 40]. Table 1 lists selected molecular mediators in 
the pathogenesis of BPD and the trends in their expres-
sion levels in BPD.

Mediators of impaired alveolarization and dysregulated 
vascularization in BPD
Oxygen toxicity
Oxygen therapy is one of the mainstays of management 
of acute respiratory failure in preterm neonates. How-
ever, it comes at the expense of oxidative stress to the 
immature lungs. Acute lung injury secondary to hyper-
oxia is characterized by an inflammatory response with 
disruption of the alveolar-capillary barrier, influx of 
inflammatory mediators, vascular leak, and pulmonary 
edema, ultimately leading to cell death [41, 42]. In a neo-
natal mouse model of BPD, hyperoxia exposure in the 
critical saccular stage of lung development reproduces 
the changes seen in human BPD and these effects were 
found to be dose-dependent on the fraction of inspired 

oxygen being administered [9]. Figure 1 provides an over-
view of the mechanisms involved in hyperoxia-induced 
lung cell injury and cell death.

Based on animal studies, it is postulated that hyper-
oxia exposure to preterm lung leads to release of vas-
cular mediators like angiopoietin 2 (Ang2) and VEGF 
that disrupts the alveolar-capillary membrane leading 
to pulmonary edema and contributes to lung injury [29, 
43]. Ang2 is an angiogenic growth factor that is known 
to destabilize blood vessels, increase vascular leak and 
enhance vascular regression and endothelial cell apopto-
sis. VEGF is expressed in lungs and promotes endothe-
lial cell growth and remodeling [43]. Hyperoxia exposure 
can also release other pro-inflammatory cytokines such 
as IL-1β [44], IL-6 [45], interferon gamma (IFN-γ) [46], 
tumor necrosis factor alpha (TNF-α) [47], and IL-8 [43, 
48] that can invoke significant damage to the capillary 
and the alveolar epitheliums, worsening lung injury [49, 
50]. The abnormal lung architecture with increased cell 
death mediated by IFN-γ has been shown to be depend-
ent on matrix metalloproteinase 9 (MMP9) in murine 
lungs exposed to hyperoxia [51]. Table  1 lists selected 
molecular mediators in the pathogenesis of BPD and the 
trends in their expression levels in BPD. Inflammatory 
cells as well as hyperoxia per se release reactive oxygen 
species (ROS). Studies have shown a reduced level of anti-
oxidants in preterm infant that develop BPD [52]. When 
the production of ROS exceeds the antioxidant capacity 
of the cell, it results in oxidative stress, which then leads 
to cellular and tissue injury via lipid peroxidation, DNA 
damage, and protein oxidation [53]. These ROS further 
cause cell death by activating key caspases and trigger-
ing surface death receptors like Fas in the extrinsic path-
way or via the mitochondrial cell death pathway in which 
Bax proteins interact with or form mitochondrial pores, 
release cytochrome c, activate caspase-9, and induce cell 
death [9]. Based on studies in mice models of BPD, and 
on cultures of pulmonary endothelial cells, we also know 
that hyperoxia primarily affects complex 1 (NADH dehy-
drogenase) activity, causing inhibition of NADH-linked 
mitochondrial respiration [54]. Even partial pharmaco-
logical inhibition of complex 1 by pyridaben (a selective 
inhibitor of complex 1) in neonatal mice can produce 
the phenotype of arrested alveolar development that is 
seen with hyperoxia exposure [54, 55]. In another study 
in rodents, inhibition of mitochondrial respiratory com-
plex III by antimycin A led to chronic mitochondrial 
dysfunction that induced vascular damage and meta-
bolic reprogramming that may have induced pulmonary 
hypertension [56].

Cellular injury in BPD can also be amplified by gap-
junction (GJ) mediated intercellular communication 
[57]. Oxidative stress can cause increase in Connexin 43 
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(Cx43) expression, which is a critical GJ protein. In rat 
model of BPD, Jianhua et al. showed that increased Cx43-
GJ-mediated intercellular communication induces exces-
sive apoptosis via the ASK1-JNK/p38 signaling pathway. 
They further showed that use of Gap26, a Cx43-GJ 
inhibitor can reverse these changes and improve alveolar 
development in neonatal rats exposed to hyperoxia [58]. 
In pre-clinical models of BPD in guinea pigs, use of oxi-
dized glutathione as a supplement led to improved alveo-
lar development [59]. In a recent study by Shrestha et al., 
a combined transcriptomic and proteomic analysis was 
done to evaluate the effect of hyperoxia exposure during 
the saccular and alveolar stages of lung development, on 
the expression level of genes and proteins necessary for 
optimal lung development and repair. The authors report 
that hyperoxia exposure dysregulated the expression of 
344 genes and 21 proteins, which were involved in mat-
uration of lung tissue. Oxidoreductase activity, plasma 
membrane integrity, apoptosis, organ development, cell 
proliferation, angiogenesis, and mitophagy were found 
to be affected by hyperoxia [60]. Other key regulators 
of cell death include members of the Bcl-2 gene family 
(mainly anti-apoptotic Bcl-2 and Bcl-xL, pro-apoptotic 
Bax-type proteins, and pro-apoptotic BH3-domain-only 

members), transcription factor, nuclear factor kappa B 
(NF-κB), and protein kinase B/Akt [9].

Genetic studies have also documented antioxidant 
response genes like the rs6721961 single nucleotide 
polymorphism (SNP) in the NFE2L2 gene, which was 
associated with decreased incidence of severe BPD in 
human infants [61]. Another study explored the role of 
superoxide dismutases (SODs), in which loss of SOD3 
(in Sod3−/− mice) worsened alveolarization, which was 
intensified after bleomycin application [62]. In summary, 
hyperoxia-induced injury along with a simultaneous 
attempt at repair results in lung pathology with the char-
acteristic features of BPD in preterm infants.

Growth factor signaling in BPD
Growth factors are considered important mediators of 
dysregulated lung development seen in BPD. One of the 
most studied growth factors is the transforming growth 
factor (TGF)-β [63]. Lung injury and inflammation leads 
to induction of TGF-β that curbs the inflammatory pro-
cesses, and plays a pivotal role in mediating lung repair 
and tissue remodeling [64]. As opposed to fibroblast 
growth factor (FGF)-β and IL-1β, both of which lower 
elastin mRNA levels in human lung fibroblasts, TGF-β 

Fig. 1  Exposure to hyperoxia leads to production of reactive oxygen species (ROS) that leads to an exaggerated inflammatory response, and 
releases cytokines and other molecular mediators. Subsequently, this causes abnormal responses of angiogenic factors, growth factor signaling, 
abnormal matrix protein formation, mitochondrial dysfunction, cell cycle arrest, and cell death. This, in turn, causes impaired alveolarization and 
dysregulated vasculature which is pathognomic of bronchopulmonary dysplasia (BPD). BAX, bcl-2 like protein; NADPH: nicotinamide adenine 
dinucleotide phosphate; TGFβ, transforming growth factor β; CTGF, connective tissue growth factor; PDGF, platelet-derived growth factor; KGF, 
keratinocyte growth factor; VEGF, vascular endothelial growth factor; Ang-2, angiopoietin 2; Cyt c, cytochrome c; IFNγ, interferon gamma; NF-κB, 
nuclear factor-kappa B; pkB, protein kinase B
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has been shown to increase elastin by transcriptional and 
posttranscriptional mechanisms [65]. Increased TGF-β 
signaling has been implicated in resulting in the BPD 
phenotype [22], with neutralizing antibodies against it 
shown to improve hyperoxia-induced lung injury [66]. 
Recent studies have also suggested a role for the TGF-
β-induced protein in impaired lung alveolarization [67]. 
Deng et  al. also reported excessive activation of TGF-β 
signaling caused impaired alveolar development, and 
elastin deposition in the newborn mouse lung exposed to 
hyperoxia. In their study, use of TGF-β neutralizing anti-
bodies-1D11 led to improved alveolarization, as well as 
the distribution of elastin in hyperoxia-exposed newborn 
lung. The expression levels of tropoelastin, fibulin-5, and 
neutrophil elastase, which are important components of 
elastogenesis, were decreased by treatment with 1D11 in 
the injured newborn lung [68].

Studies on the TGF-β system have also included TGF-β 
ligand/receptors, as well as latent TGF-β-binding pro-
tein 4, which regulates “inactive” TGF-β that is embed-
ded in the extracellular matrix [10]. Recent work on 
stem-cell therapy has also highlighted the pathogenic 
role of TGF-β signaling, where application of bone mar-
row mesenchymal stem cells (via the intravenous route), 
with concomitant erythropoietin administration (via the 
intraperitoneal route) led to improved alveolarization 
in a hyperoxia-based mouse model of BPD. Improved 
alveolarization was also accompanied by reduced TGF-
β1 levels, and reduced proximal TGF-β signaling [69]. 
Although most studies have only focused on the excessive 
TGF-β activation in the pathogenesis of BPD, Conway 
et al. proposed that neonatal hyperoxia exposure initially 
diminishes saccular TGF-β signaling that coincides with 
alveolar simplification. In their mouse model of BPD, 
they have shown that at multiple levels during the period 
of postnatal lung development, TGF-β ligands, intracel-
lular mediators, and downstream TGF-β–responsive 
extracellular matrix targets, are all suppressed initially 
and contribute to the arrested alveolar septation [67].

Altered expression of TGF-β [70], as well as lower 
levels of various pulmonary and vascular growth fac-
tors, continues to be implicated in the pathogenesis of 
BPD [71]. Similar to TGF-β, overexpression of platelet-
derived growth factor-BB has also been shown to result 
in pulmonary fibrosis [24]. Keratinocyte and hepatocyte 
growth factors are also thought to participate in normal 
lung development and tissue regeneration after lung 
injury. Low airway concentrations of keratinocyte and 
hepatocyte growth factors have been found to be associ-
ated with BPD and may play a role in the pathogenesis of 
BPD [25, 26]. Based on a study in an experimental mouse 
model of saccular lung development, FGF-10 signal-
ing was shown to be crucial for development of saccular 

airway [27]. FGF-10 expression was decreased in human 
lung tissue samples of infants with BPD. Furthermore, 
inhibition of FGF-10 by inflammatory signaling involves 
the NF-κB-dependent interactions between RELA, SP3, 
and the FGF-10 promoter [72].

Among the various angiogenic growth factors, VEGF 
has received significant importance due to its criti-
cal role in vascular development and presence in highly 
vascularized tissues [9, 13, 73]. It has been identified as 
a key regulator of angiogenesis and lung maturation due 
to its role in coordinating airway branching and angio-
genesis [74]. Disturbance in VEGF signaling can lead to 
impaired lung parenchymal development and long-term 
lung injury [75]. VEGF levels were increased in newborn 
rabbits after hyperoxia exposure; however, in a similar 
setting, they were shown to be decreased in the prema-
ture fetal baboon model [43]. When comparing studies, 
it is important to be aware of the temporal relationship 
between VEGF levels and stages of lung development/
injury in animal models as well as humans developing 
BPD [28]. VEGF levels were reported to be significantly 
lower in preterm infants who developed BPD, when 
compared to infants who recovered from ventilator and 
hyperoxia-induced lung injury [76]. Inhibition of VEGF 
receptor led to impaired alveolarization and lung vascu-
lar growth with PH [77]. In 2 studies in mouse models of 
BPD, VEGF gene therapy has been shown to improve sur-
vival, promoted lung capillary formation, and improved 
alveolarization [75, 78]. It also increased alveolar nitric 
oxide synthase (NOS) expression, which indicates that 
the favorable effect of VEGF may be NO mediated. VEGF 
overexpression in newborn mice induces inducible NOS 
(iNOS) and eNOS-dependent lung simplification, pul-
monary edema, and oxidant stress. In VEGF transgenic 
mice, NOS inhibition can decrease oxidative stress, vas-
cular permeability, and angiogenesis [79]. Pathological 
examination of lungs in infants that died of BPD, showed 
defective alveolar septation and capillary formation, as 
well as reduced expression of VEGF and VEGF receptor 1 
(VEGF-R1). Altered VEGF signaling and TGFβ activation 
reduces the expression of VEGF-R2 in endothelial cells, 
contributing to the defective lung morphology seen after 
prolonged mechanical ventilation [80].

Another key mediator of pulmonary fibrosis, as seen in 
a sheep model of BPD, is connective tissue growth factor 
(CTGF), which is responsible for the downstream effects 
of TGFβ [81].

In addition to producing fibrosis, CTGF can also pro-
long wound healing. TGF-β1 induces CTGF in endothe-
lial cells and fibroblasts. In sheep, endotoxin-induced 
inflammation leads to increased TGF-β1 expression and 
reduction in CTGF, which may affect vascular develop-
ment [82]. CTGF, also known as CCN2, is required for 
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normal lung development. Lung tissue from infants with 
BPD demonstrates increased expression of CTGF [83, 
84]. Increased CTGF expression induced by hyperoxia, 
inflammation, and mechanical ventilation can disrupt 
alveologenesis and capillary formation, and induce fibro-
sis during the critical period of alveolar development 
[23]. Overexpression of CTGF in alveolar epithelial type 
II cells disrupts alveolarization and vascular develop-
ment, and can result in pulmonary vascular remodeling 
and PH [85]. In a rodent model of hyperoxia-induced 
BPD, inhibition of CTGF by a CTGF monoclonal anti-
body prevented β-catenin signal activation, improved 
alveolarization and vascular development, and decreased 
pulmonary vascular remodeling and PH [84]. Table 1 lists 
selected growth factors in the pathogenesis of BPD and 
the trends in their expression levels in BPD.

microRNAs
Recently microRNAs (miRs) have been described as 
important moderators of normal growth, development, 
and disease [86]. In a neonatal mouse hyperoxia model 
of BPD, Syed et al. demonstrated significantly increased 
levels of miR-34a levels; further, deletion or inhibition of 
miR-34a improved the pulmonary phenotype and BPD-
associated pulmonary arterial hypertension (PAH) in 
the mouse models of BPD [87]. Epithelial miR-34a was 
shown as a pathogenic mediator of abnormal alveolariza-
tion, with Ang1 as the relevant miR-34a target. Addition-
ally, the utility of an antagomir targeting miR-34a was a 
candidate intervention, to promote proper lung alveolari-
zation. The role of miR-34a in the pathogenesis of BPD 
has been independently confirmed, with the focus on tar-
geting platelet-derived growth factor receptor (PDGFR)α, 
in an experimental model of BPD [88]. This was studied 
using target site blockers, which are antisense oligonucle-
otides that bind to miR target site of a mRNA, prevent-
ing miR from gaining access to that site. This allows us 
to study the effects of the miR on a single target. Hence, 
pharmacologic inhibition of miR-34a can be used as a 
therapeutic option in neonates to prevent hyperoxia- 
induced lung injury [89, 90]. In another study, increased 
expression of miR-451 was noted in a mouse model of 
BPD and inhibition of miR-451 was shown to improve 
the cardiopulmonary phenotype [91].

Similarly, potential roles of miR-17∼92 [92], miR-29b 
[93], miR-876-3p [94], miR-199a-5p [95], and miR-489 
[96] have been described in the pathogenesis of BPD. 
Decreased plasma levels of miR-17 were seen in clinical 
subjects who developed BPD and the levels correlated 
with disease severity [97]. In a hyperoxia-based experi-
mental mouse model of BPD where systemic inflam-
mation was induced, a similar decrease in levels of 
miR-17-92 cluster was noted [92].

Plasma levels of miR-29b are suppressed in the first 
week of life in preterm infants that subsequently develop 
BPD and the decrease inversely correlated with BPD 
severity. Similarly decreased pulmonary miR-29b expres-
sion is seen in a mouse model of BPD [98].

Furthermore, adeno-associated 9 (AAV9)-mediated 
restoration of miR-29b in the developing lung in a mouse 
model led to modest improvements in alveolarization 
and completely attenuated the defects in matrix protein 
expression and localization [93]. Reduced miR-876-3p 
is seen in BPD-susceptible, compared with BPD-resist-
ant infants, and was confirmed in the animal model/in 
vitro models of BPD. In the in vivo BPD model, gain of 
function of miR-876-3p improved the alveolar architec-
ture, demonstrating a causal link between miR-876-3p 
and BPD [94]. Enhanced expression of miR-199a-5p 
has been reported in hyperoxia-exposed mice lungs and 
cells, and in tracheal aspirates of infants developing BPD. 
miR-199a-5p-mimic worsens hyperoxia-induced acute 
lung injury (HALI) and miR-199a-5p-inhibitor treat-
ment attenuated HALI [95]. Lower levels of miR-489 
have been noted in the lungs of infants with BPD and in a 
hyperoxia-induced mouse model of BPD, and it has been 
demonstrated as a possible inhibitor of alveolar septation 
[96]. In another study, miR-154 overexpression was asso-
ciated with enhanced TGF-β signaling in the lung and led 
to a BPD-like phenotype characterized by alveolar sim-
plification [99].

The extracellular matrix
Various studies have explored the role of extracellular 
matrix (ECM) in association with abnormal lung alveo-
larization seen with BPD [100]. Continued dynamic 
changes in the expression of the molecules in ECM, 
e.g., collagen, elastin, enzymes such as metalloprotein-
ases [101] and neutrophil elastase [102], and ECM cross 
linking enzymes play a pivotal role in lung development 
[103]. Luan et al. have described the spatial and temporal 
changes in extracellular elastin and laminin distribution 
during lung alveolar development [104]. Essentially, in 
aberrant lung development, the overall amount of elas-
tin is reduced, elastin fibers in the septa are disorgan-
ized [105]; although the amount of collagen and collagen 
crosslinks is increased, the collagen fibers have abnormal 
structure [106].

However, problems with elastin formation alone have 
not been shown to cause abnormal alveolarization. So, 
studies have targeted ECM crosslinking machinery, 
including lysyl oxidases and transglutaminases [107]. 
Lysyl oxidase expression in lungs was deregulated in mice 
after hyperoxia, but pharmacological inhibition of lysyl 
oxidase did not improve the aberrant lung architecture, 
although the collagen levels were partially restored, and 
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the distribution and morphology of lung elastin fibers 
were improved [105]. Transglutaminases 2 (TGM2) was 
increased in expression in an experimental animal model 
of BPD and targeted deletion of TGM2 in C57BL/6J mice 
increased septal thickness and reduced gas-exchange 
surface area. During hyperoxia, collagen structures in 
TGM2−/− mice were partially protected from hyperoxia 
effects, i.e., collagen crosslinking partially improved; 
however, the lung alveolar architecture was not restored. 
Pharmacological inhibition of TGM restored normal col-
lagen crosslink under pathological conditions and also 
led to moderate improvement in alveoli size and gas-
exchange surface density [108]. It appears that interfering 
in a single ECM-crosslinking system may not be sufficient 
to show sustained improvement in dysregulated alveolar-
ization but a multi-pronged approach may help [10].

Novel techniques and resources influencing our 
understanding of the pathogenesis of BPD
The lung is a complex structure, consisting of a wide 
variety of cells and processes that play a vital role in lung 
maturation and adaptation. However, most genomic and 
proteomic studies use bulk measurements from whole 
lung tissue to evaluate perinatal lung development, thus 
limiting insight into the interactions and purpose of 
individual cells [109]. Single cell RNA-seq (scRNA-seq) 
allows transcriptomic mapping of individual cells to 
understand cellular heterogeneity and responses in com-
plex biological systems [110]. Using scRNA profiling, we 
can identify varied pulmonary cell lines during perinatal 
development, and provide information on genes, pro-
cesses, and cell–cell interactions that regulate pulmonary 
structure and function at birth [111]. In a recent study, 
Guo et al. utilized scRNA-seq on post-natal day 1 mouse 
lung with developmental RNA profiles obtained from 
whole lung tissue, to understand the complexity of cel-
lular adaptation of the lung to air breathing at the time 
of birth. To facilitate the inquiry and re-utilization of 
their data, the authors also developed a web application, 
named “single cells of Lung At Birth” (scLAB), that allows 
query by gene of interest, cell type, or dynamic gene 
expression patterns during mouse lung development and 
is freely accessible [111].

Another great resource for investigators is LungMAP 
(https://​www.​lungm​ap.​net/) that includes a variety of a 
searchable databases that address transcriptomics, pro-
teomics, and lipidomics, as well as includes an image 
database [112]. As part of the LungMAP consortium, a 
facility has now been developed that also provides tissue 
and cells from developing human lungs to investigators, 
through the Biorepository for Investigation of Neonatal 
Diseases of the Lung [10]. In a recent study, researchers 
utilized the interactive Dynamic Regulatory Events Miner 

(iDREM) method to reconstruct a dynamic model, that 
identifies the grouping of genes during the development 
of lung into transcription factors, miRs, and methylation 
events that regulate them. They also developed an inter-
active tool that allows users to query, and obtain informa-
tion on specific genes, miRs, regulators, etc., and enables 
them to integrate other types of data, like single-cell and 
sorted-cell RNA-Seq data with the model. This interac-
tive model revealed both genes and functions involved 
in alveolar development and identified new roles for sev-
eral transcription factors and miRs in regulating various 
stages of this process [113].

Conclusions
The pathogenesis of BPD involves a multifactorial path-
way where lung injury occurs over time with hyperoxia 
and IMV in the setting of preexisting prenatal determi-
nants, leading to dysregulated immune responses and 
aberrant tissue repair in preterm infants. This leads to 
impaired alveolarization and vascular development. Con-
tinued research has provided insight into various path-
ways involved in pathogenesis of BPD. Recent literature 
has focused on the role of oxidative stress-related genes, 
growth factor signaling, miRs, ECM modeling, and mod-
ulation of inflammation. A more robust understanding of 
the mechanistic contribution of miRs in regulating aber-
rant alveolarization and vascular development in BPD 
has provided means for a tantalizing new therapeutic 
pathway in BPD research. We hope future research in 
investigating the molecular mechanisms in BPD will ulti-
mately help develop targeted therapeutic strategies for 
this devastating disease.
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