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Abstract 

Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and 
usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleteri‑
ous long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have 
been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogene‑
sis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which 
causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance 
between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have 
gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment 
of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory 
stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on 
the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell 
subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, 
immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an 
overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis 
of INS may help drive new tailored therapeutic approaches forward.
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Introduction
Idiopathic nephrotic syndrome (INS) is the most fre-
quent glomerular disease in childhood and is caused by 
damage to podocytes, resulting in foot process efface-
ment that leads to alterations to the selectivity of the 
glomerular filtration barrier [1]. It is characterized 
by episodes of severe proteinuria and hypoalbumine-
mia often associated with dyslipidemia and edema [1]. 
Loss of serum proteins leads to a hypercoagulable state, 
a higher rate of infectious diseases, and fluid balance 

dysregulation. It affects two to ten children per 100,000 
per year, with a cumulative prevalence of 16 per 100,000 
children [1]. Electron microscopy examination of renal 
biopsies reveals diffuse foot process effacement, while 
renal histology shows either minimal podocyte changes 
without deposition of antibodies termed minimal change 
disease (MCD) or focal and segmental glomerulosclero-
sis (FSGS). Evolution from MCD to FSGS is also possible 
over time [2]. Although most patients respond favorably 
to steroids, the relapse rate is as high as 80%, and a long-
term combination of steroids and/or alternative immu-
nosuppressive agents are often required to maintain 
remission [3–5].

Several lines of evidence strongly indicate a role of the 
immune system in the pathogenesis of non-genetic INS. 
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Under these are the effectiveness of immunosuppres-
sive therapies, a frequent remission after measles infec-
tion, which leads to cell-mediated immunosuppression, 
and the association of MCD with T-cell lymphomas [6]. 
In addition, serum from patients with post-transplant 
relapse of INS as well as supernatants from T-cell hybrid-
omas from individuals with MCD can induce proteinuria 
in rats [6, 7].

Soluble factors, different immune cells, recently even 
immunologic properties of podocytes are potentially 
implicated in the pathogenesis of the disease, but the pre-
cise role of the immune system in INS has not yet been 
completely elucidated. This review aims to provide an 
overview of current knowledge on the immune system 
influencing the course of INS and its response to initial 
steroid treatment, since advances in our understanding 
of the pathogenesis of INS may help drive new tailored 
therapeutic approaches forward.

Trigger events
Whereas INS usually arises in healthy children, disease 
onset and relapses are often associated with intercur-
rent infections and other immunological triggers. Vac-
cination and atopy have been described in patients with 
relapse, suggesting that immune activation is involved in 
INS exacerbation [8–11]. Upper airway infections have 
been reported as the most frequent infections causing 
nephrotic relapse [12–14], and interestingly its likeli-
hood decreases with corticosteroid treatment during 
intercurrent infections [15, 16]. Also, COVID-19 has 
been reported as a trigger for recurrence of INS [17]. The 
immune responses prompted by the infection can lead 
to relapse by generating pathogen and danger-associated 
molecular patterns that stimulate Toll-like receptors 
(TLR) and the complement system. These innate immune 
reactions activate immune cells to release inflammatory 
mediators and initiate adaptive, antigen-specific immune 
responses and induce CD80 expression on podocytes 
that may directly lead to podocyte injury and foot pro-
cess effacement (see below).

T‑cells and their cytokines
Shalhoub et  al. hypothesized that INS represents the 
renal manifestation of a systemic T-cell dysregulation 
(deficient suppression) resulting in the production of a 
circulating mediator, which modifies podocyte structure, 
leads to foot-process effacement and results in so-called 
lipoid nephrosis [6, 18, 19]. Compelling evidence for this 
disease mechanism stems from numerous clinical obser-
vations of disease recurrence immediately post-trans-
plant [20, 21] and of trans-placental transmission of the 
“permeability factor” leading to neonatal transient pro-
teinuria [22]. This hypothesis is further supported by the 

absence of immune complexes in glomeruli, a frequent 
remission after measles infection, as well as the asso-
ciation of MCD with T-cell lymphomas [6]. Finally, the 
findings that injection of supernatants from T-cell hybri-
domas from patients with MCD orserum from patients 
with post-transplant relapse of INS can induce protein-
uria in rats [7, 23], strengthen the relationship between 
dysregulated T-lymphocytes and the development of 
INS.

Different subsets of T-cells have been implicated in the 
pathogenesis of INS in the last decades. The Immune 
dysregulation Polyendocrinopathy, Enteropathy, and 
X-linked (IPEX) syndrome with concomitant nephrotic 
syndrome provides strong evidence for the crucial role 
of regulatory T-cells (Tregs) in INS. IPEX syndrome is 
a rare disorder of the immune regulatory system caused 
by mutations of forkhead box P3 (FoxP3), which is a 
transcription factor responsible for the generation and 
maturation of Tregs (CD4+ CD25+ FoxP3+) [24]. Treg 
number in physiological states is low, but they can be 
rapidly generated from immature CD4+ T-cells, that 
expand in response to stimulation. Several studies in 
experimental models support the association between 
low Tregs during a trigger event and proteinuria [25, 
26]. For instance, Wang et  al. showed that depletion of 
CD4+ T-cells in BALB/c mice leads to the aggravation 
of adriamycin-induced nephropathy, while reconstitution 
with FoxP3-expressing CD4+ CD25+ T-cells ameliorates 
this disease [27, 28]. In the same model, inducing the 
expansion of Tregs by administering IL-2/IL-2Ab com-
plexes improved renal function, histological findings, and 
reduced inflammation [29]. Another study shows that 
direct infusion of Tregs into Buffalo/Mna rats, a strain 
that spontaneously develops glomerulosclerosis, is also 
associated with reduction of proteinuria and ameliora-
tion of histological lesions [30]. In lipopolysaccharide 
(LPS) nephropathy, which represents a model of transient 
proteinuria, the Treg level was modulated by the admin-
istration of IL-2/anti IL-2 immunocomplexes, resulting in 
a transient protective effect on proteinuria [31]. Human 
findings support this implication: Benz et al. investigated 
renal biopsies from 38 pediatric patients and found that 
the number of FoxP3+ T-cells was significantly lower 
in MCG and FSGS patients compared to controls while 
also being exclusively located in the tubulointerstitium, 
but not in glomeruli [32]. FACS analysis of peripheral 
blood mononuclear cells from INS patients revealed 
decreased levels of Tregs [33, 34]. In line with that, the 
Treg-related regulatory cytokine IL-10 was significantly 
decreased in lipoid nephrosis [35]. Furthermore, Araya 
et al. observed that the percentage of Tregs was similar in 
healthy controls and patients with INS. However, in co-
culture of Tregs and effector T-cells (Teffs) from patients 
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with relapse, the concentration of the regulatory cytokine 
IL-10 was reduced indicating a deficient suppressor 
function [36]. Interestingly, Shimada et  al. showed that 
Tregs have the potential to turn off CD80 expression on 
podocytes once it is induced (see below). Subsequently, 
Tregs dysfunction could make transient proteinuria 
persistent, leading to podocyte injury [37]. Finally, Treg 
dysregulation can amplify the neutrophil-induced oxida-
tive burst triggered by an infection, potentially leading to 
INS relapse [25]. Finally, a clinical relevant point is that 
a higher ratio of Tregs to Teffs favors steroid sensitivity 
(steroid sensitive NS [SSNS]) and a reverse ratio points to 
steroid resistant NS (SRNS) [38, 39].

Another important cell type, Th17cells also derive from 
the naïve CD4+ progenitor cells, as do Tregs. These two 
subsets have antagonist effects: a high Th17/Tregs ratio 
maintains inflammation, while low ratios lead to sup-
pression of inflammatio n[40]. Liu et  al. demonstrated 
that induction of IL-17 released by Th17 cells plays a 
key role in adriamycin-induced nephrosis most likely 
through downregulation of phospho-nephrin and Bcl-2 
level via overproduction of c-mip [41]. In line with that, 
May et  al. treated human podocytes with supernatants 
from Th17cells of healthy controls as well as with serum 
of patients with INS and found significant stimulation 
of Janus​ kinas​es and mitogen-activated protein kinase 
pathways and an increase in motility of podocytes [42]. 
Human studies confirm these data: the frequency of 
mRNA transcripts of Th17 cell-related factors, such as 
IL-17 or retinoid orphannuclear receptor, was increased 
in the blood of patients with INS, while it was associated 
with a decreased number of Tregs [33]. IL-17 expression 
in respective kidney biopsies revealed higher expression 
in INS cases compared to healthy controls. Additionally, 
positive immunostaining for IL-17 was detected in the 
glomerular compartment [33]. These results were cor-
related with higher frequencies of circulating Th17 cells 
and mRNA levels of Th17cell-associated factors in chil-
dren with INS [43]. In line, Ye et al. showed an excessive 
increase of Th17 cells by analyzing the peripheral blood 
of INS patients [34]. Given that Th17 cells have recently 
been reported to be resistant to glucocorticoid treatment, 
and glucocorticoid resistance remains a major challenge 
in the management of INS [42], it can be of importance 
to delineate the individual immune profile, including the 
ratio between Th17 and Treg cells, in order to find the 
most appropriate therapeutic approach in SRNS.

Among Teffs, the Th2 subset was traditionally indi-
cated as a major player in the pathogenesis of INS, 
because MCD is often associated with atopy and allergy, 
which in turn are caused by Th2 immunologic responses 
[44–49]. The increased serum immunoglobulin(Ig) E 
level and preservation of IgG4 observed in MCD are also 

characteristic of a Th2 response [50–52]. Furthermore, 
Buffalo/Mna rats, which develop MCD spontaneously 
and FSGS over time, were characterized by Th2 polari-
zation and presented a predominant increase in IL-4 and 
IL-13 levels, preceding the development of nephrotic 
syndrome [30, 53]. Indeed, the role of the Th2 subset is 
also supported by the observation of a specific cytokine 
profile in patients with MCD [36, 54–56]. One of the 
strongest candidates is IL-13; studies have identified that 
increased IL-13 expression by CD3+ T-cells can lead to 
podocyte injury and induce INS in children or MCD-like 
phenotype in rats [52, 54, 57–59]. Notably, overexpres-
sion of IL-13 caused the downregulation of nephrin and 
podocin and increased IL-13 induced an upregulation 
of CD80 (see below). In contrast, IL-9, a cytokine also 
attributed to Th2 cells, was shown to protect podocytes 
from excessive damage in adriamycin-induced podocy-
topathy, underscoring the varying role of Th2 cells [60]. 
Notably, some observations negate a crucial role of Th2 
cells in the pathogenesis of INS [61–63].

Similar to the dichotomy of Tregs/Th17, some findings 
indicate that the ratio of the Th2/Th1 subsets is much 
more important in the pathomechanism of INS rather 
than their absolute count. RNA analysis of rat kidney 
samples to assess the T-cell infiltrate revealed a cytokine 
transcript expression profile prompting an involvement 
of Th2 cells, while a downregulation of Th1 cell cytokines 
was detected [53]. This shift towards a Th2 phenotype 
was also observed in children with nephrotic syndrome 
[64], which was further confirmed by a study analyzing 
the immune profile in peripheral blood of SSNS patients 
and SRNS patients, showing an imbalance of Th1 and 
Th2 [34].

The disproportion between CD4+ and CD8+ T-cells 
seems to play a relevant role in INS, too. Most patients 
are found to demonstrate a reduction in CD4+ circulat-
ing T-cells and a higher prevalence of CD8+ T-cells dur-
ing the active phases of disease [55, 64].

B‑cells, their antibodies, and cytokines
Although INS has been traditionally considered to be 
a T-cell mediated disease [6], recently the view shifted 
towards a potential role of B-cells in the pathogen-
esis of INS. A case report described a SDNS patient, 
who received an anti-CD20 antibody, rituximab (RTX), 
for severe idiopathic thrombocytopenic purpura and 
reached not only a normal thrombocyte count but also 
stable remission of proteinuria [65]. Since then, the num-
ber of observations and trials reporting successful treat-
ment of nephrotic patients with RTX has been growing 
consistently, strongly suggesting an involvement of 
B-cells in INS pathogenesis. Additionally SSNS patients 
reportedly have higher B-cell levels at disease onset and 
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during relapse, which only normalize when the patient 
goes into remission [66]. RTX seems to be particularly 
effective in steroid- or drug-dependent forms of INS 
[67,  68] and might even pose as an option for a subset 
of drug-resistant cases [69]. Taking a look at RTX treat-
ment response can provide insights into particularities 
of subgroups of INS patients. Ding et  al. for example 
found that patients that had an initial steroid sensitiv-
ity and only experienced steroid resistance secondarily, 
had a higher risk for relapse after kidney transplantation, 
than patients experiencing steroid resistance from the 
beginning of their disease. This finding suggests a circu-
lating factor, possibly immune-mediated, as a pathogenic 
driver [70]. It was also found that roughly two-thirds 
of patients with secondary steroid resistance reach a 
complete remission and do not progress any further if 
treated with RTX, compared to only 26% of patients with 
initial steroid resistance [71]. Finally, Trautmann et  al. 
were able to show that RTX could be as effective as CNI 
for SRNS [72]. Taken together, these findings point out 
the heterogeneity of immunological mechanisms of INS. 
The effectiveness and safety of RTX for INS are summa-
rized by other reviews [73, 74]. How exactly RTX-medi-
ated B-cell depletion asserts its favourable effect on INS 
is still unknown. Colucci et al. found the delayed recon-
stitution of switched memory B-cells after RTX therapy, 
to be a protective factor against relapse [75]. Others 
have suggested a direct effect of RTX on the surface of 
podocytes through an off-target binding to sphyngomy-
elin-phosphodiesterase-acid-like 3b, thereby exerting a 
protective effect on the actin cytoskeleton and prevent-
ing apoptosis induced by patient sera [76]. However, 
Kim et  al. claim this to be an unspecific finding due to 
the fixation process of cultured cells, while their study 
implies local cytokine release by B-cells as the patho-
genic effector on podocytes [77].

Previous data had already pointed to a possible role 
of immunoglobulins as a binding partner to a circulat-
ing permeability factor [78]. More recent research sug-
gests the cross-reaction of an antibody against EBNA-1, 
a protein of the Epstein–Barr virus, with an intracellular 
podocyte protein as a possible cause of podocyte deple-
tion and subsequent proteinuria [79]. Delville et al. even 
identified a seven-antibody panel, with the capability to 
predict the recurrence of FSGS after kidney transplanta-
tion at an accuracy of 92%. In this panel, auto-anti-CD40 
antibodies were the strongest singular predictor of recur-
rence, with an accuracy of 76%. If isolated out of patient 
sera, anti-CD40 antibody showed the potential to induce 
podocyte damage in cell culture, as well as the ability to 
amplify damage induced by soluble urokinase-type plas-
minogen activator receptor (suPAR) through a coopera-
tive effect [80]. Interestingly sCD23, an IgE receptor and 

B-cell activation marker, was found to be increased dur-
ing relapse of INS, adding to the assumption of a B-cell 
dysregulation [81]. Another finding worth mentioning 
is the significant association of polymorphisms in HLA-
DQ1 with SSNS. These polymorphisms could, among 
other things, lead to a defective antigen presentation, 
resulting in an abnormal T-cell response [82]. In conclu-
sion, an active role of B-cells in INS pathogenesis gains 
more and more evidence, challenging the standpoint of 
INS as a disease only driven by T-cell dysfunction and 
RTX and other anti-CD20 antibodies pose as promising 
alternatives to other steroid-sparing agents.

Mononuclear phagocytes and their cytokines
In Buffalo/Mna rats, which develop INS spontaneously, 
the frequency of monocyte–macrophage lineage cells 
and the expression of macrophage-associated factors 
(tumor necrosis factor-α [TNF-α], IL-12) were found to 
be higher in the kidney infiltrate compared to healthy rats 
[53]. Interestingly, this infiltration was already prominent 
at a non-proteinuric stage before the onset of the disease. 
The examination of adriamycin-induced nephropathy 
revealed initial interstitial accumulation of macrophages 
as well [27, 83, 84] with a subsequent reduction of them 
during the course of the disease [84]. This study has 
not detected any glomerular macrophage infiltration. 
Whether macrophages contribute to early podocyte 
damage or rather act profibrotic in later stages remains 
to be elucidated. Corresponding to these animal studies, 
significantly higher numbers of interstitial CD68+ mac-
rophages were detected in kidney samples from children 
with INS compared to controls, while the frequency of 
macrophages was higher in the kidney infiltrate of the 
FSGS group in comparison to the MCD group [32].

Circulating permeability factors
In addition to cytokines and immunoglobulins, other 
circulating factors have been described in the past years, 
which are only partially of immune origin [18, 85].

uPAR assembles αvβ3 integrin and activates a signaling 
cascade modifying adhesion to the extracellular matrix 
and is expressed by several immune cells, but also by 
endothelial cells and by podocytes [86]. This receptor is 
functional in maintaining podocyte shape and sieving 
properties of glomeruli [87] and its soluble form suPAR 
has been shown to be increased in the plasma of FSGS 
patients [88] as well as to positively correlate with the 
degree of podocyte effacement [89]. However, plasma 
suPAR levels are influenced by renal function and are 
elevated in other kidney and liver diseases, too [19, 90].

Cardiotrophin-like cytokine factor 1 (CLCF-1), a mem-
ber of the IL-6 family, is expressed by several tissues and 
is known to activate B-cells. It was identified in plasma 
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samples of patients with post-transplant recurrence of 
FSGS [91]. In line with that, CLCF-1 induces albuminuria 
in mice and increases albumin permeability in isolated 
rat glomeruli through the activation of the Janus​ kinas​es 
and pathway, which can be reversed by incubation with 
anti-CLCF-1 antibodies [91].

Hemopexin, an acute phase protein with anti-oxidant 
function [92], has been shown to reduce the expression of 
the glomerular glycocalyx and to alter the integrity of the 
actin cytoskeleton [93]. In line with that, its active form 
in circulation was found to be highly increased during 
relapses of MCD [94–96]. Clinically important, proteom-
ics analysis of plasma samples showed that hemopexin 
can discriminate patients with SSNS versus SRNS pre-
treatment [97].

The glycoprotein, angiopoietin-like 4 (Angptl4), inhib-
its endothelium-bound lipoprotein lipase activity result-
ing in increased plasma triglyceride levels [98]. Clement 
at al. reported that glomerular expression of Angptl4 is 
highly upregulated in serum and podocytes in experi-
mental models of MCD and in human disease [99]. Addi-
tionally, podocyte-specific transgenic overexpression 
of Angptl4 in rats induced nephrotic-range proteinuria, 
loss of glomerular basement membrane charge, and foot 
process effacement. It has been proposed that podo-
cytes secrete a hyposialylated form of Angptl4 in MCD, 
whereas extrarenal organs secrete a sialylated form of 
Angptl4 in response to an elevated plasma ratio of free 
fatty acids to albumin. These circulating pools of Angptl4 
may reduce proteinuria by interacting with glomeru-
lar endothelial β5-integrin [100]. However, progressive 
accumulation and clustering of Angptl4 in the glomeru-
lar basal membrane (GBM) likely activates signals at 
the podocyte-GBM interface and induces foot-process 
effacement resulting in proteinuria [101]. Expression of 
Angptl4 was shown to be decreased upon glucocorticoid 
administration suggesting a possible role for this protein 
in SSNS [99], which was confirmed by showing a 16-fold 
higher Angptl4 level in patients with SSNS relapse vs. in 
ones with SRNS [102].

Cathepsin-L is an endoprotease responsible for the 
breakdown of lysosomal proteins. The actin-binding 
and stabilizing protein synaptopodin is a substrate for 
cathepsin-L, which thereby has an effect on cytoskeleton 
organization [103]. Renal cathepsin is overexpressed in 
both puromycine aminonucleoside nephrosis as well as 
LPS nephropathy [104] and cathepsin-L knockout mice 
are protected against LPS nephropathy.

Podocytes as antigen‑presenting cells
A new paradigm for the pathogenesis of proteinuria in 
nephrotic syndrome has emerged after the discovery by 
Kestila et  al. [105] that mutations in the gene NPHS1, 

which encodes the podocyte-expressed nephrin, cause 
congenital NS in humans. Additionally, the develop-
ment of proteinuria in LPS-injected severe combined 
immunodeficient (SCID) mice, which are devoid of T- 
and B-cells, suggests that this mouse model of INS may 
be independent of T- or B-cells [106]. Based on these 
data, podocytes have attracted particular attention as a 
key player in the pathogenesis of INS [107, 108].

Recent findings indicate that podocytes can act as 
antigen-presenting cells and be part of the adaptive 
immune system (Fig.  1). When exposed to stress con-
ditions (infection, allergens, vaccination), podocytes 
have been shown to express receptors, characteristic 
for cells devoted to present antigens [80, 109–116]. For 
instance, exposure to low-dose LPS acting via TLR-4 was 
shown to upregulate CD80 in podocytes of wild-type 
and SCID mice, which in both cases caused nephrotic-
range proteinuria, indicating that TLR-4 and CD80 in 
podocytes are possible effectors of proteinuria. LPS also 
induced CD80 expression in cultured podocytes with 
actin reorganization and morphological changes [106]. 
Furthermore, TLR-4 ligands induced CD80 expression 
in humans via an NF-kB-dependent pathway [111] and 
CD80 was co-localized with podocyte synaptopodin 
in human and murine kidney tissue specimens [106]. 
Finally, it has been shown that mice lacking CD80 are 
protected from LPS induced proteinuria, thus suggesting 
that this molecule is the mediator of LPS renal toxicity. 
Additionally, CD80 has its well-established receptor on 
T-cells, so that in immune-competent mice, it can also 
interact with CD28 on CD4+ T-cells, mediating their 
activation into Teff cells, and with CTLA-4 on Tregs, 
mediating the block of maturation towards a Teff pheno-
type, thus determining their activation (CD28) or inhibi-
tion (CTLA-4) [117–120]. Tregs may further inhibit the 
immune response by releasing soluble CTLA-4, IL-10, 
and transforming growth factor-beta (TGF-β) [121]. 
Human findings support this implication: the urinary 
CD80/CTLA-4 ratio was more than 100-fold higher in 
patients with relapse compared with those in remission 
[122]. Expression of glomerular CD80 was observed in 
renal biopsies of FSGS and treatment with Abatacept, 
a fusion CTLA-4 Ig molecule that inhibits CD80, can 
induce partial or complete remission in post-transplant 
recurrence of FSGS [123, 124]. CD80 expression can also 
be induced by polyinosinic-polycytidylic acid [111, 125], 
which stimulates TLR-3 and is structurally similar to the 
double-stranded RNA found in some viruses, which may 
explain the observation that MCD relapse is frequently 
triggered by an upper respiratory tract infection [126]. 
However, these data are not fully supported by others 
and the therapeutic potential of CD80 blockade is still a 
matter of debate [127].

https://en.wikipedia.org/wiki/Janus_kinase
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Shimada et  al. proposed the “two-hit” podocyte 
immune disorder underlying MCD [37]. The first hit is 
induction of podocyte expression of CD80 in response to 
a circulating factor such as cytokines, allergens, or micro-
bial products. The second hit represents dysfunction of 
theauto-regulatory mechanisms (secretion of soluble 
CTLR-4, IL-10, and TGF-β by Tregs or downregula-
tion of CD80 by podocytes itself ), resulting in persistent 
CD80 expression and proteinuria.

Another co-stimulatory molecule in the adaptive 
immunity is CD40 [128, 129], which was observed to be 
constitutively expressed in human cultured podocytes 
and in glomerular biopsies of FSGS patients [80]. Circu-
lating anti-CD40 IgG has also been additionally identi-
fied in the serum of patients with FSGS, but not in that 
of patients with other glomerular diseases [80]. In this 
study, purified anti-CD40 IgG from the sera of patients 
with FSGS was able to induce disruption of the podo-
cyte actin cytoskeleton in vitro, and this effect was par-
tially inhibited by blocking of CD40. Its ligand, CD40L 
may also exist in a soluble circulating formandthe CD40/

CD40L complex mediates pro-inflammatory events 
[130], promotes redistribution of nephrin in podocytes 
and increases permeability to albumin in isolated glo-
meruli [131, 132].

Experimental therapeutic options based 
on the immunological concept of INS
The resistance to the standard therapy (extensively 
reviewed by Trautmann et  al. [133]) carries a high risk 
of progression to end-stage renal disease. Therefore, 
the translation of the promising findings gained in the 
basic research into the clinical practice is of high impor-
tance, in order to achieve advances in the treatment of 
nephrotic syndrome with higher effectiveness in reduc-
ing proteinuria [134].

Ofatumumab, a humanized anti-CD20 antibody, seems 
to be a new promising therapeutic approach. In com-
parison to RTX, ofatumumab has the advantage of higher 
affinity binding to B-cells and may be less prone to the 
development of antibodies against a murine fragment. 
Basu et  al. administered ofatumumab to two patients 

Fig. 1  Schematic overview of the immunopathomechanism of idiopathic nephrotic syndrome; created by BioRe​nder.​com

http://biorender.com
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with MCD and three patients with FSGS. All received 
multiple medications before this intervention, includ-
ing two courses of RTX. After ofatumumab treatment, 
improvement of proteinuria and increase in the serum 
albumin levels were noted and no serious side effects 
were reported [135]. Currently, two randomized con-
trol trials are recruiting patients to test ofatumumab 
(clinicaltrials.gov NCT02394106 and clinicaltrials.gov 
NCT02394119) in therapy refractory INS. Ofatumumab 
has the potential to be an alternative for patients with 
native kidneys, which show either RTX resistance or RTX 
intolerance.

Another important candidate for the treatment of 
drug-resistant INS is abatacept, a fusion CTLA-4 Ig mol-
ecule that inhibits CD80, thus disrupting T-cell activa-
tion. Yu et al. treated five patients with FSGS, including 
four with recurrence after renal transplantation. They 
all achieved remission [123]. In line with that, one case 
report could confirm the positive effect of abatacept 
[136]. However, results from other studies on this mol-
ecule are discordant and do not confirm the original 
observation [137]. Therefore, abatacept may be a thera-
peutic option in CD80 positive cases, but further clinical 
trials are necessary.

One recent, additional therapy worth mentioning is 
lipid apheresis, which has been reported to be an effec-
tive measure to reduce proteinuria in patients with 
refractory nephrotic syndrome mostly in the Japanese 
population [138–140]. There are different mechanisms of 
action, which may contribute to its beneficial effect. Lipid 
apheresis on one hand reduces macrophage stimulation 
by lowering the oxidized LDL in the glomerulus, thus 
diminishing the production of inflammatory cytokines 
locally. On the other hand, it reduces Angptl4 levels by 
lowering the level of unbound FFAs in circulation, which 
in excess can cause proteinuria. Further non-immunolog-
ical mechanisms of action are reviewed elsewhere [141, 
142]. To note, a recent, excellent study, which attempts 
to distinguish between SSNS and SRNS [97] found that 
adiponectin and apolipoprotein A1, two proteins strongly 
related to lipid metabolism, are the ones of the strong-
est candidate biomarkers to predict steroid resistance, so 
that lipid apheresis could be considered particularly in 
patients with SRNS, but further clinical data is missing.

Mesenchymal stem cells (MSC) can serve as a backup 
option in multi-drug resistant INS via exerting paracrine 
action and thus causing a persistent reduction of several 
inflammatory molecules and circulating factors. Indeed, 
a pediatric patient with FSGS recurrence after kidney 
transplantation, resistant to plasmapheresis and RTX, 
presented a stable reduction of proteinuria after MSC 
infusion. No adverse events were recorded during or 
after infusion [143]. At the moment two open-label phase 

I clinical trials are recruiting patients to test the safety 
and efficacy of mesenchymal stromal cells (clinicaltrials.
gov NCT02382874) and stem cells infusion (clinicaltrials.
govNCT02693366) in multi-drug resistant FSGS.

Some of the molecules having a significant impact on 
proteinuria in animal models of INS did not fulfill the 
expectation in clinical settings such as anti-IL-2 antibod-
ies [144], the anti-TGF-β antibody fresolimumab [145] 
or the anti-TNF-α antibody adalimumab [146]. Other 
biologicals proposed by basic science experiments are 
awaiting further investigations in nephrotic patients such 
as the anti-CD40 blocking antibody lucatumumab, anti-
IL-13 antibodies or anti-IL-4 antibodies.

Conclusion
In spite of the numerous experimental and clinical stud-
ies performed in the last decades, the immune pathogen-
esis of the non-genetic, idiopathic nephrotic syndrome 
is still not completely understood. It seems to be likely 
that INS is driven by a complex interplay between solu-
ble factors, immunoregulatory cells, and podocytes that 
may vary between patients. Its outcome is determined by 
a multi-step control system, where defective regulatory 
steps may trigger and maintain foot process effacement 
and the persistence of proteinuria. Studies assessing 
patients’ individual profiles may help define precise tar-
gets for therapeutic intervention, leading to a more suc-
cessful, personalized therapeutic approach.
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