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aspects underlying the theoretical formulation and the finite element implementation
using a monolithic fully implicit solution scheme, an overview of the main
technological applications involving layered shells, interface mechanical problems and
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of the proposed approach to investigate complex phenomena such as crack deflection
vs. crack penetration at an interface, intergranular vs. transgranular crack growth in
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Introduction

The phenomenology and modelling of brittle fracture is a well established topic in the area
of fracture mechanics. In the last decades, many computational models have been devel-
oped in order to predict the strength and the crack path in brittle materials. Techniques
such as the extended finite element method (XFEM) [1, 2], finite fracture mechanics (FFM)
[3] and the embedded finite element method (EFEM) [4] belong to this class of approaches.
In parallel, methods to simulate quasi-brittle and interface fracture adopting the cohesive
zone model (CZM) have been proposed to simulate cohesive fracture typical of elasto-
plastic materials or interfaces. These computational models generally suffer from some
drawbacks due to the complexity in tracing the evolution of the crack path. On the one
side in XFEM and EFEM, a splitting algorithm should be defined for the element crossed
by the crack or containing the crack tip. This leads to crack topology problems when
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the quadratic or higher order displacement interpolation schemes are employed. This
is not the case of FFM which is a powerful and well-founded predictive tool, but can
only by applied to relatively simple structures for feasibility reasons. On the other side,
CZM-based methods, implemented using interface finite elements, are viable strategies
for pre-existing interfaces [5, 6], while several algorithmic complexities arise for modelling
evolving cracks in the continuum [7,8].

To circumvent these drawbacks, regularization schemes based on non-local gradient
damage formulations have been developed in the last decades [9,10] whereby some of
these proposals incorporated the use of an additional equation in which the length-scale
was explicitly considered [11-13]. In this regard, the phase field method for fracture
has been proposed and enhanced by many authors [14—16] and subsequently assessing
its thermodynamic consistency in [17,18]. The phase field method considers the crack
as a diffuse damage instead of a sharp discontinuity. This regularization is formulated
through a variational approach of the classical Griffith energy balance for brittle fracture.
The main advantage of this method is that the phase-field/damage variable is considered
as an additional primary unknown of the problem to be determined along the solution
process, i.e. generally leading to the definition of an extra degree of freedom per node in
the corresponding FE discretization. Consequently, crack nucleation as well as the crack
path are predicted as a result of an energy minimization problem without the necessity of
a remeshing algorithm to treat the evolution of damage.

In the present review article, we focus on the recent advancements in the simulations
of crack growth in heterogeneous materials and composite structures, motivated by the
frontier research undertaken in the ERC Starting Grant “Multi-field and Multi-scale Com-
putational Approach to Design and Durability of PhotoVoltaic Modules” (CA2PVM). The
prediction of the reliability and durability of photovoltaic laminates subject to mechanical
loads requested in fact the development of advanced computational models to simulate
delamination in multi-layered composites and, at the same time, new fracture mechanics
approaches to predict fracture in polycrystalline silicon solar cells, which is concern in
photovoltaics due to its brittleness [19]. Global-local approaches in order to bridge the
scales between fracture at the scale of the laminate and crack growth at the level of the
solar cell have also been proposed in [20,21] with a novel multi-field perspective.

Due to its versatility and capability of the proposed approach to simulate complex crack
paths, we first recall the fundamental features of the phase field formulation for fracture in
“Foundation of the phase field method” section. Then, in “Advancements on the phase field
method: formulation and finite element implementation” section, the main theoretical
and computational advancements are presented. Finally, “Applications to heterogeneous
materials and composite structures” section is devoted to selected applications where
complex fracture phenomena in heterogeneous materials and structures are predicted.

Foundation of the phase field method

In this section we describe the thermodynamically consistent formulation of the phase
field method for brittle fracture proposed in [17,22]. This formulation lays in the classical
fracture theory of Griffith, but it considers the crack as a diffuse damage instead of a sharp
discontinuity.
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The approach is developed in the general multi-dimensional framework (Fig. 1a). A
deformable body €2 € R” in the Euclidean space is considered. An arbitrary point in the
body 2 is defined by the vector of its Cartesian coordinates x, while the body forces are
denoted by f, : @ —> R”. The boundaries of  are denoted by Q € R”~!, which are
split into the prescribed kinematic boundary 92, and the prescribed traction boundary
0. Kinematic and traction boundaries fulfill the two conditions: 92; U 0€2,, = 92 and
02 N 92, = @. For a generic point of €2, the displacement vector is denoted by u and
the Cauchy stress tensor by a. Then, the prescribed displacements and tractions at the
respective boundaries are denoted by:

u=u ondQ, and t=0-n ondQ, (1)

where n denotes the outward normal unit vector to the body.

In the phase field model for brittle fracture, the crack, which is usually represented by
a discrete discontinuity, is regularized through the diffuse phase field damage variable 0,
with 0 : Q x [0,£] —> [0, 1] [16]. The value @ = 0 denotes the undamaged state, while
0 = 1 identifies the fully damaged state. The phase field damage variable can vary from
0 to 1 as shown in Fig. 1b, with the closed-form expression d = e~*I// available only for
the simple mono-dimensional problem. For higher dimensions, a closed-form expression
is not available and implicitly depends on the phase field internal length scale /, which

determines the band where damage spreads [17,22].

crack regularization region

Fig. 1 a Comparison between the discrete discontinuity of the LEFM theory (left) with the smeared
discontinuity of the PF model (right); b 1D approximation function which smear out the discontinuity, the
damage 0 follows the exponential based function @ = e~/ ¢ Phase field approach for thin-walled
structures adopting the solid shell approach
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According to this framework, the potential energy of the system takes the form:
o) = [ veode+ [ Grevade, @
Q Q

where 1/ (g, 0) is the elastic energy density which depend on the damage 0 and the strain
e. Here, G, is the Griffith fracture energy and y(d, Vx0) is the so-called crack density
functional which depends on 0 and its gradient Vxd. The crack density functional is
defined in [17] as:

1 I
Y@, Vxd) = ﬂbz + 5|be|2' (3)

The Euler equations (strong form) associated with the phase field variable read:
09—V =0 inQ and Vx0-n=0 indQ (4)

where V20 is the Laplacian of the phase field variable.

Regarding the elastic energy stored in the body (e, 0), the positive—negative split based
on a spectral decomposition of the strain tensor is usually adopted following [23]. The
positive counterpart of the elastic energy depends on the tensile stresses, while the negative
counterpart depends on the compressive stresses. Following [17], the positive—negative
split takes the form:

V(e 0) = g@) v (e) + vE(e), (52)
V() = 5 ((tlel) ) + ptrle? (5b)
VE(e) = 5 ((rlel) )2 + puele? (50

where A and p are the Lamé constants, ¢ and e_ are, respectively, the positive and
negative counterparts of the strain tensor. The symbol tr[e] denotes the trace operator,
and the symbol (e)1 is the so-called Macaulay brackets corresponding to the function
(o)1 = (o = | @ |)/2. The function g(d) is a degradation function that, in the classical
formulation, takes the form:

g =1 -0’ +K (6)

where KC is a residual stiffness which is introduced to avoid numerical instabilities and
an ill-conditioned stiffness matrix when 0 approaches unity. In Eq. (5a) the degradation
function (Eq. 6) multiplies only the positive part of the elastic energy. In this way, damage
affects only the portion of the body where tensile stresses are developed, avoiding fracture
in compression. Hence, the Cauchy stress tensor of the phase field formulation takes the
form:

0= % =g(0)o++o0_; withor =A({tr[e])1) 1+ 2uey, (7)

where 1 denotes the second-order identity tensor, and o+ denotes the positive—negative
counterpart of the stress tensor.
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Advancements on the phase field method: formulation and finite element
implementation

In this section the main advancements of the phase field model to provide computational
tools for the simulation of complex crack paths are reviewed.

In the sequel, we first present the extension of the 2D phase field model to a 3D finite
elasticity solid shell finite element (“Fracture in solid shells with finite elasticity” section).
Subsequently, in “Coupling the phase field for brittle fracture and the cohesive zone model
for interface debonding” section, we present the formulation and finite element imple-
mentation of a novel interface element compatible with the phase field model. Finally, the
enhancement of this interface element to a 3D finite elasticity framework is outlined in
“Interlaminar and translaminar fracture in laminates combining the 3D approach to brit-
tle fracture for solid shells and a finite elasticity interface finite element for decohesion”
section.

Fracture in solid shells with finite elasticity

Phase field formulation for solid shells relying on the enhanced assumed strain (EAS) method
The development of numerical methods to trigger fracture events in thin-walled struc-
tures has been a recurrent topic in the last three decades. Within this context, in [24],
the phase field approach to fracture has been reformulated in order to be used in thin
walled applications recalling the solid shell finite concept (Fig. 1c). In the current solid
shell formulation, the enhanced assumed strain (EAS) technology has been used to alle-
viate locking pathologies. In particular, the EAS method has been advocated through the
adoption of the additive decomposition of the Green—Lagrange strain tensor E = E* +E,
where E* and E denote the compatible and the incompatible counterparts of the strain
[25,26], respectively.

The formulation is defined through the exploitation of the Hu—Washizu functional. The
displacements u, the incompatible strains E, the second Piola—Kirchhoff stress tensor S,
and the crack phase field variable 0 constitute the independent fields of the formulation.
According to the Griffith’s theory of brittle fracture, for cracked bodies, this variational

formalism in the reference configuration can be expressed as:

M(u E, s,a):/ g(b)\l’(E)dQ—/ s:fzdsz+/gcdr +TMex, (8)
Bo\I' Bo r
N e’
e My

int

where the internal contribution of the bulk is denoted by Hf’nt, whilst Iy, identifies the dis-
sipative contribution due to fracture events. Furthermore, the prescribed external surface
and body actions are arranged in the term [Teyt. In Eq. (8), W(E) is the effective Helmholtz
free-energy function in the bulk for undamaged hyperelastic materials and g(0) is the
degradation function (Eq. 6). Moreover, it is worth mentioning that the second integral
f’m accounts for the contribution of the second Piola—Kirchhoff stress tensor (S)
over the incompatible strains (E) in the view of the EAS method.

term of T1

Introducing the phase field approximation to the dissipated energy counterpart of the
functional in Eq. (8), it follows:

M(wE S,0) =/

Bo\I'

g(@)W(E)dS — /

S:Ede+ / Gy (®, Vx0)dQ + Mey (9)
Bo Bo
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The corresponding weak form of the functional in Eq. (9) is given by the first variation
with respect to the four independent fields, and by the imposition of the orthogonality
condition for the stress field S and the enhanced strain field E [27]. Then, the weak form of
the boundary value problem associated with the cracked bulk is reduced to the following
three-field problem:

- ov
R*(w, 8w, E,0) = Rifye — Ry = / 8(0) g + 9B dQ + 8Texi(w) = 0, (10)
Bo
B, = o ov .
REWE SE ) = | g@d)— :SEAQ =0, (11)
Bo JE

R°(w E, 0, 80) =/ —2(1 — 0)50W(E)dQ2
By

1
+f Gbi [1—2050 + Vx0 - vx(aa)] dQ =o0. (12)
Bo

The nonlinear system given by Egs. (10)-(12) can be solved by means of the standard
incremental-iterative Newton—Raphson method. The linearization leads to a fully coupled
system of equation, which has been tackled using a monolithic solution strategy [24].

Regarding the material formulation, a hyperelastic neo-Hookean isotropic constitutive
response has been assumed for the numerical implementation of the current framework,
with:

U(C) = % (In))? — plnJ + % (tr[C] — 3), (13a)

C(C) = 49cc¥(C) = AC 1@ C 1 + 2 (AlnJ — ) % (13b)
where J identifies the determinant of the deformation gradient F accounting for the
consideration of the incompatible strains [24].

Finally, standard Dirichlet-type and Neumann-type boundary conditions should be
considered for the boundary value problem in the bulk. Standard discretization of the
domain By is considered to be constructed via n, non-overlapping elements, such that
Bo ~ b, B((f), The discretization of the bulk is performed according to the solid shell
concept [28,29], being the parametric space identified as follows: A := {£§ = (£1,£2,&3) €
R3| —1 < & < 4+1;i = 1,2, 3}, where (£1, £2) denote in-plane directions, whereas £3
identifies the thickness direction and H is the initial shell thickness.

The reference position vector of any material point is linearly interpolated by the posi-

tion of the top X;(£1, £2) and bottom X,,(£1, £2) vectors:

(1+£%) X, (6%, 6% + % (1— £%) Xy, £2) (14)

N =

X(§) =
Similarly, the same interpolation scheme is adopted for the current configuration:
1 3 1g2y, 1 3 1 g2
x(@) =5 (1+8)x (56 + 5 (1-8) %68, (15)

The previous approximation is also assumed for the phase field variable:

(1+8) (e 8) + 3 (1= £ (6", 8%, (16)

N =

o(8) =

Page 6 of 29
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where 9; and 0, stand for the phase field variable values corresponding to the top and
bottom surfaces of the body, respectively. This ansazt for the phase field variable allows
a non-uniform value of this parameter over the shell thickness, an important result as
discussed in [24].

Standard tri-linear shape functions are used to interpolate the reference and current
position vectors:

X =N#X and x=N@%X (17)

where N(£) is the matrix operator associated with the shape functions.
Accordingly, the displacement and the phase field variable (u, ), their respective varia-
tions (§u, §0) and their increments (Au, AD) are approximated at the element level as:

u~ N()d; Su~ NE)Sd; Au~ NE)Ad, (18)
2 ~ N(£)D; 50 ~ N(£)5; Ad ~ N(£)AD. (19)

The interpolation of the incompatible strain field is expressed in terms of the operator
M(&) [30] that is designed to alleviate membrane and Poisson thickness locking pathologies
through the EAS method. The interpolation of the incompatible strains E, its variation §E

and its increment AE renders
E~ M(&)¢, SE~M(&)Sc, AE~ M(£)Ac. (20)

As discussed in [25,31], the operator M(£) is subsequently transformed into the global
Cartesian setting in order to preserve the consistency of the formulation. Furthermore,
transverse shear and trapezoidal locking are circumvented through the use of the assumed
natural strain method as detailed in [24].

Insertion of the previous discretization schemes into the residual forms given in Eqs.
(10)—(12), and into the corresponding linearized system of equations, leads to the following
coupled system:

Kia kao Kac | | Ad RZ, RY,
ko koo ko | [AD | =] 0 | —|RY, (21)
kg koo ke Ag 0 Rfm

which can be reduced via the static condensation of the incompatible strains at the element
level [24], so that the final system of equations featuring the coupled scheme between the
kinematic and the phase field reads:

d d
l(:; ” l(:;D A(_l _ R%., _ R (22)
K ki | | AD 0 R
In Egs. (21) and (22) the operators k,;, denote the tangent matrices with respect of the
fields m and n, whilst R”!

we and R stand for the external and internal residual vectors

associated with the field m, respectively.
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Alternative shell models including phase field capabilities for fracture

The development of shell models incorporating phase field fracture capabilities has
received a notable attention in the last few years. In this regard, the formulation out-
lined in “Phase field formulation for solid shells relying on the enhanced assumed strain
(EAS) method” section presented different novel aspects with respect to alternative for-
mulations, which are discussed in the sequel.

One of the pioneering shell formulations triggering fracture events through the phase
field approach was developed by Miehe et al. [32], who exploited the use of the standard
Kirchhoff (usually denominated as 3-parameter formulation) shell model and restricted to
geometrically linear analyses. Moreover, differing from solid shell formulations, this 3-p
shell was formulated within the stress—strain resultant spaces leading to the definition of
3 kinematic degrees of freedom per node, which were split into membrane and deflection
displacements, and therefore the transverse shear strains along the thickness shell coor-
dinate were neglected. Accordingly, the global energy storage functional for linear elastic
solids
reads

M(w,0) = [ a@)W (e ) A2+ f Go dI" +TTe (23)
B\l r

b M

int

where e, and k represent the membrane- and curvature-related strain resultants.

An alternative formulation to that developed in [32] but also exploiting the Kirchhoff
kinematic was proposed by Amiri et al. [33], who employed the the Kirchhoff—Love shell
theory and ensured a higher order of continuity through the use of the local maximum-
entropy (LME) meshfree approximants. As was therein discussed, the LME technique
offered several appealing aspects such as its smoothness, robustness, among other aspects,
over alternative meshfree methodologies. Nevertheless, the relying structural shell model
led to the use of modified constitutive models (assuming plane stress states) in order to
keep the consistency with the kinematic formulation. Regarding the structural concepts,
again, Amiri et al. [33] assessed the proposed shell formulation by modeling fracture
events in thin and very thin layers, and neglecting the potential occurrence of geometrical
nonlinear effects.

More recent shell models including phase field capabilities have been derived within
the context of isogeometric discretization schemes. In this setting, Kiendl et al. [34]
attained the corresponding extension for brittle and ductile fracture in shells relying on
the Kichhoff-Love model, whereas Ambeati et al. [35] developed an isogeometric fracture
model using the solid shell concept in combination to the assumed natural strain (ANS)
method to prevent transverse shear locking effects.

A remarkable contribution in this area was performed by Areias et al. [36], who com-
bined the use of finite strain behavior for both elastic and elasto-plastic constitutive laws
with a local remeshing algorithm based on the phase-field values. Moreover, this latter
formulation also encompassed the definition of a top and bottom phase field variables
within the shell body, as the formulation proposed in “Phase field formulation for solid
shells relying on the enhanced assumed strain (EAS) method” section.

Based on the previous discussion it can be seen that, although the shell model herein
outlined share some common features with respect to precedent shell models includ-
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ing phase field fracture capabilities, it originally encompassed the development of a
locking free shell model as well as the consideration of top and bottom phase field
variables in order to capture a nonuniform fracture evolution over the shell thickness.
Finally, it is worth mentioning that different modeling aspects from the theoretical and
numerical points of view are still open regarding on this matter, which are worth to be

investigated.

Coupling the phase field for brittle fracture and the cohesive zone model for interface
debonding

General proposed framework

In many engineering application involving heterogeneous media, crack branching and
coalescence as well as crack deviations along interfaces can potentially occur. In order
to simulate such complex scenarios, in [37], a novel theoretical formulation and its finite
element implementation of a new CZM compatible with the phase field model has been
proposed. The two models were consistently coupled at the constitutive level, to account
at the interface level the effect of damage in the surrounding continuum.

Starting from the vectorial topology defined in “Foundation of the phase field method”
section, a generic body with cracks I', and prescribed interfaces I'; is considered (Fig. 2a).
The generic point on the interface I'; is denoted by the vector x.. Then, it is recalled the
free energy functional which govern the mechanics of the body 2 defined in Eq. (2):

a
Interface
o2
.9
E,
b 7 c
0=0
Ocol~~"~~
Oc f---f/-4------— o T L)
k.o ; ,
. Gic Gric
(o
9ne,0 9ne  Gn gt
_______ —T
______ —Tc,0
Fig.2 a Coexistence between brittle fracture in the bulk and cohesive debonding of an interface within the
context of the phase field approach of fracture. Schematic representation of the traction separation law of the
CZM which accounts for the phase field variable. b Mode | CZM traction o vs. g,. € Mode Il CZM traction t vs.
gt
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M(u, ') = Mo )+ () = /Q RACEE /r g.dr, (24)

The main idea for the coupling between the phase field model and the CZM is to
split the fracture energy function G, into two parts. The first contribution (gf ) describes
the fracture in the bulk and it is modelled with the phase field approach. The second
contribution (G’) attains the cohesive debonding of the interface and it is modelled with
a CZM. Then, the free energy functional in Eq. (24) can be rewritten as:

M Ty T) = Mo+TTr,+Tr, = | yée) do+ gf(u,a)dr+f G' (g h,0) dT;
Q\I' T T

(25)

where g is the displacement discontinuities at the interface, ) is an history parameter as
in [38], and 0 is the phase field variable.

The classical linear CZM with tension cut-off [39] was generalized in [37] in order to
take into account the effect of the average bulk damage 9 of the continuum surrounding
the interface flanks. First of all, the cohesive counterpart of the fracture energy in Eq. (25) is
decomposed into the sum of the Modes I and II fracture energies, G; and Gy, respectively.

In the formulation in [37], the critical opening displacement of the CZM (g.) is
considered to depend on the bulk damage 0 according to the linear relation g.(d) =
(1 —0)ge0+ 0g1, where g,0 = g.(0 = 0) and g;,1 = (0 = 1). Then, the cohesive traction
vs. separation laws for Mode I (and similarly for Mode II) take the form in Fig. 2b, c and

are described by the following equations:

kng—n, if 0 < s <1
— 8nc 8nc (26)
o
0 if %> 1,
g}’lC
ktg—t, if 0 < 2 <1
— gtc gtc (27)
T
0, if 8851,
8tc

where o and t are the Modes I and II tractions, respectively, g is the relative displacement,
and the subscript # and ¢ refers to Modes I and II deformation, respectively.
As aresult, the apparent stiffness of the cohesive law k depends on the damage 2 as:

2 2
K = ko (g’“’") i ke = ko (g“"’) , (28)
8nc Lic

where ko and gy are the apparent stiffness and critical relative displacement for 0 = 0.

Finally, without loss of generality, a mixed mode quadratic criterion to couple the modes
was introduced to complete the formulation, identifying interface failure:

i 2 i 2
@)
gIC gI[C

Page 10 of 29
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where G! and G/, are the dissipated fracture energies which take the form:

2
& tc,0

[(1 = 0)gico + 0grc1]”
(30)

2
. 1 g 0
Gi(0) = ~nyog> o

. 1
i Gn(0) = ~kyog?
2 [(1 — 0)gnco + Dgnc,l]2 2

These dissipated fracture energies are compared in Eq. (29) with the critical fracture
energies Q}C and g;',c, which are independent of the phase field damage variable and take
the form:

; 1 ; 1
Gic = 58uokn0i Jiic = 8ok (31)

Alternative modeling approaches for cohesive- and interface-like phase field fracture
formulations: homogeneous and heterogenous media

The modeling framework outlined in the previous section was originally conceived in
order to trigger damage events in media with existing interfaces. Nevertheless, in the
related literature, other numerical approaches of notable relevance have been proposed
in the last few years and whose principal aspects are herein discussed.

Concerning the development of cohesive-like phase field modeling approaches for frac-
ture, Verhoosel and De Borst [40] proposed a seminal technique, whose fundamental
motivation concerned the application of the phase field technique to cohesive fracture.
For this purpose, the fracture energy can be gradually released and the energy dissipation
is governed by the so-called fracture energy function G = G(g, h), where g and §) denote
the displacement gaps across a discontinuity and the history parameter complying with
the Kuhn—Tucker conditions. As discussed in [40], this model was basically formulated
for triggering fracture events in the bulk. In comparison with the framework described in
“General proposed framework” section, the formulation developed in [40,41] can be con-
ceptually seen as a point of departure for the development of a computational approach
which encompasses fracture events in the bulk, based on the brittle phase field approach,
and also along an existing interface. Thus, the fracture potential G = G(g, h) can be
decomposed as follows

/ Gedr = [ GPwo)dr + [ G (gh0) dr. (32)
r r, r;

A further extension of the functional outlined in Eq. (32) would concern the combined
modeling of cohesive fracture at the bulk and along the existing interfaces. Then, the
potential split can be expressed as

/ G.dr = f G2 (g by 0)dT + / G (g ,0) dT, (33)
r Iy r;

where g;, and b, identify the displacement gaps and the history variables in the bulk,
respectively. This latter formulation has not been analyzed in the current study, so that
the evaluation of its performance is beyond the scope of this paper.

Alternatively, a recent study carried out by Khisamitov and Meshcke [42] introduced a
novel variational approach to brittle fracture relying on the use of zero-thickness interface
elements. Such a technique is variationally formulated within the spirit of the phase field
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approach of fracture, whereby a split of the total potential energy of the system into the
bulk and interface counterparts was proposed. However, according to [42], in that model
fracture events can be only simulated along existing interfaces, representing a notable
limitation. In this regard it is worth mentioning that the discrete form of the proposed
model [42] was also equipped with an extra nodal degree of freedom in the correspond-
ing FE mesh, which corresponded to the damage variable at the interface. Furthermore,
although the authors claimed that it enabled the reduction of the computation cost and
the circumvention of the incorporation of the phase field length scale parameter, this tech-
nique required the use of nonlocal crack tracking algorithms which can lead to notable
implementation tasks for its use in standard or commercial FE packages.

In contrast to the previous numerical techniques and the modeling framework outlined
in this paper, Bourdin et al. [43,44] have investigated the development of fracture events in
heterogenous media and thin film-substrate systems. In the former instance [43], fracture
phenomena were analyzed based on the variational approach of fracture via a numeri-
cal approach denominated as surfing boundary condition and through the exploitation
of the elastic heterogeneity concept. The numerical predictions discussed in that study
showed patterned fracture events, which strongly depended upon the elastic and fracture
mismatch between the constituents. Nevertheless, as the authors stated, they precluded
the cases where the interface fracture toughness was different from the bulk values, so
that the potential role of the dissipation along the interface was diminished. The second
range of applications studied by Bourdin et al. [44] implied thin film-substrate systems
under in-plane loadings, whereby similar modeling assumptions as those invoked in [43]
were accomplished. In such investigations, the authors distinguished between cracks in
the film and debonded surfaces using a unified variational principle, and therefore it can
be interpreted as a brittle elastic membrane on a brittle elastic foundation. In any case,
in comparison with the current numerical framework (“General proposed framework”
section), Bourdin et al. did not consider the potential role of the exiting interfaces in the
thin film-substrate systems, which can evolve concomitantly with buckling events [45,46]

and play a crucial role in debonding phenomena in engineering applications.

Interlaminar and translaminar fracture in laminates combining the 3D approach to brittle
fracture for solid shells and a finite elasticity interface finite element for decohesion

The postulation of a 3D interface formulation in the framework of the finite strain was a
direct extension of the 2D small strain formulation discussed above. The formulation has
been coupled with the solid shell formulation previously presented, see [47]. Considering a
generic shell with cracks and a pre-existing interface as shown in Fig. 3a, the dissipative part
of the energy functional was split into a bulk contribution and an interface contribution
(Eq. 25). This split was introduced in the Hu—Washizu functional (Eq. 8) as:

(u, E, s,a):/ g(a)\IJ(E)dQ—/ S:EdQ
BQ\F Bo
+ [ gty vxo)da+ / G (u, 0) dT" +Texe (34)
Bo r;

b i
g g

where l'[?r is the bulk contribution and Hér is the interface contribution.
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a Interface

Fig.3 a Generic shell body with cracks and prescribed interfaces; b traction-separation laws for fracture
Modes Iand Il

As compared to the 2D small strain formulation, it is notable to remak that the exten-
sion to 3D cases required the introduction of the fracture Mode III within the proposed
framework. Then, the constitutive response for a generic fracture mode (Fig. 3b) reads:

ki gm, if 0 < &m <1 with m=ntl, 2
S, = 8m,c 8m,c (35)
"o if 815,
8m,c

where S, identifies the Piola stress of the interface, being S, its corresponding critical
value; &, is the interface stiftness, whereas g, and g, are the displacement gap and its
critical value in the local reference system of the interface. The previous cohesive law was
further equipped by a penalty formulation in compression with the aim of precluding the
material interpenetration at the interface.

Relying on the previous considerations, the fracture energies for a generic fracture mode
reads:

o1 1
Gime = 5Smme = §k,,,g}n,c, with  m =n,t1,£2 (36)

Similarly to the 2D case, the critical relative displacements triggering interface failure
encompassed a linear dependence on 9. On the contrary, the critical energy release rate
for each fracture mode was always constant. Then, imposing the independence of the
fracture energies for each Mode and the crack phase field value, the following expressions
for the energy release rates can be derived:
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) 1 2
GL0) = ~kmog2, Emeo 5> with  m = n t1, 2 (37)

2 [(1 — 0)gmc0 + ng,c,l]

Without loss of generality, a standard quadratic criterion to trigger the interface failure
under mixed mode fracture conditions was again adopted as in 2D and render:

gl. 2 i 2 i 2
nC t1,C t2,C

Finally, the following tangent constitutive operators at the interface are derived for the

subsequent numerical treatment via nonlinear FEM:

22gi [¢k, 0 0
2 = | ° Bk 0 |, (39a)
Boc | 0 0 pke
32G! A6 3B Ay }
T kn— kil — kip— |- (39b)
0glocdd S gp ST 5 S22 s
94
gnkn_(il
aZgi %%
x £ = gtlktl_A ] (39C)
9008oc gQ
ko —
_gt2 2 7
PG 1., % 1 3?p 1 3%y
8865 = Egﬁk"ﬁ + Egtzlktlw + Egt22kt2 FYoR (39d)
where the terms &, 8 and j are given by:
2
&= $rc0 . (402)
[(1 — 0)gnco + Dgrzc,l]
B = gtzlc,O (40b)
= 2
[(1 = 0)gr1co + 0gr1c1]
2
p = 8t260 ‘ (40¢)

[(1—)graco + Dgtzc,1]2

Applications to heterogeneous materials and composite structures

In this section we present the numerical applications of the computational models
described in the previous section. The first application concerns the simulation of fracture
in flat or curved shell structures with in-plane or out-of-plane loading. In the examples, the
capabilities of the coupled phase field and CZM formulation are illustrated through vari-
ous examples concerning heterogeneous materials. In particular, the competition between
crack penetration and interface delamination is reproduced and compared with the theo-
retical results based on linear elastic fracture mechanics (LEFM) predictions. Phenomena
such as intergranular/transgranular fracture competition in polycrystalline materials, or
interlaminar/translaminar fracture competition in laminates are also outlined.
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Fig.4 Geometry of the simulated open-hole lamina (from [51])

Fracture in 3D solid shells

In the work developed in [48], the capabilities of the phase field approach to fracture,
formulated within the finite elasticity solid shell element, have been highlighted in refer-
ence to an important technological problem for novel materials to be used in aerospace
applications. In particular, failure analysis and strength prediction of an open-hole lamina
subjected to tensile loading has been considered (Fig. 4). The problem has been faced
using two modelling approaches: the so-called finite fracture mechanics (FFM) method
[3], and the phase field model previously described.

Finite fracture mechanics is a theoretical model which rely on a couple energy-stress
fracture criterion. It considers the average of the energy release rate and of the stress along
a small finite crack path, /,. When the average energy release rate and the average stress
overcome their respective critical values, the crack is predict to propagate of the length
l,. For details on the FFM approach applied to the present problem, please refer to [48].

These two modelling strategies have been applied for the reproduction of the experi-
mental results of different thin-ply systems performed in [49]. In Table 1, the experimental
results and the numerical predictions are compared. For both methods, the relative error
is lower than 11%.

The phase field approach results of critical importance and of much easier applicability
over FFM when failure analysis of a more complex structure geometry has to be performed.
Moreover, the phase field method allows to predict not only the ultimate strength of the
material, but also its stiffness evolution along the loading process.

Figure 5a shows the comparison between the experimental results and numerical pre-
dictions in the remote stress vs. displacement curves for the specimen T700/AR-2527.
The behaviour of the material is strongly brittle, exhibiting a quasi perfect linear evolu-
tion upon abrupt failure. This behaviour was qualitatively reproduced by the phase field
prediction. The crack path was also in good agreement with the experimental one (Fig.
5b). However, the stiffness of the laminate was slightly underestimated. This discrepancy
can be probably addressed to the fact that the laminate was considered as an unique
homogeneous body instead of the sum of different orthotropic laminae.
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Table 1 Experimental results and numerical predictions

Composite system and specimen geometry Experimental results (MPa) Predictions Relative error

FFM (MPa) PF (MPa) FFM (%) PF (%)

T700/AR-2527—Ilaminate 1

W/(2R) = 4; 2R =3 mm 432 465 415 7.8 -39

W/(2R) = 4; 2R =6 mm 385 392 368 19 —44

W/(2R) =4; 2R=10 mm 367 342 361 —58 - 16
T700/AR-2527—laminate 2

W/(2R) = 4; 2R =3 mm 448 447 403 —-03 — 104

W/(2R) =4; 2R=6 mm 390 385 358 —1.2 —82

W/(2R) =4; 2R =10 mm 380 338 345 111 =92
M40JB/ThinPreg 80EP/CF

W/(2R) =6; 2R=1mm 551 559 524 15 —63

W/(2R) = 6; 2R =2 mm 470 475 447 1.0 —-59

W/(2R) = 6; 2R =6 mm 365 356 351 —25 —38

Columns 1, 2 show the specimens geometries for each type of composite material. Column 3 shows the experimental failure
stress of the specimen. Column 4, 5 show the numerical prediction of the finite fracture mechanics method and the phase
field method. Columns 6, 7 show the errors of the predictions with respect to the experimental results

a
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. . .
€ 400 PF simulation g
) ~ I
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2 300 1 Z - \
[ g
b Z Cd
2 200 4 z
- 4
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QE_} 100 -
~

o T T T 1
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Fig.5 a Experimental and numerical remote stress vs. displacement curves; b experimental-numerical crack
path for open-hole specimens

More applications of the finite elasticity solid shell element have been presented in [24].
The three-dimensional formulation has been used in order to reproduce the fracture of
a notched plate under out-of-plane loading (Fig. 6a) and the fracture of a cylinder under
tension loading (Fig. 7a). In the former case, the loading condition triggered Mode III

1

~0.75

-0.5

[0.25

0

b c

Fig.6 Tearing test. a Geometry and loading condition of the test; b crack propagation; ¢ specimen failure
(from [24])
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a b c

Fig.7 Tensile test of a cylindrical shell. a Geometry and loading condition of the test; b crack propagation; ¢
specimen failure (from [24])

fracture (Fig. 6b). Subsequently, all the three fracture Modes became activated and the
fracture path was deviated from the initial straight direction (Fig. 6c).

In the cylindrical shell application, it is shown the ability of the model to simulate crack
propagation in curved geometries. Figure 7b, ¢ shows how the crack perfectly followed
the Mode I crack direction along the cylindrical shape.

The problem of the crack impinging on an interface studied using the phase field approach
to fracture coupled with the cohesive zone model

The modelling framework previously described has been used for the study of crack
propagation in heterogeneous materials. In such cases, the interaction between crack
propagation in the bulk and the delamination along an interface is a very challenging
task and it is still an open issue from the point of view of fundamental research. When
a crack impinges on an interface, various scenarios can take place [37]: (i) crack pene-
tration, (ii) crack deflection or (iii) crack branching. The first situation refers to the case
when the crack crosses the interface without development of delamination. In the second
case, delamination occurs and the crack deflects. Finally, the last case comprehends the
penetration of the crack with possible development of crack branches after crossing the
interface.

In [37], the authors reproduced these fracture modes in the system in Fig. 8a. They made
use of the novel interface finite element formulation compatible with the phase field. This
numerical approach has been supported by a dimensional analysis which shade light on
the variables governing the problem. The following dimensionless numbers were defined:

gb
~a

_GE
- o2L

Iy I, (41)

where g}; and gé stand for the fracture energies of the bulk and of the interface, respec-
tively, o. is the apparent strength of the material, E is its Young modulus, and L is the
specimen size (Fig. 8a).

For the considered system, the possible fracture modes are crack penetration or deflec-
tion (Fig. 8b). Dimensional analysis suggests that IT; rules the size-scale effect given by the
cohesive interface, and it is in fact proportional to the ratio Iczy /L [37]. When [Ty — 0,
the interface was set very brittle and LEFM predictions were recovered. The dimension-
less number Iy, on the other hand, governed the competition between crack penetration
and deflection, as shown in Fig. 8b. On the contrary, as I1; increases, more relevant cohe-
sive phenomena at the interface are developed, setting a competition between these two
parameters which rules the mechanical system. Figure 8c, d shows the results of the sim-
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Fig.8 a Geometry considered to study the effect of a crack impinging on an interface; b curve which
separate the crack penetration and deflection cases for different impinging angles; transition from crack
deflection, ¢ to crack penetration, d for a brittle interface (IT, — 0) with angle & = 30° (from [37])

ulations of different values of the ratio I1; obtained through the computational model in
[37].

The behaviour discussed above changed when we have a bi-material system like in Fig.
9a. In this case, the Dundurs’ parameters « and B [50] should be considered. Based on
the value of the ratio 1/I1;, three different crack patterns can be simulated depending
on the LEFM-predicted curves shown in Fig. 9b and separating double deflection from
single deflection and penetration failure modes. The numerical predictions whose crack
patterns are shown in Fig. 9c—e, were in very good agreement with LEFM predictions.

Fracture in anisotropic polycrystalline silicon

Another application of the computational model based on the phase field model and the
compatible interface finite element can be found in [51]. In this work, the competition
between intergranular and transgranular fracture in polycrystalline materials has been
studied, considering anisotropic constitutive relations for the grains, depending on their
crystallographic orientation. The phase field model has been used to simulate transgranu-
lar fracture, while cohesive interface finite elements have been used to depict intergranular
fracture.

Here, the phase field formulation of the potential energy presents the follows expression:
Mwo) = [ wiec™),00da+ [ Gy, v,00de @)
Q Q

where C'“%9) is the constitutive matrix corresponding to a grain with crystal orientation
(abc) and G'*°) is the corresponding fracture energy.
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Fig.9 a Geometry of the tensile test of a bi-material system; b curve which separate the crack penetration,
crack single deflection and crack double deflection cases; transition from double deflection (c) to single
deflection (d) and crack penetration (e) for a brittle interface (IT, — 0) varying the ratio 1/IT;. The contour
plots scale is a dimensional vertical displacement (from [37])

Fig. 10 Finite element mesh of the polycrystalline silicon photovoltaic cell. The specimen has a notch on the
left edge. The grain orientations are specified by the Miller indices in the grains and by the different colours
(from [51])

This computational model has been applied to the description of fracture of polycrys-
talline silicon solar cells, see an example of finite element mesh in Fig. 10. Silicon grains
were connected to each other by means of zero-thickness interface finite elements. The
square domain in Fig. 10 presented an edge notch on the left side. A tensile test has been
simulated by considering different values of the ratio between the grain boundary frac-
ture energy and the fracture energy of the grain with orientation (100), i.e., G&¢/G{100),
The simulations showed that for low values of G& /G{190 failure was mostly the result of
intergranular fractures (Fig. 11a). By increasing the value of the ratio G& /G190 trans-
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Fig. 11 Contour plots of inelastic displacement field, illustrating the crack path for different values of
G /G1% (from [51])

granular fracture developed from the notch and it competed with intergranular debonding
(Fig. 11b). For much higher high values of G /G‘190) greater than 1, failure was mostly
dominated by transgranular fracture (Fig. 11c, d).

Fracture and delamination in 3D laminates
The competition between fracture and delamination in 3D composite laminates has been
deeply investigated in [47] within a finite elasticity framework. The model was based on
the phase field formulation within the solid shell element and of the 3D interface elements
for large relative displacements.

The influence of the constitutive coupling between phase field and the CZM has been
a primary topic of investigation. To this aim, a single-edge notched specimen with an
interface has been numerically tested under tensile load (Fig. 12). A parametric analysis has
been performed by varying the interface strength (0 max) and the ratio between the initial
(0 = 0) and the final (0 = 1) critical crack openings. The predicted crack pattern based on
the model parameters used was characterized by the following features (Fig. 12): the crack
was predicted to penetrate the interface and then it propagated in pure Mode I, without
crack deflection or branching, although partial decohesion of the interface takes place.
Coupling between the CZM and damage in the surrounding continuum led to different
post-peak branches in the force-displacement curves depending on the ratio between the
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Fig. 13 Force displacement curve for different omax and different ratio gc/gco (from [47])

critical opening displacements for the undamaged and fully damages states, g./g.0, see
Fig. 13. When debonding was estimated to occur, two drops in the load carrying capacity
of the mechanical system were observed: the first one corresponds to the complete failure
of the left part of the specimen, and the second one is associated with the failure of the
right part. The amount of energy dissipated in this post-peak evolution depends on the

amount of delamination, which is an increasing function of the ratio g./g; 0.

This competition between crack propagation and delamination has been also captured
in laminate systems. In this case, the crack propagates through the thickness of the solid
shell and delamination occurs at the interface between two laminae, as in the sandwich
panel with a notch in the middle of the span that propagates over the complete width of
the topmost layer (Fig. 14a). The panel was subjected to in-plane tensile forces and out of
plane displacements, to simulate a 4-point bending test. A sandwich panel with the same
internal structure but with cylindrical shape has also been tested, see Fig. 14c and with
Fig. 14b. This specimen was subjected to a tensile load. In both simulations, depending on
the tensile strength of the CZM, delamination and crack propagations were estimated to
take place simultaneously. Figure 15 shows the results of the two simulations in which the
crack propagates through the laminae and delamination also occurs. Again, delamination
events are fully captured by the force-displacement curve as shown in Fig. 16. Moreover, in
line with previous considerations, delamination causes a delay of the crack in propagating

from a layer to another.
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Fig. 14 Geometry of the 4-point-bending specimen in a and geometry of the cylinder under tension in b.
Composite composition through the thickness in ¢ (from [47])
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Fig. 15 Crack propagation and delamination in a notched sandwich panel. a Flat geometry under tensile
and 4-point banding loading; b cylindrical geometry under tensile loading (from [47])

Finally, an industrial application of this computational model has been proposed in [47]
in relation to a 4-point bending test of a photovoltaic module (Fig. 17a). In detail, the mod-
ule has been discretized as a composite made of 5 layers in which the middle layer is a brittle
silicon solar cell, encapsulated by an adhesive material made of EVA, while the topmost
and bottommost layers are made of glass and a polymeric material, respectively. The exper-
imental 4-point bending test performed in [52] shows the development of microcracks
in the silicon layer. This phenomenon has been captured by the present computational
model in terms of overall force-displacement curve (Fig. 17b). The only difference, which
requires further developments, regards the fact that the silicon layer is predicted to fail as
aresult of a single crack in the mid-span position, rather than as a result of multiple micro-
cracks probably due to material defects which are not modelled in the present approach.

Micromechanics of fibre reinforced composite materials

This application illustrates the prediction of crack initiation and evolution in fibre rein-
forced composite materials from a micromechanical perspective, so that the different
constituents are defined according to their respective mechanical and fracture properties.
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Table 2 Mechanical properties: fibre and matrix

Material E (GPa) v Ge (N/mm) [ (um)
Fibre 210 0.22 16 045
Matrix 2.8 0.33 0.016 045

Table3 Mechanical properties of the fibre-matrix interface

Interface property oc (MPa) Ge (N/mm)
Fracture Mode | 75 0.002
Fracture Mode Il 90 0.008

This application has received a great of attention in the scientific community due to the fact
that micromechanical analysis can shed light to macromechanical failure mechanisms in
composite materials, especially those associated with matrix-dominated failure [53-55].
In this context, the main capabilities of the proposed numerical framework, differing
from alternative techniques, is the fact that a direct competition between fibre—matrix
debonding along the existing interface and matrix failure can be carried out throughout
the numerical analysis.

The numerical experiment under consideration concerned with the problem of fiber—
matrix debonding caused by transverse loads under the assumption of plane strain con-
ditions. Therefore, the problem geometry was reduced to the plane perpendicular to the
fiber axis, which was defined by a circular inclusion with radius R = 0.01251 mm. The
lateral size of the square domain was set equal to L = 0.1 mm. Similarly previous inves-
tigations [53], both matrix and fiber were assumed to be linear elastic materials, and the
fibre—matrix interface was assumed perfectly bonded. Material properties for the fibre
and matrix are reported in Table 2, whereas the interface properties are listed in Table 3
[56,57]. We also exploited the symmetry of the problem so that only one quarter of the
domain was considered for the current simulation. Note however that, a more compre-
hensive analysis of the different aspects that govern the current application is beyond the
scope of the present paper, and will be discussed in a forthcoming investigation.

The domain was discretized with first-order 30,274 elements for the matrix, 1200 ele-
ments for the interface and 19,095 for the fibre. The simulations were conducted under
displacement control, so that a prescribed displacement §, (the imposed strain reads
& = 8x/L) was imposed at the lateral edges of the domain, see Fig 18. The fiber—matrix
interface failure was modeled by the proposed tension cut-off interface response, whose
apparent stiffness was coupled with the evolution of the phase field fracture variable of
the surrounding bulk.

The corresponding load-displacement evolution curve of the current analysis is shown
in Fig 19. In this graph, it can be observed that the system response was governed by three
different phases:

» The first stage of the simulation displayed a linear elastic evolution of the system prior
damage initiation.

+ In line with [53,55], failure of the system was initially ruled by the fibre—matrix
decohesion along the interface up to around an angle of around 45°. Damage onset
and progression along the interface was captured by the sudden drop in the evolu-
tion curve, featuring a snap-through instability. Note that this prediction presents
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Fig. 19 Micromechanics of fibre reinforced composite materials: stress—strain evolution curve and damage
pattern at different stages of the simulation

remarkable differences with that discussed in [54] whereby only matrix failure along
the numerical study was reported. Nevertheless, the abrupt character of damage
occurrence reported [54] in was also captured by the current modeling framework.

« The third stage of the curve predicted the subsequent interface damage and the
posterior kinking into the matrix. The first phase of damage growth within this range
was characterized by a interface failure growth. Afterwards the interface crack was
predicted to kink into the adjacent matrix experiencing a stable growth since the
stress—strain evolution curve displays a continuous increase along the loading path.
Note that the kinking angle for the current configuration was predicted to occur at
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Fig. 20 Micromechanics of fibre reinforced composite materials: a final damage pattern. b Final horizontal
displacement

around 62°, which satisfactorily agreed with the experimental observations reported
in [53,55] and the references given therein.

Finally, the final damage pattern and the horizontal displacement field of the system is
shown in Fig. 20, whereby the arising discontinuity due to the crack occurrence can be

clearly appreciated.

Conclusions

The phase field model for brittle fracture has been largely used in the last few years
and it has seen many developments in order to provide a tool for quantitative fracture
mechanics simulations. In this review article, some advancements to simulate complex
fracture phenomena in heterogeneous materials and composites, motivated by the ERC
Starting Grant CA2PVM project (http://musam.imtlucca.it/CA2PVM.html), have been
presented.

The integration of the phase field model in a 3D finite elasticity formulation increased the
range of applications of the model. Three-dimensional flat or curved surfaces with in-plane
or out-of-plane loading can now be easily simulated. Another important advancement
has regarded the coupling of the phase field approach with the cohesive zone model. This
progress allows the simulation of heterogeneous structures and materials like composites
or polycrystals. The fundamental aspects of the proposed modeling framework were also
compared with alternative formulations, pinpointing the common and differentiating
underlying hypotheses.

From the quantitative standpoint, the proposed approaches represent an accurate
tool to simulate fracture phenomena such as intergranular/transgranular or interlam-
inar/translaminar fractures, reproducing complex crack paths typical of heterogeneous
materials in 2D and in 3D. Finally, preliminary results regarding the micromechanical fail-
ure of fibre reinforced composite haven been also addressed, which satisfactorily agreed
with previous numerical studies and experimental observations.
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