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Abstract 

Background:  Oncomelania hupensis is only intermediate snail host of Schistosoma japonicum, and distribution of 
O. hupensis is an important indicator for the surveillance of schistosomiasis. This study explored the feasibility of a 
random forest algorithm weighted by spatial distance for risk prediction of schistosomiasis distribution in the Yangtze 
River Basin in China, with the aim to produce an improved precision reference for the national schistosomiasis control 
programme by reducing the number of snail survey sites without losing predictive accuracy.

Methods:  The snail presence and absence records were collected from Anhui, Hunan, Hubei, Jiangxi and Jiangsu 
provinces in 2018. A machine learning of random forest algorithm based on a set of environmental and climatic vari‑
ables was developed to predict the breeding sites of the O. hupensis intermediated snail host of S. japonicum. Different 
spatial sizes of a hexagonal grid system were compared to estimate the need for required snail sampling sites. The 
predictive accuracy related to geographic distances between snail sampling sites was estimated by calculating Kappa 
and the area under the curve (AUC).

Results:  The highest accuracy (AUC = 0.889 and Kappa = 0.618) was achieved at the 5 km distance weight. The 
five factors with the strongest correlation to O. hupensis infestation probability were: (1) distance to lake (48.9%), (2) 
distance to river (36.6%), (3) isothermality (29.5%), (4) mean daily difference in temperature (28.1%), and (5) altitude 
(26.0%). The risk map showed that areas characterized by snail infestation were mainly located along the Yangtze 
River, with the highest probability in the dividing, slow-flowing river arms in the middle and lower reaches of the 
Yangtze River in Anhui, followed by areas near the shores of China’s two main lakes, the Dongting Lake in Hunan and 
Hubei and the Poyang Lake in Jiangxi.

Conclusions:  Applying the machine learning of random forest algorithm made it feasible to precisely predict snail 
infestation probability, an approach that could improve the sensitivity of the Chinese schistosome surveillance 
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Background
Schistosomiasis, a parasitic serious disease caused by 
trematode worms belonging to the genus Schistosoma, is 
not only harmful to health but also holds up development 
of economy and society in the endemic areas [1]. Accord-
ing to the World Health Organization (WHO), the dis-
ease is prevalent in 78 tropical and subtropical countries 
around the world, where it affects the lives of more than 
700 million people in the endemic areas, with at least 240 
million actually infected. Schistosomiasis thus remains 
a major public health hazard in the developing world. 
In contrast to Latin America and Africa, the species in 
China, Schistosoma japonicum, is zoonotic with more 
than 40 species of mammals as reservoir hosts. The fresh-
water, amphibious snail Oncomelania hupensis serves 
as the parasite’s intermediate host [2]. Schistosomia-
sis japonica, once endemic in 12 provinces in southern 
China [3], is closely associated with the distribution of 
this snail, which is mainly found in the marshlands of the 
Yangtze River Basin and connected lake areas [3, 4]. After 
seven decades of continuous efforts, mainly based on 
snail control and treatment with the drug praziquantel, 
transmission interruption has been achieved in nine out 
of the 12 previously endemic provinces, the lowest level 
of prevalence ever obtained [5]. The remaining three 
provinces are located in the lake region in central China 
along the middle reaches of the Yangtze River. Due to the 
complex environment that includes annual flooding of 
the river basin, the risk of resurgence of schistosomiasis 
remains a constant threat and a major obstacle to accom-
plishing transmission interruption in the country.

Since O. hupensis is S. japonicum’s only intermedi-
ate snail host, efforts to eliminate schistosomiasis must 
inevitable include specific snail control to reduce or abol-
ish the transmission risk [6]. These activities have led to a 
continuing reduction of the endemic areas from year to 
year as shown by reports from the national surveillance 
network in China [7]. Notwithstanding, the snail-ridden 
areas are still so widely distributed in the lake region’s 
five provinces, including Anhui, Hunan, Hubei, Jiangxi 
and Jiangsu provinces, that they account for 94.7% of all 
known snail habitats in the country [8]. This makes the 
distribution and abundance of O. hupensis an impor-
tant and sensitive indicator for the surveillance system 
of the national schistosomiasis control programme [9]. 
Enhanced technology to monitor O. hupensis is strongly 

warranted as improved snail surveillance would make 
it possible to accelerate the work and realize the goal of 
schistosomiasis elimination by 2030 as scheduled by the 
Chinese government [10].

The distribution of O. hupensis is closely related to cli-
mate and geography, in particular temperature, rainfall, 
humidity as well as the presence of water bodies and 
elevations [11, 12]. Mathematical models supported by 
remotely sensed information can identify and estimate 
areas suitable for snail infestation in the marshlands [13], 
while machine learning based on ecological niche mod-
elling could be an additional adjunct as it has been suc-
cessfully used to predict the distribution of other species 
[14, 15]. The theory of ecological niche modelling derives 
from the principle that the distribution of specific species 
is closely related to their surrounding ecological envi-
ronment with thresholds for survival that are unique for 
each species [16]. Although ecological factors associated 
with the distribution of different species have already 
been widely employed to predict the geographical dis-
tribution of freshwater snails, the precision and scale of 
the methodology with regard to snail infestation are still 
not perfected. Niche modelling has performed well when 
used to estimate the geographic distribution of a species, 
while machine learning supported by algorithms based 
on the random forest (RF) approach and decision trees 
has made even more precise predictions [17]. In order 
to build linear and non-linear models between species 
distribution and ecological factors, RF improves classifi-
cation accuracy and can thus more effectively deal with 
highly complex data without loss of dimensionality and 
covariant variables [18]. This approach is highly suitable 
for the study of the transmission risk posed by schistoso-
miasis, as the disease is closely related to the distribution 
of its snail host, which in turn is strongly connected with 
geography and meteorology, in particular with altering 
temperatures [12]. The potential distribution of schis-
tosomiasis can in fact be predicted by the surveys using 
the simple, dichotomous variable ‘Presence/Absence’ of 
snails at potential breeding sites.

In China, the O. hupensis distribution is continuously 
assessed by the national schistosomiasis surveillance 
system that records snail presence and relevant ecologi-
cal data based on sampling [10]. Differentiation between 
environmentally similar locations are generally not made, 
and a spatial bias might occur when recorded data are 

system. Redesign of the snail surveillance system by spatial bias correction of O. hupensis infestation in the Yangtze 
River Basin to reduce the number of sites required to investigate from 2369 to 1747.

Keywords:  Schistosomiasis, Oncomelania hupensis, Snail infestation, Yangtze River, Random forest, Spatial sampling, 
Machine learning, China



Page 3 of 13Zheng et al. Infect Dis Poverty           (2021) 10:74 	

fed into the ecological niche model [19]. Indeed, previ-
ous studies on the distribution of O. hupensis snails using 
this approach have seldom accounted for this problem by 
providing specific, environmental information; only giv-
ing the geographical coordinates of the location where 
the snails were found [20]. In addition, sampling is com-
monly done in previously surveyed locations, often cho-
sen due to easy reach, while it is highly probable that the 
true distribution of a species is not limited to locations 
where it has been observed before [21]. Predictions based 
on incomplete grounds must be avoided as they will not 
provide reliable estimations. Thus, the risk of spatial bias 
arising from historic sampling data needs to be removed 
before ecological niche investigations are carried out 
[22].

The aim of this study was not only to avoid the spatial 
sampling bias of previous surveys, but also to reduce the 
number of investigated sites in future surveys without 
losing the level of predictive accuracy required. With this 
in mind, we used the snail survey carried out in 2018 in 
the area as reference, applied ecological niche modelling 
and a RF machine learning algorithm based on an alter-
native hexagonal spatial grid system.

Data and methods
The feasibility of designing a superior snail surveillance 
system was explored by (1) constructing a database of 
snail infestation based on geographical information sys-
tems (GIS) along with ambient environmental data; (2) 
application of a RF approach based on the evaluation 
results; and (3) estimating and mapping the most suitable 
areas for snail infestation.

Study site
The study was carried out in the Yangtze River Basin 
(Fig.  1), which constitutes a challenge due to variable 
geography, long lake shorelines and changing water ways.

Data source
The starting point was the 2018 data in the national 
schistosomiasis surveillance system that includes records 
of all O. hupensis snails found in all schistosomiasis-
endemic areas with name, location and time for each 
survey site. Live snail habitats were found in about 50% 
of the sites investigated. We merged all snail field survey 
data from the five concerned provinces (Hunan, Hubei, 
Jiangxi, Anhui and Jiangsu), applied the dichotomous 
variable ‘Presence or Absence’ of snail infestation and 
stored this information as raster data in the computer. 
We also considered the values of a set of environmental 
variables related to snail infestation and their interquar-
tile ranges (IQRs), a measure based on the difference 
between the means of the third and the first quartiles that 

describes data dispersion and variations with non-nor-
mal distribution.

The data used included geographical information 
(altitude, distance from water bodies and land cover), 
human activity and climate data. The former evidence 
was provided by the Socioeconomic Data and Applica-
tions Center of China (http://​www.​resdc.​cn/), and the 
meteorological information came from the WorldClim 
database (https://​www.​world​clim.​org/​data/​biocl​im.​html) 
of 19 biologically significant variables (Table 1). All pre-
dictor variables were converted into spatial raster data as 
shown in Fig. 2.

The human influence index consists of a global data-
set created from nine global 1  km2 data layers covering 
human population density, land use/land cover, infra-
structure (built areas, night-time light) and access (roads, 
railroads, navigable rivers, and harbours on coastlines), 
represented by a 0–64 range corresponding to values 
from no influence to the currently highest [23]. The 
human footprint is a heatmap using the factors men-
tioned to illustrate the degree of human domestication 
of nature on a scale from high impact to still untouched 
natural areas that can also be given as numerical values as 
seen in Table 1.

Re‑assessment of sampling sites
Vector structures are generally based on grids with 
square lattices. However hexagonal grids, as suggested by 
Sahr [24], unlike square or circle grids, produce signifi-
cantly less spatial distortion that all grid cells cover the 
same area, which is particularly important when applied 
for large regions. There are severe resource constraints 
for efficient processing of raster and vector data in high-
performance applications. We discovered the hexagonal 
discrete global grid system (HDGGS) [24], when search-
ing for a highly efficient approach for location represen-
tation that would reduce the need for snail sampling sites 
while randomizing the records to be evaluated. Decom-
posing the study area into a set of adjacent hexagonal 
cells provided us with a surface unit that not only fits 
the eye’s retinal reception better than a square but also is 
much closer to a circle where the distances to the periph-
ery are more similar than in a square. If the distance 
between locations in two different cells is smaller than 
desired, the cell “radius” can be enlarged leading to the 
study area consisting of a lower number of larger cells. 
Thus, for each set distance between immediately adjacent 
cell centres, there is a corresponding number of cells cov-
ering the region studied.

Considering the spatial bias of snail records when esti-
mating the suitability level of snail infestation in vari-
ous areas, re-assessed values based on five different cell 
distance scenarios were investigated using 5, 10, 50, 100 

http://www.resdc.cn/
https://www.worldclim.org/data/bioclim.html


Page 4 of 13Zheng et al. Infect Dis Poverty           (2021) 10:74 

and 150  km between the centres of adjacent grid cells, 
while 0  km corresponded to the previous survey snail 
site records. In this way, the sites came to move between 
adjacent hexagons in a randomized way (Fig. 3). With the 
cell centre value(s) representing the whole cell, unneces-
sary sampling sites could be bypassed (erased in the fig-
ure) to make each hexagon size in principle contain only 
one sampling site (the one closest to the centre).

Model construction
The desired balance between accurate prediction and 
simple assumption plays an important role in ecosystem 
assessment, and the distribution of snail colonies requires 
highly accurate predictions of spatial patterns. The RF 
machine learning algorithm is useful as it builds multiple 
decision trees and merges them to get accurate and sta-
ble predictions [25]. As it is both flexible, accurate, and 
highly correlated, variables won’t cause multi-collinearity 
issues in RF [26], then this algorithm was selected for 

various simulations of the ecological niche model to gen-
erate predictions regarding the presence of snail habitats.

The re-assessed snail records were incorporated into 
the model with the dichotomous variable ‘Presence or 
Absence’ of snail infestation sites as the dependent vari-
able, and with the 25 ecological environmental factors 
shown in Table  1 as predictor variables. When com-
plete, the dataset was split into a training set (80%) and 
a validation set (20%). To prevent statistical overfitting, a 
cross-validation approach was used to minimize obser-
vation error of screening only appropriate RF nodes in 
the training set. We also used calibration to diagnose the 
predictions by the training, which generated 100 seg-
ment intervals between 0 and 1, then grouped the snail 
infestation probability and observations in each segment 
interval to calculate the average predicted and observed 
rates [27]. A linear model was used to analyse the correla-
tion between prediction and observation. After the cali-
bration, we used this RF model to assess the predictive 
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Fig. 1  The study area. The Yangtze River Basin is in close contact with the two major lakes, Dongting Lake and Poyang Lake, as it traverses the five 
endemic provinces in central China
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performance in the  validation set. The prediction accu-
racy of the model was evaluated by the receiver operating 
characteristic (ROC) approach calculating the area under 
the curve (AUC) [28], as well as by the Kappa value [29]. 
AUC varies between 0 and 1 and the larger the value, the 
better the predictive accuracy, while the Kappa value var-
ies between 1 and -1 and the closer it is to 1, the better 
the model prediction consistency and reliability, while 
negative values indicate random outcomes.

The RF was established to predict the snail probabil-
ity in the training set, then followed by testing using the 
validation set. This decision tree approach computes the 
reduction sum of the loss functions across all splits, then 
aggregate this measure across all trees for each feature 
and the one with the largest average decrease is consid-
ered the most important [25]. RF variable importance 
measures are a sensible means for variable contribu-
tions for the purpose of response variables in classifica-
tion, and shows the most important variable from noisy 
variables [30]. By randomly permuting each predictor 

variables, and its original association with the purpose of 
responses [31], a normal calculation method in machine 
learning, it is possible to find indicators to which predic-
tors are particularly important to the model. Through 
the RF model, the partial dependence of the marginal 
effect of each variable in relation to Oncomelania snail 
infestation probability can be calculated with the result 
describing the interrelationship between snail infestation 
probability and each predictor variable [32]. Considering 
the numbers of variables and permutations, the partial 
dependence only the importance of variables exceeding 
25% from the best fit model. In this study, we explored 
this by finding out which variables performed best after 
re-assessing the sampling sites.

Areal suitability for snail infestation
We used the RF algorithm to predict the range of vary-
ing degrees of suitability for snail infestation in the study 
area based on the ecological factors given in Table  1 
and expressed the results in a ‘heatmap’, where each 

Table 1  Variables used in the study

a measure of direct human influence on terrestrial ecosystems based on (1) human settlement; (2) access, such as roads, railroads, rivers, etc.; (3) land use/land 
cover; and (4) night-time electric light. Values range from 0 to 64, where the former represents no human influence and the latter maximum influence; bheatmap 
representation of human power over nature on the land surface, ranging from red (highest) to green where wildness still thrives; cmeasure of how large the day-to-
night temperatures oscillate relative to the summer-to-winter oscillations; dBIO2/BIO7 × 100; eBIO 4 = standard deviation × 100; fBIO5-BIO6; gCoefficient of variation

Variable Value Interquartile range (IQR) Source

Altitude (m) 141.5 32.8–396.4 Socioeconomic Data and 
Applications Center of 
China

Human influence index (HII)a 20.1 16.9–25.5

Human foot printb 31.1 26.1–39.2

Land cover 10 4–16

Distance to the river (km) 9.5 4.7–66.5

Distance to other water bodies (km) 74.5 28.7–156.3

Annual mean temperature (℃) 16.1 15.2–17.1 WorldClim BIO1

Mean diurnal range (max – min temp) (℃) 8.1 7.6–8.5 WorldClim BIO2

Isothermalityc (%) 25.0 24.1–26.26 WorldClim BIO3d

Temperature seasonality 8346.7 7894.1–8718.5 WorldClim BIO4e

Max temperature of the warmest month (℃) 32.1 30.9–32.9 WorldClim BIO5

Min temperature of the coldest month (℃) 3.9 -14.1–15.5 WorldClim BIO6

Temperature annual range (℃) 31.7 30.5–32.8 WorldClim BIO7f

Mean temperature of the wettest quarter (℃) 22.6 21.2–25.7 WorldClim BIO8

Mean temperature of the driest quarter (℃) 6.4 4.5–8.6 WorldClim BIO9

Mean temperature of the warmest quarter (℃) 26.8 25.8–27.5 WorldClim BIO10

Mean temperature of the coldest quarter (℃) 51.8 37.1–62.5 WorldClim BIO11

Annual precipitation (mm) 1374.8 1053.6–521.1 WorldClim BIO12

Precipitation of the wettest month (mm) 218.5 196.4–245.2 WorldClim BIO13

Precipitation of the driest month (mm) 38.1 27.1–45.1 WorldClim BIO14

Precipitation seasonality (mm) 53.1 48.7–59.0 WorldClim BIO15g

Precipitation of the wettest quarter (mm) 584.5 476.2–650.7 WorldClim BIO16

Precipitation of the driest quarter (mm) 139.9 98.8–169.7 WorldClim BIO17

Precipitation of the warmest quarter (mm) 487.8 448.2–544.1 WorldClim BIO18

Precipitation of the coldest quarter (mm) 152.8 100.8–194.6 WorldClim BIO19
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point shows the level of suitability for snail infestation 
on a range between 0 and 1. It was necessary to divide 
the snail infestation areas by threshold levels, as they 
indicated the probabilities of snail presence that could 
be translated into predicted probabilities by the cut-off 
value, which is a positive integer representing the num-
ber of evenly spaced thresholds. The default criterion of 
setting the threshold value is 0.5, and in our study we 
choose thresholds that maximized the sum of sensitivity 
and specificity and minimized the mean of the error rate 
for positive observations and the error rate for negative 
observation [15]. Considering the ecological characteris-
tics of the Oncomelania snail, the use of the temperature 
gap for snail breeding between 18 °C and 28 °C was seen 
as highly important as it produced cut-off points for the 
prediction of snail infestation suitability [33].

Data analysis
The statistical analysis and mapping used in this study 
were performed in R software (Vienna, Austria, version 
4.0.2) The main computational packages included the 
Discrete Global Grids for R package dggridR (https://​rdrr.​
io/​cran/​dggri​dR/f/​vigne​ttes/​dggri​dR.​Rmd) that was used 

for the spatial re-sampling approach; the raster package 
(https://​rspat​ial.​org/​raster/​raster/​Raste​rPack​age.​pdf ) for 
processing the raster data in snail survey and predictor 
variables; the Ranger package (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​ranger) for constructing RF models, also 
with variable importance permutations, marginal effect 
calculations and forecasting, and the R package ggplot2 
(https://​www.r-​graph-​galle​ry.​com/​ggplo​t2-​packa​ge.​html) 
for data visualization.

Results
Descriptive analysis
The 2018 survey of snail records from Hunan, Hubei, 
Jiangxi, Anhui and Jiangsu provinces amounted to 2369 
sites, out of which 1061 were positive, i.e. live snails were 
found, giving a ratio of 0.448. Figure 3a depicts the geo-
graphical distribution of these survey sites over the Yang-
tze River Basin. Table 1 shows the extracted values from 
the raster map in relation to the various predictive vari-
ables and the calculated IQRs.

a

b c

Fig. 2  Flow diagram of the study. a The snail distribution dataset in the form of a spatial shapefile including ‘presence–absence’ records (left); 
re-assessment to correct the spatial bias (middle); environmental and geographic predictor variables prepared as raster files of the area (right). b 
Random forest model first fitted with the training set followed by testing by the validation set. c Probability of snail occurrence (left) and risk output 
based on thresholds (right)

https://rdrr.io/cran/dggridR/f/vignettes/dggridR.Rmd
https://rdrr.io/cran/dggridR/f/vignettes/dggridR.Rmd
https://rspatial.org/raster/raster/RasterPackage.pdf
https://cran.r-project.org/web/packages/ranger
https://cran.r-project.org/web/packages/ranger
https://www.r-graph-gallery.com/ggplot2-package.html
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Calculation of the most suitable re‑assessment level
The number of hexagonal grid cells decreases with 
increasing distance between the centres of adjacent grids 
(Additional file  1: Table  S1) leading to a lower number 
of geographic locations of snail records needed per cell 
as seen in Fig. 3. As the value at the center of each cell 
will represent the value of the whole cell, we only needed 
these pilot points for the evaluation of the whole area, 
which means that the number of re-assessed sample sites 
is equal to the number of grid cells.

The performance of the validation set is depicted in 
the Additional file 1: Table S1. The overall ratio of posi-
tive snail infestations to the total number of sites per 
area increased from 0.448 (the whole study area) to 0.477 
(the largest cell tested) even if the value varied from each 
cell enlargement to the next (Fig. 4 and Additional file 1: 
Table S1). However, the Kappa values decreased rapidly 
towards total random values with increasing cell sizes, 
while the AUC remained relatively stable though end-
ing up slightly below the initial value (Fig. 4). We aimed 
to find the lowest number of survey sites without losing 
surveillance resolution (sensitivity and specificity) as the 

distances grew from 0 to 150 km and the number of hex-
agonal cells decreased (Fig.  3b–f). This was achieved at 
the 5 km distance weight that produced 1747 sample sites 
with the highest accuracy (AUC = 0.889; Kappa = 0.618).

Variable importance and model calibration
With the RF established, the highest AUC (the one giving 
the best prediction of snail infestation for the study area) 
was found to be at the 5 km distance, which was therefore 
chosen for further analysis. The variable importance  in 
the stochastic model established was ranked according 
to contribution to the environmental suitability for snail 
infestation (Fig.  5a). The five variables with importance 
values exceeding 25% were ranked in falling importance 
as follows: (1) distance to lake (48.9%), (2) distance to 
river (36.6%), (3) isothermality (BIO3) (29.5%), (4) mean 
daily difference in temperature (BIO2) (28.1%) and (5) 
altitude (26.0%). The importance of the rest of variables is 
shown in Additional file 1: Table S2.

Based on these spatially re-assessed data of snail 
records, the calibration of the RF training set showed 
that the established RF model had a good fitness for snail 
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Fig. 3  Distribution of the snail records in the Yangtze River Basin with increasing cell sizes. a Snail records according to the 2018 field survey; b–f 
Spatial correction using 5, 10, 50, 100 and 150 km distance between the centres of adjacent cells, respectively. Snail records (with red for presence 
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occurrence when the observed snail survival probability 
was either small or large (Fig.  5b). However, when the 
snail survival probability was between 0.25 and 0.40, the 
estimated probabilities were much larger than that those 
observed. Overall, however, a high correlation (R2 = 0.89) 
between estimation and observation was obtained. The 
calibration of model prediction in the training set showed 
a good fit with the observed snail infestation sites as the 
response and the predicted snail infestation probability 
coincided.

Relationship between variables and snail infestation 
probability
Based on the variable importance resulting from the RF, 
the top five variables correlated well with the snail infes-
tation probability (Fig. 6), but each variable had a differ-
ent effect on snail infestation and all showed a non-linear 
relationship. First, the snail infestation probability was 
the highest when the distance to the water body was 
below 30 km, but it was still as high as 56%, decreasing 
to 42% and less further away; Second, with a 5  km dis-
tance to the river, the probability reached 55.3% before 
decreasing with longer distances; Third, the probability of 
snail infestation increased with isothermality and when 
this value reached 25.3%, the probability maintained a 
value around 51%; Fourth, with the mean diurnal range 

of temperature increased, the impact on snail infestation 
probability first increased and then decreased. When the 
mean diurnal range of temperature was 8.2 °C, the prob-
ability of snail infestation reached a maximum around 
53%; Fifth, as the altitude increased, the probability of 
snail infestation also first increased and then decreased 
to a stable level but still reaching 54% at altitudes of 
200–400 m.

Risk prediction
The predicted risk map was created based on predictor 
variables of snail infestation probability (Fig. 7a), includ-
ing model thresholds and the temperature cut-off levels. 
The risk map showed that the snail infestation prob-
ability was higher in areas near or inside the Yangtze 
River Basin, particularly in Hubei and Anhui provinces 
(Fig. 7b).

Discussion
The provinces traversed by the Yangtze River Basin have 
been able to achieve and maintaining the status of trans-
mission control but large snail-infested areas still exist, 
forcing snail surveillance to be continued [2, 4]. With the 
progress of schistosomiasis elimination programme in 
China, the comparative cost of maintaining snail control 
in these areas is rising. Only accurate risk predictions of 
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O. hupensis infestation and a full understanding of the 
schistosomiasis transmission patterns in this area can 
slow this trend.

As the sole intermediate host of S. japonicum, O. 
hupensis snail is strictly aligned with endemic areas of 
schistosomiasis japonica, a fact that not only reflects the 
importance of knowing its distribution in general but 
also the degree of infection in the snail population [10]. 
For the national schistosomiasis surveillance system, it 
is essential to develop an easily implemented approach 
to precisely predict these two pieces of information [9]. 
Since ordinary snail sampling is both labor-intensive 
and less precise than required, we chose this area and 
explored the RF machine learning algorithm for snail 
records aggregated with environmental and climate data 
to design a new snail surveillance system with fewer snail 
sampling sites but without losing predictive accuracy. 
These new approaches were bundled together using a 
hexagonal base layer as geographical reference because 
of the environmental variation within the hexagon is less 
likely to vary compared to the square whose four corners 
are further away from the center.

The finding of a 5 km between hexagon centres as the 
most suitable distance, indicates that the number of 
survey sites needed to precisely predict the real status 
of snail infestation in the Yangtze River Basin could be 
decreased from 2369 to 1747 (Additional file 1: Table S1). 
The advantage of this strategy of designing surveillance 

sites for routine snail surveys is that it would be less 
costly, yet more precise. For estimating the predictabil-
ity of the new approach, AUC and Kappa, both power-
ful tools for accuracy estimation of ROC analysis, were 
applied. The former is particularly useful for classify-
ing binary-class problems, such as the snail presence/
absence dichotomy, while that latter compensates for 
random success in multi-class cases. An understanding 
of how these two accuracy meters relate to each other has 
been revealed [34], and as it can assist the understanding 
of their respective advantages we used both methods to 
make sure to find out at which distance the outcome was 
sufficiently accurate.

The use of the RF machine learning algorithm to pre-
dict the best suitability of snail infestations provided a 
simple way to perform the re-assessment analysis in the 
study area. Re-assessing the snail records using hexagon 
cells with a “radius” of 5 km produced an AUC value of 
0.889, which thus indicated a better prediction perfor-
mance than the use of the original sites (at 0  km dis-
tance); indeed, this AUC value was better than any of the 
larger distances investigated (Additional file 1: Table S1). 
When the distance between cell centers increased, the 
predictive capacity, as indicated by the AUC fell reach-
ing a low at the 50 km distance. However, long before this 
point was reached (Fig.  4), the Kappa value had edged 
closer to the negative, thus giving a random verdict that 
indicates that the prediction results cannot be trusted 
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[29]. Although the number of grid cells decreased to 44 
at the 150  km hexagon “radius”, this is hardly useful in 
practice. As indicated by both AUC and Kappa meas-
urements, the lowest useful number of sites (1747) was 
found at the 5 km level. Hence, it is extremely important 
to use spatial weighting approach before applying predic-
tion modelling.

Many studies have used ecological niche modelling to 
predict the probability of the freshwater snail distribu-
tion based on the snail records as the response variable, 
but they have generally ignored the spatial bias invoked 
as routine snail survey data are not distributed randomly 
[35, 36]. This spatial bias is due to the uneven distribu-
tion of snails in the natural environment, e.g., there are 
often more than one thousand snail records within a 
radius of 5 km, but as some sites investigated are closer 
to each other than others, the result invariably becomes 
a negative binomial distribution. In addition, when sites 
investigated are from similar environments with respect 
to variables, such as altitude, temperature or land cover, 
they must be considered repeat records and therefore 
generating redundant data in model processing, which 
leads to statistical overfitting.

Since O. hupensis is an amphibious snail that needs 
water for reproduction and survival, the greatest fac-
tor with regard to snail infestation was unsurprisingly 
found to be the distance to water bodies, a result consist-
ent with previous observations near the Yangtze River 
[37, 38]. Second, human activities have a non-linear level 
of impact on the probability of snail infestation but the 
footprint shows the lowest values in unperturbed envi-
ronments where the probability of O. hupensis survival 
consequently is high, in contrast to urban and industrial 
areas where O. hupensis habitats are scarce. Third, the 
temperature range was found to be extremely impor-
tant for snail survival as it demands a narrow range (18–
28 °C) for replication and development [39], and cannot 
survive at all if the lowest mean temperature of the year 
falls below freezing [1]. Even temperature variation plays 
a role, the snail infestation probability was over 50% 
when the average daily temperature differences were less 
than 8.2 °C above which the probability dropped sharply. 
The larger the difference in daily temperatures, the lower 
the probability for water or moisture and this threatens 
O. hupensis reproduction, both due to interrupted hatch-
ing of its eggs and massive death of the adult snails when 
areas dry out [40].

The results discussed here show that the areas along 
the Yangtze River provide the highest suitability for snail 
infestation, in particular in Hubei and Anhui, where the 
snail infested areas account for 96.8% of the national 
total [41]. The former is a typical example of lake region 
transmission, which is concentrated in the central and 

southern regions of the province [38, 42], while the risk 
areas in Anhui province are found along with the river 
systems [43]. These are the areas of the higher risk for 
schistosomiasis transmission in the country and fur-
ther progress towards the elimination of schistosomiasis 
majorly depend on improved snail surveillance.

As traditional methods for snail surveys are labor-
intensive and time consuming, RF supported by machine 
learning could make a real difference here [7]. Snail con-
trol strategies also need to be improved with a focus on 
focal mollusciciding in high-risk areas with infected 
snails, which could be further facilitated by similar 
approaches including remote sensing for the detection of 
areas suitable for snail habitats [44], particularly during 
massive flooding along the Yangtze River, as occurred in 
1998 and 2020, which created many new snail-infested 
habitats [33]. Here also, snail infestation probability 
based on environmental and meteorological factors can 
be used to improve the sensitivity of the surveillance 
systems of the national schistosomiasis elimination pro-
gramme in China [45].

Although we accounted for both environmental factors 
and human behavioural changes, a limitation was that the 
latter is not yet as precise as the former. In addition, even 
if the new WorldClim version of 2017 provides updated 
data [46], the impact of climate change is now moving so 
fast that even five years old data are not precise enough 
for today’s assessment of the risk posed by the O. hupen-
sis snails with regard to schistosomiasis transmission 
[30, 33]. Second, we only used one RF machine learning 
algorithm to predict the snail infestation potential, and 
it would be useful to also investigate others as it might 
be possible to find and select another method providing 
even better data. Third, our current modelling approach 
emphasized the snail distribution but did not take into 
account the role of the degree of infection of the snails, 
which is equally important. However, this component 
requires a different approach and was therefore left for 
future studies.

Since the initiation of the national schistosomiasis 
control programme was started in China 70  years ago, 
snail control always had a prominent place [47]. Even if 
the introduction of praziquantel changed the approach 
to schistosomiasis control completely, snail surveillance 
remains of high importance in the programme [48]. 
Therefore, the national schistosome surveillance systems 
must be further improved to achieve schistosomiasis 
elimination in China.

Conclusions
Data on snail infestations must be provided in real time at 
a high predictive accuracy, as this information is critical 
for the national schistosomiasis elimination programme 
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in China. Based on the results of the study, schistoso-
miasis surveillance should be strengthened with special 
reference to snail distribution, especially along the Yang-
tze River. It is expected that the results of this study will 
improve the design of the national surveillance system.

Abbreviations
AUC​: Area under the curve; GIS: Geographical information systems; HDGGS: 
Hexagonal discrete global grid system; IQRs: Interquartile ranges; RF: Random 
forest; ROC: Receiver operating characteristic.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40249-​021-​00852-1.

Additional file 1: Table S1. Variation of random forest parameters in rela‑
tion to spatial distance. Table S2. Variable importance of RF model with 
spatial distance in 5 km.

Acknowledgements
We thank the colleagues from all staff from 12 institutions of schistosomiasis 
endemic provinces for their efforts on Oncomelania hupensis snail survey with 
validated snail survey data.

Authors’ contributions
ZJ-X, RB, ZX-N, LS, XS, and ZY designed the study. ZJ-X, ZX-N, XS and LS 
collected and analysed data. ZJ-X, ZX-N, ZY and RB accessed and verified 
the data. ZJ-X, ZX-N, LS and RB analysed data and interpreted results. ZJ-X, 
ZX-N, and RB drafted the Article. All authors had full access to the data, and 
reviewed, revised and gave final approval of the Article before submission. All 
authors read and approved the final manuscript.

Funding
The work was funded by grants from The International Development Research 
Centre (IDRC), Canada (No. 108100-001), also partially supported by the 
Strengthen Action Plan for Shanghai Public Health System Construction 2011–
2013 (GW-11) and by the National S & T Key Project (No. 2016YFC1202000).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
ZX-N is the Editor-in-Chief of the Infectious Diseases of Poverty. He was not 
involved in the peer-review or handling of the manuscript. The authors have 
no other competing interests to disclose.

Author details
1 National Institute of Parasitic Diseases, Chinese Center for Disease Control 
and Prevention; Chinese Center for Tropical Diseases Research; WHO Collabo‑
rating Centre for Tropical Diseases; National Center for International Research 
on Tropical Diseases, Ministry of Science and Technology; NHC Key Laboratory 
of Parasite and Vector Biology, Shanghai 200025, China. 2 School of Global 
Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong 
University School of Medicine; One Health Center, The University of Edin‑
burgh, Shanghai Jiao Tong University, Shanghai 200025, China. 3 Ingerod, 

Brastad, Sweden/formerly with the UNICEF/UNDP/World Bank/WHO Special 
Programme for Research and Training in Tropical Diseases (TDR), World Health 
Organization, Geneva, Switzerland. 

Received: 23 March 2021   Accepted: 23 April 2021

References
	1.	 Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. 

Lancet. 2014;383:2253–64.
	2.	 Zou L, Ruan S. Schistosomiasis transmission and control in China. Acta 

Trop. 2015;143:51–7.
	3.	 Song LG, Wu XY, Sacko M, Wu ZD. History of schistosomiasis epidemiol‑

ogy, current status, and challenges in China: on the road to schistosomia‑
sis elimination. Parasitol Res. 2016;115:4071–81.

	4.	 Cao CL, Zhang LJ, Deng WP, Li YL, Lv C, Dai SM, et al. Contributions and 
achievements on schistosomiasis control and elimination in China by 
NIPD-CTDR. Adv Parasitol. 2020;110:1–62.

	5.	 Zhang LJ, Dai SM, Xue JB, Li YL, Lv S, Xu J, et al. The epidemiological 
status of schistosomiasis in P. R. China after the World Bank Loan Project 
2002–2017. Acta Trop. 2019;195:135–41.

	6.	 Wang XY, Xu J, Zhao S, Li W, Zhang JF, He J, et al. Estimating the preva‑
lence of schistosomiasis japonica in China: a serological approach. Infect 
Dis Poverty. 2018;7:62.

	7.	 Sun LP, Wang W, Hong QB, Li SZ, Liang YS, Yang HT, et al. Approaches 
being used in the national schistosomiasis elimination programme in 
China: a review. Infect Dis Poverty. 2017;6:55.

	8.	 Zhang LJ, Xu ZM, Dan SM, Dang H, Lv S, Xu J, et al. Endemic status of 
schistosomiasis in the People’s Republic of China in 2017. Chin J Schisto 
Contrl. 2018;30:481–8 (in Chinese).

	9.	 Xu J, Steinman P, Maybe D, Zhou XN, Lv S, Li SZ, et al. Evolution of the 
national schistosomiasis control programmes in the People’s Republic of 
China. Adv Parasitol. 2016;92:1–38.

	10.	 Xu J, Li SZ, Zhang LJ, Bergquist R, Dang H, et al. Surveillance-based evi‑
dence: elimination of schistosomiasis as a public health problem in the 
Peoples’ Republic of China. Infect Dis Poverty. 2020;9:63.

	11.	 Zhang ZY, Xu DZ, Zhou XN, Zhou Y, Liu SJ. Remote sensing and spatial 
statistical analysis to predict the distribution of Oncomelania hupensis in 
the marshlands of China. Acta Trop. 2005;96:205–12.

	12.	 Adekiya TA, Aruleba RT, Oyinloye BE, Okosun KO, Kappo AP. The effect of 
climate change and the snail-schistosome cycle in transmission and bio-
control of schistosomiasis in Sub-Saharan Africa. Int J Environ Res Public 
Health. 2019;17:181.

	13.	 Xue JB, Xia S, Zhang LJ, Abe EM, Zhou J, Li YY, et al. High-resolution 
remote sensing-based spatial modelling for the prediction of potential 
risk areas of schistosomiasis in the Dongting Lake area, China. Acta 
Tropica. 2019;198:105077.

	14.	 Dallas TA, Laine AL, Ovaskainen O. Detecting parasite associations 
within multi-species host and parasite communities. Proc Biol Sci. 
2019;286:20191109.

	15.	 Chavy A, Ferreira Dales Nava A, Luz SLB, Ramírez JD, Herrera G, Vascibcekis 
Dos Santos T, et al. Ecological niche modelling for predicting the risk of 
cutaneous leishmaniasis in the neotropical moist forest biome. PLoS Negl 
Trop Dis. 2019;13:e0007629.

	16.	 Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A. Ecological niche mod‑
els and species distribution models in marine environments: a literature 
review and spatial analysis of evidence. Ecol Model. 2020;415:108837.

	17.	 Zhang L, Huettmann F, Zhang X, Liu S, Sun P, Yu Z, et al. The use of clas‑
sification and regression algorithms using the random forests method 
with presence-only data to model species’ distribution. MethodsX. 
2019;6:2281–92.

	18.	 Khalilia M, Chakraborty S, Popescu M. Predicting disease risks from highly 
imbalanced data using random forest. BMC Med Inform Decis Mak. 
2011;11:51.

	19.	 Ellis M, Taylor JE. Effects of weather, time of day, and survey effort on 
estimates of species richness in temperate woodlands. Emu-Austral 
Ornithology. 2018;118(2):183–92.

	20.	 Zhu HR, Liu L, Zhou XN, Yang GJ. Ecological model to predict potential 
habitats of Oncomelania hupensis, the intermediate host of Schistosoma 

https://doi.org/10.1186/s40249-021-00852-1
https://doi.org/10.1186/s40249-021-00852-1


Page 13 of 13Zheng et al. Infect Dis Poverty           (2021) 10:74 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

japonicum in the mountainous regions, China. PLoS Negl Trop Dis. 
2015;9:e0004028.

	21.	 Guillera-Arroita G, Lahoz-Monfort J, Elith J, Gordon A, Kujala H, Lentini P, 
et al. Is my species distribution model fit for purpose? matching data and 
models to applications. Global Ecol Biogeo. 2015;24(3):276–92.

	22.	 Tulloch AIT, Szabo JK. A behavioural ecology approach to understand 
volunteer surveying for citizen science datasets. Emu. 2012;112:313–25.

	23.	 Sanderson E, Jaiteh M, Levy M, Redford K, Wannebo A, Woolmer G. The 
human footprint and the last of the wild. Bioscience. 2009;52:891–904.

	24.	 Sahr K. Hexagonal discrete global grid systems for geospatial computing. 
Arch Photogra Cartogra Remote Sensing. 2011;22:263–376.

	25.	 Millar CI, Stephenson NL, Stephens SL. Climate change and forests of the 
future: managing in the face of uncertainty. Ecol Appl. 2007;17:2145–51.

	26.	 Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection using random 
forests. Pattern Reco Letters. 2010;31(14):2225–36.

	27.	 Seeholzer GF, Claramunt S, Brumfield RT. Niche evolution and diversifi‑
cation in a Neotropical radiation of birds (Aves: Furnariidae). Evolution. 
2017;71:702–15.

	28.	 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver 
operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

	29.	 McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 
(Zagreb). 2012;22:276–82.

	30.	 Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable 
importance measures: illustrations, sources and a solution. BMC Bioinfor‑
matics. 2007;25(8):25.

	31.	 Han H, Guo XL, Yu H. Variable selection using mean decrease accuracy 
and mean decrease gini based on random forest. 2016 7th IEEE Interna‑
tional Conference on Software Engineering and Service Science (ICSESS), 
Beijing, China, 2016, pp. 219–224.

	32.	 Zurell D, Elith J, Schröder B. Predicting to new environments: tools for 
visualizing model behaviour and impacts on mapped distributions. 
Divers Distrib. 2012;18:628–34.

	33.	 Zhou XN, Yang GJ, Yang K, Wang XH, Hong QB, Sun LP, et al. Potential 
impact of climate change on schistosomiasis transmission in China. Am J 
Trop Med Hyg. 2008;78(2):188–94.

	34.	 Ben-David A. About the relationship between ROC curves and Cohen’s 
kappa. Eng Appl Artif Intell. 2008;21:874–82.

	35.	 Fan J, Yuan X, Wang M, Zhu G. Mapping the potential distribution of 
the schistosomiasis intermediate host Biomphalaria straminea in China. 
Geospat Health. 2018;13:723.

	36.	 de Augusto RC, Duval D, Grunau C. Effects of the environment on devel‑
opmental plasticity and infection success of Schistosoma parasites—an 
epigenetic perspective. Front Microbiol. 2019;10:1475.

	37.	 Chen Y, Liu J, Xiao Y, Zhong C, Wei F, Liu S. Spatiotemporal pattern analysis 
of schistosomiasis based on village level in the transmission control stage 
in lake and marshland areas in China. Parasitology. 2020;147:199–212.

	38.	 Chen Y, Liu S, Shan X, Wang H, Li B, Yang J, et al. Schistosoma japonicum-
infected sentinel mice: surveillance and spatial point pattern analysis in 
Hubei province, China, 2010–2018. Int J Infect Dis. 2020;99:179–85.

	39.	 Yang GJ, Bergquist R. Potential impact of climate change on schistoso‑
miasis: a global assessment attempt. Trop Med Infect Dis. 2018;3:117.

	40.	 McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N. 
Schistosomiasis. Nat Rev Dis Primers. 2018;4:13.

	41.	 Zhang LJ, Xu ZM, Guo JY, Dai SM, Dang H, Lü S, et al. Endemic status 
of schistosomiasis in People’s Republic of China in 2018. Chin J Schisto 
Contrl. 2019;31:576–82. (in Chinese)

	42.	 Wang H, Liu S, Zhang J, Shan XW, Xiao Y, Chen YY, et al. Endemic situation 
of schistosomiasis in national surveillance sites of Hubei Province from 
2015 to 2019. Chin J Schisto Contrl. 2020;32:565–8. (in Chinese)

	43.	 Li L, Zhou Y, Wang T, Zhang S, Chen G, Zhao G, et al. Elimination of 
Schistosoma japonicum transmission in China: a case of schistosomiasis 
control in the severe epidemic area of Anhui Province. Int J Environ Res 
Public Health. 2019;16:138.

	44.	 Jiang TT, Yang K. Progresses of research on patterns and monitoring 
approaches of Oncomelania hupensis spread. Chin J Schisto Contrl. 
2020;32:208–12. (in Chinese)

	45.	 Liu MM, Feng Y, Yang K. Impact of micro-environmental factors on sur‑
vival, reproduction and distribution of Oncomelania hupensis snails. Infect 
Dis Poverty. 2021;10:47.

	46.	 Fick SE, Hijmans RJ. WorldClim 2: new 1 km spatial resolution climate 
surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.

	47.	 Chen J, Xu J, Bergquist R, Li SZ, Zhou XN. “Farewell to the God of Plague”: 
The importance of political commitment towards the elimination of 
schistosomiasis. Trop Med Infect Dis. 2018;3:108.

	48.	 Bergquist R, Zhou XN, Rollinson D, Reinhard-Rupp J, Klohe K. Elimination 
of schistosomiasis: the tools required. Infect Dis Poverty. 2017;6:158.


	Infestation risk of the intermediate snail host of Schistosoma japonicum in the Yangtze River Basin: improved results by spatial reassessment and a random forest approach
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Data and methods
	Study site
	Data source
	Re-assessment of sampling sites
	Model construction
	Areal suitability for snail infestation
	Data analysis

	Results
	Descriptive analysis
	Calculation of the most suitable re-assessment level
	Variable importance and model calibration
	Relationship between variables and snail infestation probability
	Risk prediction

	Discussion
	Conclusions
	Acknowledgements
	References


