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Abstract

Background: Control of snail intermediate hosts has been proved to be a fast and efficient approach for
interrupting the transmission of schistosomiasis. Some plant extracts have shown obvious molluscicidal activity, and
a new compound Luo-Wei, also named tea-seed distilled saponin (TDS), was developed based on the saponins
extracted from Camellia oleifera seeds. We aimed to test the molluscicidal activity of 4% TDS against the
intermediate host snails in China and Egypt, and evaluate its environmental safety to non-target organisms.

Methods: In the laboratory, Oncomelania hupensis, Biomphalaria alexandrina and Bulinus truncatus were exposed to
4% TDS, and the median lethal concentration (LC50) was estimated at 24, 48 and 72 h. In the field, snail mortalities
were assessed 1, 2, 3 and 7 d post-immersion with 2.5 g/m3 4% TDS and 1, 3, 7 and 15 d post-spraying with 5 g/m2

4% TDS. In addition, the acute toxicity of 4% TDS to Japanese quail (Coturnix japonica), zebrafish (Brachydanio rerio)
and freshwater shrimp (Macrobrachium nipponense) was assessed by estimations of LC50 or median lethal dose
(LD50).

Results: In the laboratory, the LC50 values of 4% TDS for O. hupensis were 0.701, 0.371 and 0.33 mg/L at 24, 48 and
72 h, respectively, and 4% TDS showed a 1.975 mg/L 24 h LC50 against B. alexandrina, and a 1.396 mg/L 24 h LC50
against B. truncatus. Across all study regions, the pooled mortalities of O. hupensis were 72, 86, 94 and 98% at 1, 2, 3
and 7 d, following field immersion of 4% TDS at a dose of 2.5 g/m3, and were 69, 77, 85 and 88% at 1, 3, 7 and 15 d,
following field spraying at 5 g/m2, respectively. 4% TDS had moderate toxicity to Japanese quail (7 d LD50 > 60mg/kg)
and to shrimp (96 h LC50 = 6.28 mg/L; 95% CI: 3.53–11.2 mg/L), whereas its toxicity to zebrafish was high
(96 h LC50 = 0.15 mg/L; 95% CI: 0.14–0.17 mg/L).

Conclusions: 4% TDS is active against O. hupensis, B. alexandrina and B. truncatus under laboratory and field
conditions, and it may be a candidate molluscicide of plant origin.
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Multilingual abstracts
Please see Additional file 1 for translations of the
abstract into the five official working languages of the
United Nations.

Background
Schistosomiasis is one of the most widespread parasitic
infections and the second most prevalent parasitic dis-
ease in the world in terms of overall morbidity, socio-
economic and public health importance [1]. The three
major species of schistosomes that infect humans, in-
cluding Schistosoma japonicum, S. mansoni and S. hae-
matobium, are transmitted by specific genera of snails,
i.e., Oncomelania spp., Biomphalaria spp., and Bulinus
spp., respectively [1]. Parasitic Schistosoma infections
in humans depend absolutely on the local presence of
their intermediate freshwater snail hosts [1].
Molluscicide-based control of snail intermediate hosts
is a fast and efficient approach for interrupting the
transmission of this parasite [2, 3]. Niclosamide has
been recommended by the World Health Organization
(WHO) as a molluscicide since the 1960s and is still the
molluscicide of choice [4]. However, the synthetic chemical
molluscicides typically used to control these snails are ex-
pensive and can be toxic to other living organisms in the
snail environmental habitat. Recent phytochemical screen-
ing has indicated that many plants are endowed with pesti-
cidal properties that can be harnessed cheaply for vector
control [5], and plant extracts have been studied as alterna-
tives to chemical molluscicides [6, 7].
A new molluscicide has been discovered from an alterna-

tive botanical source, Camellia oleifera, which is widely cul-
tivated in South China. The seeds of this plant can be
pressed to yield edible tea oil (camellia oil), and its bypro-
duct, tea seed pomace, is normally discarded as waste or is
used as a natural detergent or organic fertilizer with limited
economic value. However, there are about 8% crude sapo-
nins in tea seed pomace that show significant biological
and pharmacological activities [8, 9]. During the 2000s, a
new compound was developed by alkaline hydrolysis and
purification of the saponins extracted from the tea seed
pomace, termed tea-seed distilled saponin (TDS) [10, 11],
for which the registered chemical name at the International
Union of Pure and Applied Chemistry (IUPAC) is (3β,
16α)-28-oxo-D -xylopyranose-(1→ 3)-O-β-D-pyran-(1→
4)-O-6-deoxy-α-L-mannopyranosyl-(1→ 2)- β-D-xylopyra
nose-17-hydroxymethyl-16,21,22-trihydroxyoleanolic-12-al-
kene (C52H84O24, MW 1093.23; Fig. 1). As pentacyclic tri-
terpenoid saponins (PTSs), the pretest showed that the
technical material of TDS (91.6%) was active against O.
hupensis snails (Additional file 2: Table S1). Listed as a new
plant-derived molluscicide, its common name was regis-
tered as Luo-Wei (which means “snail threatener” in Chin-
ese) by the Ministry of Agriculture (MoA) of People’s

Republic of China in 2007, and the 4% powder formulation
of TDS (4% TDS) was approved for pesticide use in China
by the MoA in 2008. In the present report, we aimed to as-
sess the molluscicidal activity of 4% TDS against the inter-
mediate host snails of schistosomes in the laboratory and
the field, and evaluate the environmental safety of 4% TDS
to non-target organisms.

Methods
Laboratory molluscicidal activity test
To test the molluscicidal activity of 4% TDS against O.
hupensis in the laboratory, O. hupensis snails were col-
lected from the marshland in Yangzhou City, Jiangsu
Province along the Yangtze River basin, and were given
indoor feeding for 1 week before testing. Active and ma-
ture snails were selected for testing, and 4% TDS were
prepared to give 9 concentrations of 0.04, 0.08, 0.16,
0.31, 0.63, 1.25, 2.5, 5 and 10mg/L in the dechlorinated
tap water. Then, 10 snails were exposed to each concen-
tration for 24, 48 and 72 h at a room temperature of
25 ± 1 °C, respectively, and snails immersed in dechlori-
nated tap water served as controls. They were rinsed
with dechlorinated water and incubated for a further 48
h to determine whether they were dead or alive.
To test the activity of 4% TDS against B. alexandrina

and B. truncatus snails in the laboratory, these snail spe-
cies were collected from water bodies in Giza governor-
ate, Egypt, transferred to the laboratory, washed, and
examined for natural trematode infections. Healthy
non-infected snails were maintained at the Department
of Medical Malacology, Theodor Bilharz Research Insti-
tute (TBRI), Egypt, in plastic aquaria provided with
dechlorinated tap water (10 snails/L, 25 ± 1 °C) for at least
3 weeks before tests, and 4% TDS were formulated to
concentrations of 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75
mg/L in dechlorinated tap water. Ten snails were exposed
to each concentration for 24, 48 and 72 h at a room
temperature of 25 ± 1 °C, respectively, and snails
immersed in dechlorinated tap water served as controls.
They were rinsed with dechlorinated water and incubated
for a further 48 h to determine whether they were dead or
alive. All tests were repeated in triplicate, and the median
lethal concentration (LC50) was calculated [12].

Field assessment of molluscicidal activity
During the period between 2011 and 2014, field assess-
ment of 4% TDS against O. hupensis was conducted in
provinces that were endemic for S. japonicum in China,
including Hunan, Hubei, Jiangxi, Anhui, Jiangsu, Si-
chuan, and Yunnan (Fig. 2). Snail-inhabited ditches and
plots with densities of living snails > 10 snails per 0.1 m2

(33 cm × 33 cm) were selected for immersion and spray-
ing tests, respectively. The recommended temperature
for application was 18–35 °C and relative humidity 50–
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80% in the field, without heavy rain. The field experi-
ment was repeated if the snail mortality was more than
10% in the blank control group [13].
In the immersion test, the selected irrigation ditches

were separated by non-water partitions (> 1 m), and
each section was more than 40 m of length with at
least 30 m3 of water volume. The upper section was
for the water-only control group and the lower sec-
tion was for the 4% TDS or 50% wettable powder of
niclosamide ethanolamine salt (WPN; Nantong Luo-
sen Chemical Co. Ltd., Nantong, China) treatment
group. The dose concentrations tested were 2.5 g/m3

for 4% TDS and 2 g/m3 for 50% WPN. Each ditch
section was topped up to test volume by pumping
water to maintain water level after the vegetation
clearance. The active mature snails from the same
field were selected and packed into 18 nylon bags (50
snails/bag). In each treatment group, three monitoring
sites were set equidistantly with each site of three
bags of snails. A bag was taken from each site for
mortality observation 1, 2, 3 and 7 d post-immersion.
In the spraying test, a flat plot of snail habitats was se-

lected in the lake marshland, river floodplain, or moun-
tain terrace and divided into three sections, one for the
4% TDS group (≥ 3000 m2), one for 50% WPN(≥ 3000

m2), and the other for the water-only control area (≥ 600
m2), with a spacing distance of > 10m between groups.
The vegetation was cut to under 10 cm and removed be-
fore spraying. The dose concentrations were 5 g/m2 for
4% TDS and 2 g/m2 for 50% WPN. Snail mortalities
were observed 1, 3, 7 and 15 d post-spraying.

Ecotoxicological test of 4% TDS
Environmental safety assessment of 4% TDS for
non-target organisms, including birds, fish, and aquatic
invertebrates, were conducted according to the Test
Guidelines on Environmental Safety Assessment for
Chemical Pesticides [14]. Japanese quail (Coturnix japon-
ica), zebrafish (Brachydanio rerio) and freshwater shrimp
(Macrobrachium nipponense) were selected as represen-
tative Chinese animals for these acute toxicity tests. A
single dose gavage method was used to evaluate the
acute toxicity of 4% TDS to Japanese quail. Five treat-
ment groups (including five dose levels of 6, 12, 24, 36,
and 60mg/kg body weight of 4% TDS) with a blank con-
trol were applied, of which each group consisted of 10
birds (5 males and 5 females). After dosing, toxic signs
and mortalities were continuously observed and re-
corded at 1, 2, 3, and 7 d. In the test of acute aquatic
toxicity, 10 freshwater fish or shrimp were used at each

Fig. 1 Structural formula of TDS (Luo-Wei) and its chemical name. TDS (C52H84O24, molecular weight 1093.23) is a pentacyclic triterpenoid saponin
extracted from the tea seed pomace (Camellia oleifera) that is left after commercial pressing of seeds for tea oil. Its chemical name listed at the
International Union of Pure and Applied Chemistry (IUPAC) is(3β, 16α)-28-oxo-D-xylopyranose-(1→ 3)-O -β-D-pyran-(1→ 4)-O-6-deoxy-α-L-
mannopyranosyl-(1→ 2)-β-D-xylopyranose-17 -hydroxymethyl-16, 21, 22-trihydroxyoleanolic-12-alkene
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test concentration and in the controls (0, 0.04, 0.10,
0.15, 0.20 and 0.40 mg/L in zebrafish and 0, 1, 2, 3,
5 and 10 mg/L in shrimps, respectively), complying
with the semi-static procedure (renewal of the test
solution every 24 h). The fish or shrimp were ex-
posed to the test substance for a period of 96 h.
Mortalities were recorded at 24, 48, 72 and 96 h and
the LC50 or the median lethal dose (LD50) values
were calculated [12].

Statistical analysis
All LC50 or LD50 values and their 95% confidence inter-
vals (CIs), probit/log concentration regression equations,
and slope were calculated using the Bliss’s probit method
with the computer program PoloPlus version 1.0 (LeOra

Software; Petaluma, CA, USA) [12, 15]. Parameters for
data files analyzed by PoloPlus were as follows: probit
model, concentrations converted to logarithms, and no
natural response [15]. The parallel and equal hypothesis
tests of probit mortality lines were done and the 95% CI
of lethal concentration ratios (LCRs) were calculated to
compare the susceptibility of different snail species to
4% TDS [16]. If the 95% CI of LCR included 1, the LCRs
were not considered significantly different.
A chi-square test was used to examine the differences

of mortalities between time points after immersing and
spraying. Open Meta-analyst software (Brown Univer-
sity; Providence, RI, USA) was used to make a pooled es-
timate of snail mortality and compare the difference of
molluscicidal activity against O. hupensis snails between

Fig. 2 Distribution of the study areas to test the field molluscicidal efficacy of 4% TDS against Oncomelania hupensis in China. During the
period between 2011 and 2014, field assessment of 4% TDS against O. hupensis was conducted in provinces that were endemic for S.
japonicum in China, including Hunan, Hubei, Jiangxi, Anhui, Jiangsu, Sichuan, and Yunnan
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4% TDS and 50% WPN using relative risk (RR) calcula-
tion [17]. Significance of this comparison was deter-
mined only if 1 was not included in the 95% CI of the
observed RR. The likelihood ratio (LR) and LCR at 50%
response level were calculated, and a P value < 0.05 was
considered statistically significant.

Results
Laboratory molluscicidal activity
In the laboratory, the LC50 values for 4% TDS with their
respective 95% CIs and slopes for each snail populations
are shown in Table 1 and Fig. 3a–c. The LC50 values dif-
fered significantly among snail species and depending on
treatment duration (Table 1 and Additional file 2: Table
S2 and S3). With longer duration of exposure, the LC50

values of 4% TDS against O. hupensis decreased from
0.701 (0.581–0.842) mg/L at 24 h, to 0.371 (0.315–0.436)

mg/L at 48 h, and to 0.33 (0.284–0.385) mg/L at 72 h,
respectively. The log concentration-probit mortality
curves for 24 h exposure were significantly different
among snail species (the equality tested by LR: χ2 = 206,
P < 0.05; the parallelism by LR: χ2 = 39.57, P < 0.05) (Fig.
3d). The lowest lethal concentration of snail populations
at 24 h exposure was observed for O. hupensis, for which
LC50 was nearly three-fold lower than that of B. alexan-
drina (1.975 mg/L) or B. truncatus (1.396 mg/L), with
observed LCR50 (O. hupensis/B. alexandrina/B. trunca-
tus) of 0.355 (95% CI: 0.293–0.43) and 0.502 (95% CI:
0.414–0.609), respectively (Table 1).

Field molluscicidal activity
Across all schistosomiasis-endemic regions selected for
the field assessment of 4% TDS activity, the pooled mor-
talities of O. hupensis were 72% (95% CI: 56.7–86.6%),

Fig. 3 Dose-response curves of Oncomelania hupensis, Biomphalaria alexandrina, and Bulinus truncatus snails subjected to aqueous
dilutions of 4% TDS for 24 h. a Oncomelania hupensis; b Biomphalaria alexandrina; c Bulinus truncatus; d The equality and parallelism of
the regression lines of different snail species after 24 h exposure, tested by LR. O. h., Oncomelania hupensis; B. a., Biomphalaria alexandrina;
B. t., Bulinus truncatus. The equality of the regression lines were tested using the likelihood ratio (LR). In general, there are significant
differences between slopes and intercepts of lines (χ2 = 206, P < 0.05). The parallelism of slopes is tested by the LR. In general, there are
significant differences between the regression lines (χ2 = 39.6, P < 0.05)
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86% (95% CI: 78.8–92.2%), 94% (95% CI: 89.6–97.7%)
and 98% (95% CI: 95.7–99.9%) 1, 2, 3, and 7 d
post-immersion, respectively (Fig. 4a and Additional file
2: Table S4) [18]. In comparison to the effects of 50%
WPN treatment, the pooled effect of 4% TDS were lower
than 50% WPN at 1, 2 and 3 d but not significantly dif-
ferent at 7 d post-immersion (Fig. 4b–e): the calculated
4% TDS/50% WPN RR values for snail mortality were
0.81 (95% CI: 0.677–0.969), 0.9 (95% CI: 0.844–0.959),
0.958 (95% CI: 0.927–0.989) and 0.991 (95% CI: 0.975–
1.006) at 1, 2, 3 and 7 d post-immersion, respectively
(Fig. 4b–e).

Field conditions of the spraying trials are summarized in
Additional file 2: Table S5. Across all regions, the pooled
mortalities of O. hupensis were 69% (95% CI: 54.8–82.9%),
77% (95% CI: 69.4–85.4%), 85% (95% CI: 80.6–88.6%) and
88% (95 CI: 85.8–90.3%) 1, 3, 7 and 15 d post-spraying
with 4% TDS, respectively (Fig. 5a and Additional file 2:
Table S6). In comparison to 50% WPN treatment, the
pooled effects of 4% TDS application were lower than
those of WPN at 1 and 3 d but not significantly different
at 7 and 15 d post-spraying (Fig. 5b–e): the pooled esti-
mates of 4% TDS/50% WPN RR for snail mortality were
0.925 (95% CI: 0.862–0.993), 0.932 (95% CI: 0.869–0.998),

Table 1 Molluscicidal activity of 4% TDS against Oncomelania hupensis, Biomphalaria alexandrina and Bulinus truncatus by the
immersion test in the laboratory

Snail species Time (h) Na n Slope ± SE χ2 b LC50 (95% CI) LCR50 (95% CI)c

Oncomelania hupensis 24 9 270 3.522 ± 0.445 4.290 0.701 (0.581, 0.842) Reference

48 9 270 4.730 ± 0.675 5.073 0.371 (0.315, 0.436) 1.891 (1.484, 2.411)

72 9 270 5.514 ± 0.868 2.097 0.330 (0.284, 0.385) 2.125 (1.680, 2.687)

Biomphalaria alexandrina 24 9 270 8.043 ± 0.910 4.576 1.975 (1.868, 2.092) 0.355 (0.293, 0.430)

Bulinus truncatus 24 9 270 9.014 ± 0.929 4.154 1.396 (1.312, 1.477) 0.502 (0.414, 0.609)
aN, number of dose groups (excluding control); b Goodness of fit tested by chi-square, all P values were more than 0.5 (degrees of freedom were 7); c LCR50, lethal
concentration ratio at 50% response level (compared with LC50 of O. hupensis at 24 h exposure, LCO. h/LCB. a or LCB. t.). If the 95% confidence interval of LCR50
includes 1, then the LC50s are not significantly different

A C

D

EB

Fig. 4 Molluscicidal effect of 4% TDS by immersion in the field. a Mortality of Oncomelania hupensis post-exposure to 4% TDS by immersion in
the field. Danling_1, conducted in the ditch; Danling_2, conducted in the paddy field. b–e Comparison of Oncomelania hupensis mortalities
(individual and pooled results) between TDS (2.5 g/m3) and WPN (2 g/m3) 1 (b), 2 (c), 3 (d) and 7 d (e) post-immersion in the field, studies
performed 2011 to 2013. There is no significant difference in the pooled effects between TDS and WPN 7 d post-immersion (e), of which the
relative risk values (TDS/WPN) for snail mortality was 0.991 (95% CI: 0.975–1.006)
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0.968 (95% CI: 0.917–1.021) and 0.99 (95% CI: 0.952–
1.030) at 1, 3, 7 and 15 d post-spraying, respectively (Fig.
5b–e and Additional file 2: Table S6).

Ecotoxicological activity of 4% TDS
Four percent TDS had moderate toxicity to quail (7 d
LD50 > 60mg/kg) and to shrimp (96 h LC50 = 6.28 mg/L;
95% CI: 3.53–11.2 mg/L), whereas its toxicity to zebra-
fish was high (96 h LC50 = 0.15 mg/L; 95% CI: 0.14–0.17
mg/L) (Table 2).

Discussion
Currently, targeted mass delivery of anti-schistosomal
drug therapy is the most common method used by na-
tional and regional schistosomiasis control programs
across the world [1]. However, this approach has an im-
portant limitation: people at risk of infections who miss or
decline treatment remain infected and continue to con-
tribute to local transmission of Schistosoma parasites [19].
Multiyear experiences in mass treatment campaigns indi-
cate that population participation declines over time, and
further suggest that drug efficacy may be lower for those

A C

D

EB

Fig. 5 Molluscicidal effect of 4% TDS by spraying in the field. a, Mortalities of Oncomelania hupensis post-exposure by ground spraying of 4% TDS
in the field. b–e Comparison of Oncomelania hupensis mortalities (individual and pooled results) between TDS (5 g/m2) and WPN (2 g/m2) 1 (b), 3
(c), 7 (d) and 15 d (e) post-spraying in the field, studies performed 2011 to 2013. There is no significant difference in the pooled effects between
TDS and WPN at 7 d (d) and 15 d (e) post-spraying, of which the relative risk values (TDS/WPN) for snail mortality are 0.968 (95% CI: 0.917–1.021)
at 7 d and 0.99 (95% CI: 0.952–1.030) at 15 d, respectively

Table 2 Ecotoxicological tests of 4% TDS against Coturnix japonica, Brachydanio rerio and Macrobrachium nipponense

Species Test Duration and conditions Toxicity

Coturnix japonica, aged 30 days, each
weighing approximately 100 g, 5 males
and 5 females for each group

Acute oral
toxicity,
repeated in
triplicate

20–25 °C air temperature; 0, 6, 12,
24, 36, 60 mg/kg doses; a single
dose by gavage; 7 days

1, 2, 3 and 7 d LD50 were above 60mg/kg;
moderate toxicity
(50 < acute oral LD50≤ 500mg/kg)

Brachydanio rerio, about 0.4 g in body
weight and 3.5 cm in body length, 10 for
each group

Acute toxicity,
repeated in
triplicate

20 °C water temperature; 0, 0.04,
0.1, 0.15, 0.2, 0.4 mg/L
concentrations; semi-static, 96 h

24, 48, 72 and 96 h LC50 were 0.19 (0.16–0.22), 0.13
(0.12–0.14), 0.15 (0.14–0.17) and 0.15 (0.14–0.17)
mg/L, respectively; high toxicity
(0.1 < 96 h LC50 < 1.0 mg/L)

Adult Macrobrachium nipponense, about
2.0 g, 10 for each group

Acute toxicity,
repeated in
triplicate

20 °C water temperature; 0, 1, 2, 3,
5, 10 mg/L concentrations; semi-
static, 96 h

24, 48, 72 and 96 h LC50 were > 10, 8.41 (5.54–12.8),
7.07 (4.96–10.1) and 6.28 (3.53–11.2) mg/L,
respectively; moderate toxicity
(1.0 < 96 h LC50 < 10 mg/L)
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residents who continue to be infected after multiple
rounds of treatment [20]. There is a need for additional
practical interventions that can interrupt the process of
parasite transmission [21]. In particular, there is a need for
more selective and efficient molluscicides for control the
snail intermediate hosts of this parasite [22].
In this regard, the present work describes the mollusci-

ciding compound, 4% TDS, which is extracted from the
plant C. oleifera, as a promising molluscicidal agent
against O. hupensis, B. alexandrina, and B. truncatus, the
snail intermediate hosts of the most common Schistosoma
parasites of humans. This corresponds to the previously
described molluscicidal activity of crude saponins
extracted from C. oleifera seeds that has been shown for
mollusk control in other pesticide test studies around the
world [23–28]. Saponins are naturally occurring plant
glycosides with a sugar moiety and an aglycone unit [29].
There is a high correlation between plants employed as
fish poisons or soap substances and their molluscicidal
activity [30]. Of note, it is known that the saponins from
Phytolacca dodecandra or Alternanthera philoxeroides
that are monodesmosidic (having a sugar moiety only at
position C-3) possess a toxic activity, whereas bidesmosi-
dic saponins (having a sugar moiety both at C-3 and
C-28) are inactive [30–32].
For schistosomiasis control, niclosamide, the mollusci-

cide used most frequently at present, has poor water
solubility and has the disadvantage that it can stimulate
O. hupensis snails to climb out of treated water to escape
the chemical application, resulting in a reduction of the
net molluscicidal effect [33]. Although TDS has a rela-
tively lower lethal effect on snails, it, or other triterpen-
oid saponins, could be used as synergistic agents with
currently available synthetic molluscicides.
The high molluscicidal activity of P. dodecandra is

due to the presence of monodesmosidic saponin with
an oleanolic acid glucoside base in the pericarp of the
immature fruit of the plant P. dodecandra [34, 35].
Similarly, the high concentrations of saponins and fla-
vonoids in the plants Sesbania sesban, Euphorbia
splendens, Cestrum purpureum, and Yucca filamentosa
“Marginata” contribute to their remarkable toxicity to
B. alexandrina snails [36–39]. The toxicity of 4%
TDS to snails may be due to their properties as pro-
tease inhibitors and their ability to interact with chol-
esterol, which produces insoluble substances that alter
cellular activities, thereby resulting in cytotoxicity and
death of the treated organisms [40].
The descending order of susceptibility of O. hupensis,

B. truncatus and B. alexandrina snails to the toxic ef-
fects of 24 h exposure to 4% TDS is in parallel to previ-
ous results using P. dodecandra against O. nosophora, B.
truncatus, and B. glabrata [41]. In comparable studies,
B. truncatus was more susceptible than B. alexandrina

to the toxic action of extracts from the plants Euphorbia
pseudocactus and E. helioscopia [41]. It is therefore hy-
pothesized that the variations in snail susceptibility to
4% TDS could be due to species differences in metabolic
and physiological activities, including respiratory en-
zymes, protein and carbohydrate synthesis, and/or ster-
oid sex hormone effects in treated snails [42, 43].
From the present work, the acute oral toxicity of 4%

TDS to Japanese quail and shrimp was moderate. How-
ever, like niclosamide and P. dodecandra, 4% TDS can
be lethal to zebrafish [44–46]. Because of the toxicity to
aquatic species, 4% TDS should be cautiously used in
water bodies.
Our study has several limitations. First, the activity of

4% TDS against B. alexandrina and B. truncatus were
tested at only one time point (24 h), and further studies
to assess the molluscicidal effect at long duration are re-
quired. Second, the field molluscicidal effect of 4% TDS
against B. alexandrina and B. truncatus was not exam-
ined. This is because both B. alexandrina and B. trunca-
tus are aquatic, and it is very difficult to perform a field
assessment.

Conclusions
The results of the present study demonstrate that 4% TDS
is active against O. hupensis, B. alexandrina and B. trun-
catus under laboratory and field conditions, and it may be
a candidate molluscicide of plant origin. Since snail con-
trol has been shown to be the most effective way to reduce
schistosomiasis incidence and has been recommended to
be included in global guidelines and national schistosom-
iasis control strategies [47, 48], it is therefore suggested
that 4% TDS should be further tested for efficacy within
operational research for schistosomiasis control in order
to determine its ability to sustain the impact of chemo-
therapy in an integrated approach to controlling this
highly prevalent parasitic disease [49].
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