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Abstract

Background: Heat shock protein90 (Hsp90) are overexpressed in tumor cells, so the inhibition of the Hsp90 ATPase
activity would be a significantly effective strategy in cancer therapy.

Methods: In the current study, 3,4-isoxazolediamide derivatives were suggested as an Hsp90 inhibitor for anti-cancer
therapy. Multiple linear regression (MLR) and genetic algorithm of partial least square (GA-PLS) methods were
performed to build models to predict the inhibitory activity of Hsp90. The leave-one out (LOO) cross-validation
and Y-randomization tests were performed to models’ validation. The new ligands were monitored by applicability
domain. Molecular docking studies were also conducted to evaluate the mode of interaction of these compounds
with Hsp90. Identification of the likely pathways into the active site pocket and the involved residues were performed
by CAVAER 3.0.1 software. According to QSAR models and docking analysis, three new compounds were predicted.
50 ns molecular dynamic simulation was performed for the strongest synthesized compound and the best predicted
compound in terms of binding energy and interactions between ligand and protein.

Results: The made models showed the significance of size, shape, symmetry, and branching of molecules in inhibitory
activities of Hsp90. Docking studies indicated that two hydroxyl groups in the resorcinol ring were important in
interacting with Asp93 and the orientation of these groups was related to substitution of different R1 groups. Comparing
of molecular dynamic simulation (MDs) results shows that new compound perched in active site with lower binding
energy than the best synthesized compound.

Conclusion: The QSAR and docking analyses shown to be beneficial tools in the proposal of anti-cancer activities and a
leader to the synthesis of new Hsp90 inhibitors based 3,4-isoxazolediamide. The MDs confirmed that predicted ligand is
steady in the Hsp90 active sites.
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Background
Heat shock proteins (Hsps) play a critical role in matur-
ation and stabilization of proteins in the cell [1]. One of
the important Heat shock proteins in cell is Hsp90. The
Hsp90 molecular chaperone contributes to folding of
more than 200 proteins (client proteins) and it is neces-
sary for adjusting the balance between the synthesis and
degradation of many proteins in the cell [2, 3]. The
homo dimer of Hsp90 possess three main domains: the
N-terminal domain that contains the nucleotide-binding
pocket, the middle region that is involved in binding of
client proteins and the C-terminal domain that is the
dimerization site [4]. The Hsp90 function is reliant on
its ability to bind and hydrolyze ATP at the N-terminal
domain. First, client protein and co-chaperones bind to
Hsp90 in the open condition of protein and then ATP
binds to N-terminal and Hsp90 will be closed. Finally,
ATP is hydrolyzed, the complex is changed and client
protein is folded (Fig. 1) [5].
In tumor cells, Hsp90 is overexpressed and causes the

uncontrolled proliferation of transformed cells [6], so in-
hibition of the Hsp90 ATPase activity can be a signifi-
cantly effective strategy in cancer therapy [7]. Hsp90
inhibitors are classified into several categories containing
natural inhibitors (geldanamycin, GM (1), and radicicol
(2)), reclaimed analogues of GM (17-AAG (3) and 17-
DMAG (4), synthetic inhibitors (purine (PU3 (5)), pyra-
zole (6), indazole (7), aminoquinolines (SID: 24724290

(8)) and isoxazole (9) that are shown in Fig. 2 [8–11].
Some of these inhibitors, such as the reclaimed
analogue of geldanamycin (17-AAG), carbazol-4-one
benzamide derivative (SNX-5422) and isoxazole deriva-
tive (NVP-AUY922, currently known as Luminespib),
have been assessed in humans (Fig. 3) [1]. Among the
different azaheterocyclic ring systems, the isoxazole
scaffold is one of the most promising heterocyclic sys-
tems [12]. Baruchello and coworkers in 2011 synthe-
sized novel 3, 4-isoxazolediamides as potent inhibitors
of Hsp90 [8].
Forasmuch as obtaining a new inhibitor requires much

time and capital, any tool that can help to precipitate
the drug development processes would be very note-
worthy [13]. The advanced computational techniques
are highly useful strategies to conduct rapid and inex-
pensive investigations on large databases and obtaining
new inhibitors [14].
Molecular docking, molecular dynamic simulation and

quantitative structure activity relationships (QSARs) are
helpful computational methods for drug design and activ-
ity prediction [15, 16]. In molecular docking and molecu-
lar dynamic simulation, the 3D structure of the receptor
will be available and receptor-ligand interactions play an
important role, so this drug design is called structure-
based drug design [17]. Docking is a method which pro-
poses the favored orientation and energy of one ligand
when bound in the active site to build a stable complex.
To investigate interactions between ligand and protein,
molecular dynamic simulation will be performed.
QSAR is referred to as ligand-based drug design because

it is performed based on the knowledge about ligands
[18]. QSAR models are mathematical equations that cre-
ate relationships between chemical structures and their
biological activities without considering a receptor.
In the present study, we performed a QSAR study for

modeling the inhibitory effects of 50 synthesized 3,4-iso-
xazolediamides [8]. Multiple linear regression (MLR)
and genetic algorithm of partial least square (GA-PLS)
methods were used for modeling the relationship be-
tween pIC50 and their structural descriptors. Molecular
docking was performed for 25 compounds and the re-
sults were compared with experimental data. According
to QSAR models and molecular docking analysis three
compounds were predicted. Molecular dynamic simula-
tion method was chosen to compare the best synthesized
and the best predicted compound in terms of binding
energy and interactions between protein and ligand.

Methods
Activity data and generation of descriptors
In the current study, the Hsp90 inhibitory activity of 50
compounds that were synthesized and evaluated by
Baruchello and coworkers, were used as the biological

Fig. 1 ATPase cycle in Hsp90. The first, in open state of protein,
co-chaperones and client protein bind to C-terminal and middle domain,
respectively. ATP bind to N-terminal and Hsp90 is closed. Then ATP is
hydrolyzed and the complex changed. Finally, client protein is folded
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data [8]. To make the mistake less, the compounds were
chosen from an article with the same assay. Reported
compounds were chosen from isoxazole derivatives. The
lead of these compounds was NVP-AUY922 (currently
known as Luminespib) that was entered into clinical trials
and many of its derivatives were synthesized up to now.
These compounds are shown in Table 1.
Geometry optimization was performed by two

methods: MM+ molecular mechanic force field and the
semi-empirical PM3 by HyperChem 8.0 software. Both
optimizations were carried out by the Polak–Ribiere al-
gorithm until the root mean square gradient reached
0.01 kcal/Å mol. Chemical descriptors were also gener-
ated by HyperChem software.
HyperChem outputs were conveyed to DRAGON

package to compute four classes of descriptors: 0D, 1D,
2D and 3D. Different quantum chemical descriptors
were obtained by Gaussian98 program [19]. All of the
calculated descriptors are shown in Table 2.

Data processing and model building
All of the calculated descriptors were used to generate a
50 × 1126 data matrix; the number on its rows is illus-
trative of molecule numbers and the numbers on col-
umns accounts for descriptors. The columns which had
constant and near constant amounts were deleted from
this data matrix. Since as the models were disrupted by
collinear variables, collinear descriptors had to be found
and eliminated and then descriptors’ correlations with
one another and with activity data were checked. In cou-
ples with collinearities higher than 0.9, the highest cor-
relation with the activity was kept and the rest were
eliminated. The number of total descriptors for each
molecule attained 352.
The data set (50 compounds) was divaricated into the

calibration set and validation set. Validation subset was
prepared from 20% of the total data (here, 9 biological ac-
tivity data). The model was made by MLR analysis, with
the stepwise regression SPSS (Version 12.0) software.

Fig. 2 Several categories of Hsp90 inhibitors. Natural inhibitors (geldanamycin, GM, (1), radicicol (2)), reclaimed analogues of GM (17-AAG (3) and
17-DMAG (4)), synthetic inhibitors (purine (5, PU3), pyrazole (6), indazole (7), aminoquinolines (8, SID: 24724290) and isoxazole (9))

Fig. 3 The structure of three clinically Hsp90 inhibitors evaluated in human. Derivative of geldanamycin (17-AAG), carbazol-4-one benzamide (SNX-5422)
and isoxazole (NVP-AUY922)
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The combined data splitting feature selection (CDFS)
approach was utilized because the data splitting has a
significant effect on the terminal selected model [15]. In
the CDFS approach, numerous subdivisions of the cali-
bration and validation set were created (5 times). In each
case, the best model was elected. The chosen models
were validated by leave-one out (LOO) cross-validation
method. According to 5 models descriptors, general
model was created and Y-randomization test was per-
formed to check their predictability.

Molecular docking
Molecular docking of 3,4-isoxazolediamide derivatives (25
compounds) as Hsp90 inhibitors was perused by AutoDock
4.2 program to detect their binding site, the best direction
and the binding energy [20]. Between the experimental X-
ray structures of Hsp90, the crystallography structure with
a PDB entry code of 3OWD was chosen [21].
For protein preparation, the co-crystallized ligand and

water molecules, except the water molecules that were
significant in interaction between the ligand and protein,
were deleted. By AutoDockTools, all missing hydrogens
were added. The Kollman atom charges were calculated,
non-polar hydrogens merged and the file saved as pdbqt.
A grid box was created with a grid point spacing of
0.375 Å and 90 × 90 × 90 points, which included not

Table 1 Chemical structures of 3, 4-isoxazolediamides derivatives
as Hsp90 inhibitors
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Table 2 Brief of used descriptors in this study

Descriptor type Molecular description

Chemical Surface area, molecular volume,
hydration energy, octanol/water
partition coefficient (logP),
molar refractivity, molar
polarisability and molar mass.

0D,1D,2D and 3D 28 constitutional descriptors,
10 functional groups,
18 atom-centered fragments,
216 topological descriptors,
15 molecular walk counts,
64 BCUT descriptors,
24 Galvestopol. charge indices,
96 2D autocorrelations,
14 charge descriptors,
41 Randic molecular profiles,
27 geometrical descriptors,
150 radial distribution function
descriptors (RDF), 160 3D–MoRSE
descriptors, 99 WHIM descriptors
and 196 GETAWAY descriptors

Quantum chemical Highest occupied molecular orbital
energy (EHOMO), lowest unoccupied
molecular orbital energy (ELUMO),
molecular dipole moment and local
charge were obtained with PM3
method in Gaussian 98. Hardness
(η = 0.5 (EHOMO + ELUMO)),
softness (S = 1/η), electronegativity
(χ = 0.5 (EHOMO - ELUMO)) and
electrophilicity (ω = χ2/2η)
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only the active site of the protein but also significant re-
gions of the surrounding surface. Before calculating the
grid maps by AutoGrid 4.2 [22], the parameters of the
water molecules were added to AD4-bound and AD4-
parameter files.
After the ligands were prepared, the 3D structures of

all compounds were dragged in Marvin Sketch Ver. 5.7,
ChemAxon [23]. The partial charges of atoms were
computed by the Gasteiger–Marsili procedure and non-
polar hydrogens of the compounds were merged [24].
The Lamarckian genetic algorithm approach was

elected for the global optimum binding position. Dock-
ing computing parameters were determined as the
following: number of Lamarckian job = 50, initial popu-
lation = 150, maximum number of energy evalu-
ation = 25 × 105, and the default values of other
parameters were kept unchanged. The docking param-
eter file (.dpf ) was created. The docking procedure was
done by AutoDock 4.2 and the .dlg file was generated.
All of the runs were ranked by the maximum number of
clusters and the lowest binding energy and were ana-
lyzed to find the best conformation of the ligand with
key residues in the active site of the protein by Accelrys
Discovery Studio 2.5 [25] and PyMOL software [26].

Caving active site tunnels
To monitor likely pathways into the active site pocket of
the protein and also recognize the involved residues,
CAVAER 3.0.1 software was employed [27]. Likely en-
trances were searched by assigning maximum probe radius
to 0.9Ǻ, shell depth to 4, and clustering threshold to 3.5Ǻ.

Molecular dynamic simulation
Molecular dynamic simulation was carried out with the
GROMACS 5.0.5 package [28]. The topology parame-
ters of the best predicted ligand in terms of the energy
and interaction between ligand and protein were cre-
ated by the PRODRG web server [29]. The generated
charges by this server were corrected by Gaussian98
program. The pKa for residues of protein were obtained
by the PROPKA 3.1 web server to determined which
residue was more possible to embrace nonstandard
ionization states [28]. The key crystallographic water
molecules in the active site were kept [25]. The GRO-
MOS96 54a7 force field and the simple point charges
(SPC) water model were used to create protein top-
ology parameters. The complex of ligand and protein
was dunked in dodecahedron box with a minimum dis-
tance of 1 nm between the protein surface and box
border, containing of about 8250 solvent molecules. By
displacing solvent water molecules with 4 Na + was
neutralized the system net charge. The energy

minimization was done to release spatial clashes of the
complex in two steps. First, only water molecules were
minimized by using 10,000 steepest descents steps while
the other atoms were hold fixed at their initial configur-
ation. After that, the entire system was minimized. To
equilibrate the system at a constant temperature of 300 K
was performed NVT step by a 500 ps MD run. After the
stabilization of temperature by the V-Rescale algorithm,
an NPT ensemble was done with time duration of 1 ns.
This was followed by MD production run at 1 bar pres-
sure and 100, 200 and 300 K temperatures for 1, 2 and
50 ns, respectively. Long-range electrostatic interactions
were computed with the Particle Mesh Ewald (PME)
method. The linear constraint (LINCS) algorithm was
used for covalent bond constraints. Structure visualization
was carried out by VMD 1.8.6 and PyMOL.

Result and discussion
Multiple linear regression analysis (MLR)
Stepwise regression method was used to select the most
appropriate set of descriptors for each type of the split
data. Models were selected; of course, some of them
could be over-fitted. Another method which could be
utilized to select the model or the most suitable correl-
ation equation was the cross-validation method. In this
case, the obtained models were evaluated for over-fitting
by leave-one-out cross-validation (LOO) method and
then were consistently graded for cross-validation
(Q2

LOO) by the square correlation coefficient. Eventually,
one model with equilibrium between the highest R2

c and
Q2

LOO was chosen for future analysis.
MLR method was performed five times by distinct

split data. In each case, one model was offered. The best
five models are reported in Table 3. The models demon-
strate high statistical qualities. All of the models have
Q2

LOO greater than 0.5; hence, the expected models indi-
cated suitable results for the prediction set. The values
of prediction correlation coefficient (R2

p) for the five final
models are documented in Table 3.
The total number of descriptors that existed in all five

models was 25. These descriptors are briefly defined in
Table 4. Among these, X5A and 3D–MoRSE descriptors
have been repeated in four models. This means that con-
nectivity indices (X5A) and 3D–MoRSE descriptors have
main effect on Hsp90 inhibitors which are based on 3,
4-isoxazolediamide scaffold. Some of the descriptors
such as Du, BELe1, RDF140m, Gu, ISH, Ku, P2m, and
TIE were observed only in one model, and have a lower
effect on Hsp90 inhibitors.
To generate a general model for split data, all of the

25 descriptors were applied and MLR analysis was con-
ducted with the stepwise variable selections. The
resulted model is reported in MLR equation:
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pIC50 ¼ 16:977 �1:966ð Þ−176:806 �28:236ð Þ X5A
−4:366 �1:046ð Þ HATS4u−1:951 �0:549ð Þ Mor26p

þ0:001 �0:00ð Þ TIEþ 0:227 �0:069ð Þ dipole z
þ0:863 �0:368ð Þ Mor26e

ðN ¼ 41;R2
c ¼ 0:771; S:E ¼ 0:267;Q2

LOO ¼ 0:637;RMSCV ¼ 0:297Þ

Where N demonstrates the number of molecules used
in the calibration set. R2

c and Q2
LOO are respectively the

squared correlation coefficient for calibration and cross-

validation. In addition, S.E is standard error of calibration
and RMSCV is root mean square error of cross-validation.
In this equation, X5A, HATS4u and Mor26p have a

minus, which indicates that the pIC50 is inversely related
to these descriptors. Among these, X5A has a main ef-
fect on 3, 4-isoxazolediamide Hsp90 inhibitors. Connect-
ivity indices, such as X5A, are among topological indices
that are numerical quantifiers of molecular topology and
an H-depleted molecular graph. They involve one or
more structural features of the molecule such as the size,

Table 4 Brief description of the descriptors in five models

NO. Name Description

1 X5A Connectivity indices-average connectivity index of order 5.

2 HATS4u GETAWAY descriptors-leverage-weighted autocorrelation of lag 4 / unweighted.

3 Mor10m 3D–MoRSE descriptors-signal 10 / weighted by mass.

4 Mor26p 3D–MoRSE descriptors-signal 26 / weighted by polarizability.

5 Mor09u 3D–MoRSE descriptors-signal 09 / unweighted.

6 Du WHIM descriptors-D total accessibility index / unweighted.

7 BELe1 Lowest eigenvalue n. 1 of Burden matrix / weighted by atomic Sanderson electronegativities.

8 MATS6e Moran Autocorrelation-lag 6/weighted by atomic Sanderson electronegativities.

9 Gu WHIM descriptors-total symmetry index / unweighted.

10 Mor27p 3D–MoRSE descriptors-signal 27 / weighted by polarizability.

11 Mor12m 3D–MoRSE descriptors-signal 12 / weighted by mass.

12 RDF140m Radial Distribution Function-140 / weighted by mass.

13 T (N..O) 2D Atom Pairs-sum of topological distances between N..O.

14 Dipole y An electric dipole is located along the y axis.

15 R3e+ GETAWAY descriptors-R maximal autocorrelation of lag 3 / weighted by Sanderson electronegativity.

16 R1e GETAWAY descriptors-R autocorrelation of lag 1 / weighted by atomic Sanderson electronegativities

17 Mor09m 3D–MoRSE descriptors-signal 09 / weighted by mass.

18 TIE Topological indices-E-state topological parameter.

19 Dipole z An electric dipole is located along the z axis.

20 Mor26e 3D–MoRSE descriptors-signal 26 / weighted by Sanderson electronegativity.

21 ISH GETAWAY descriptors-standardized information content on the leverage equality.

22 MATS1p Moran autocorrelation - lag 1 / weighted by atomic polarizabilities

23 MATS8e Moran Autocorrelation-lag 8/weighted by atomic Sanderson electronegativities.

24 Ku K global shape index / unweighted

25 P2m 2nd component shape directional WHIM index / weighted by atomic masses

Table 3 The best five models were selected for future analysis

NO. Descriptors used R2c
a S.E b R2p

c Q2 d RMSCV
e

1 X5A, HATS4u, Mor10m, Mor26p, Mor09u, Du 0.806 0.249 0.958 0.723 0.276

2 BELe1, MATS6e, Gu, Mor27p, Mor12m, RDF140m 0.760 0.266 0.817 0.586 0.329

3 X5A, T (N..O), dipole y, R3e+, R1e, Mor09m 0.768 0.214 0.911 0.683 0.254

4 X5A, HATS4u, Mor26p, TIE, dipole z, Mor26e, ISH 0.814 0.245 0.883 0.723 0.274

5 X5A, T (N..O), MATS1p, dipole z, MATS8e, Ku, P2m 0.790 0.252 0.944 0.696 0.278
aR2c = Correlation Coefficient of calibration set. bS.E = Standard error of regression. cR2p = Correlation Coefficient of prediction set. dQ2 = Leave-one-out
cross-validation correlation coefficient. eRMSECV = Root mean square error of cross validation
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shape, symmetry, and branching and can also codify
chemical information about atom type and bond multi-
plicity. 3D–MoRSE descriptors, such as Mor26p, illus-
trate three-dimensional coordination of the different
atoms in the molecule. Geometry, topology, and atom-
weights assembly (GETAWAY) descriptors, such as
HATS4u, have been proposed as chemical structure
descriptors.

TIE and dipole z display positive signs, which indicates
the pIC50 is straight related to these descriptors. Topo-
graphic indices such as TIE establish a special subset of
geometrical descriptors, being computed on the graph il-
lustration of molecules but using the geometric distances
between atoms instead of the topological distances [30].
The general model has a Q2

LOO equal to 0.710; hence,
the predicted model can construct over 71% of variances

Table 5 Experimental pIC50 and MLR and GA-PLS predicted pIC50
NO. Experimental pIC50 MLR

pIC50
GA-PLS
pIC50

NO. Experimental pIC50 MLR
pIC50

GA-PLS
pIC50

15 3.82 3.64 3.89 53 4.66 4.59 3.96

16 3.74 3.71 4.13 54 4.62 4.65 4.57

17 3.79 4.13 3.52 55 4.70 4.84 4.70

18 3.89 4.69 3.57 56 4.72 4.68 4.79

19 4.13 3.84 3.78 57 4.08 4.48 4.41

20 4.43 4.25 4.29 58 4.66 4.39 4.47

21 4.07 3.91 4.15 59 3.60 4.38 3.99

22 3.78 4.06 4.06 61 4.40 4.41 4.30

24 3.80 3.67 3.74 62 5.00 4.82 4.61

26 4.26 4.32 5.39 64 3.59 4.75 3.95

27 4.39 4.55 4.41 65 4.32 4.72 4.15

28 3.72 3.70 3.81 66 4.21 4.14 4.30

29 3.58 3.90 3.73 67 4.48 4.84 4.90

30 3.62 3.60 3.68 68 4.47 4.62 4.61

31 4.62 4.44 4.33 69 4.70 4.64 4.73

32 4.52 4.37 4.61 70 4.82 5.04 4.44

44 4.41 4.54 4.18 73 4.40 4.26 4.39

45 4.85 4.60 4.42 75a 4.90 4.72 4.69

46 4.58 4.14 4.52 75d 4.82 4.29 4.61

47 4.47 4.54 4.62 79b 3.67 3.72 4.55

48 4.47 4.72 4.34 79c 3.92 3.92 4.11

49 4.15 4.08 4.68 81a 3.64 3.41 3.54

50 4.62 4.60 4.30 81b 3.37 3.49 3.74

51 4.49 4.52 4.53 81c 3.21 3.28 4.42

52 4.49 5.36 4.56 81d 2.80 3.26 4.42

Fig. 4 a Plot of predicted pIC50 versus the experimental values for MLR model, b GA-PLS model
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in the inhibitory activity. The proposed values of pIC50,
which were calculated for all the molecules by the MLR
equation, along with the experimental pIC50 are listed in
Table 5 and the predicted values of pIC50 are plotted
against the experimental values in Fig. 4a.
The robustness of the general model was evaluated by

the Y-randomization test and 10 models were created. In
a suitable MLR model, the values of R2 and Q2

LOO are
lower than the original MLR model. The lower R2 and
Q2

LOO values are shown in Table 6.

Genetic algorithm partial least squares (GA-PLS)
In addition to MLR method, the stepwise regression, a
variable selection method, such as genetic algorithm,
was performed. In genetic algorithm, if its related de-
scriptor is comprised, a gene takes a value of 1 in the
subset; otherwise, it receipts a value of zero. The number
of genes is corresponding to the number of descriptors.
In GA-PLS study, the total number of descriptors for

each molecule attained 117 and the highest fitness was
selected as the proposed model. The intended model
was tested by leave-n-out cross-validation [31]. A leave-
3-out cross-validation was generated and Q2

LTO value of
0.834 could be established.

The eventuated model with higher cross-validation
statistics is shown in the following equation and the pre-
dicted values of pIC50 are reported in Table 5 and plot-
ted against the experimental values in Fig. 4b.

pIC50 ¼ 9:018 �2:799ð Þ−114:521 �30:435ð Þ X5A
−1:406 �0:266ð Þ GATS4e−1:586 �0:991ð Þ E3u
−2:615 �0:649ð Þ MATS7eþ 38:705 �8:531ð Þ G1u
þ0:048 �0:014ð Þ RDF075m

ðN ¼ 41;R2c ¼ 0:755; S:E ¼ 0:249;Q2
LOO ¼ 0:653;RMSCV ¼ 0:266Þ

In this equation, X5A descriptor, like MLR equation,
has a minus and also has a main effect on 3, 4-
isoxazolediamide Hsp90 inhibitors. GATS4e, E3u, and
MATS7e also have minuses. Unlike these, G1u and
RDF075m (WHIM and the radial distribution function
(RDF) descriptors) have a positive efficacy on GA-PLS.
The created model in GA-PLS was evaluated by Y-

randomization test. The R2 and Q2
LOO values of the ten

created models were lower than the original GA-PLS
model, as shown in Table 6.

Applicability domain of the model
A QSAR model is applied to monitor new compounds
when its domain of application has been determined
[29]. The divination may be supposed valid for only
those compounds which fall into this domain [15].
Therefore standardized residuals of the activity were cal-
culated and plotted against leverage values (h). The
value of leverage was computed for every compound.
Values are evermore between 0 and 1. A value of 1 indi-
cates very poor prediction, and a value of 0 is indicative
of perfect prediction and is not usually available. The
lower the value is, the higher the assurance in the pre-
diction. Warning leverage (h*) is another standard for
description of the results and is commonly stabilized at
3 (k + 1)/n, where k is the number of model parameters
and n is the number of calibration set [15]. Obtained le-
verage for calibration set is used to define the com-
pounds which affect the model and, in terms of
validation set, used to determine the applicability

Table 6 R2 and Q2
LOO values after ten Y-randomization tests in

MLR and GA-PLS

Iteration MLR GA-PLS

R2 Q2
LOO R2 Q2

LOO

1 0.158 0.021 0.069 0.081

2 0.034 0.162 0.096 0.022

3 0.186 0.025 0.140 0.004

4 0.134 0.013 0.080 0.082

5 0.085 0.006 0.115 0.001

6 0.102 0.001 0105 0.016

7 0.119 0.001 0.182 0.018

8 0.082 0.032 0.072 0.054

9 0.075 0.047 0.185 0.004

10 0.091 0.004 0.082 0.024

Fig. 5 a William’s plot of generated MLR model, b GA-PLS model
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domain of the model. William’s plot for the advanced
models in MLR and GA-PLS is revealed in Fig. 5.
Rejoinder outliers are compounds that have standard

residual points higher than ±2.5 and ±3.0 standard devi-
ation units for MLR and GA-PLS respectively and also a
leverage value higher than the warning leverage, which
is 0.42. Figure 5 shows that all the considered molecules
in calibration and validation set lie with a high degree of
assurance in the application domain of the developed
models in both methods.

Molecular docking
ATP is Hsp90 substrate and its active site includes mixed
hydrophobic, polar and charged amino acids. These resi-
dues include Leu48, Asn51, Asp54, Ala55, Lys58, Ile91,
Asp93, Ile96, Gly97, Met98, Asn106, Leu107, Lys112,
Gly135, Phe138, Val150, Thr184, and Val186. While the
pocket becomes increasingly hydrophobic toward the bot-
tom, one charged residue and one polar residue are
retained as Asp93 and Thr184 respectively [32]. The aden-
ine ring in ATP sits at the bottom of the pocket and its
N6 group form direct hydrogen bonds with Asp93 (Asp79
in yeast Hsp83), and water-mediated hydrogen bonds with
the Ser52 and Leu48. Also, Glu47 (Glu33 in yeast Hsp83)
gets involved in Hsp90 ATPase activity [33, 34].

A crystallography structure of 3OWD was chosen for
the structure-based drug design. A validation of docking
procedure was done by the extraction of the ligand from
X-ray complex and redocking it. A .dlg file was created.
A cluster root-mean-square deviation (RMSD) at less
than 2 Å whose initial coordinates of the ligand were
used as the reference structure was observed. The ob-
tained results show that the docked ligand was located
in the active site of Hsp90 (Fig. 6).
As previously mentioned, Asp93 is one of the important

residues in Hsp90 ATPase. The pathway into Asp93 is a
large cavity, and in its crater Asn51, Ala55, Lys58, Gly97,
Met98, Asp102, Asn106 and Phe138 lie. Asp93 and
Thr184 stay on the bottom of the pocket (Fig. 7a). Other
pathways into Asp93 and the involved residues were ob-
tained by CAVAER 3.0.1 software [27]. Likely pathways
were computed by assigning maximum probe radius to
0.9 Ǻ, shell depth to 4, and clustering threshold to 3.5 Ǻ.
Four tunnels were obtained, which are depicted in Fig. 7b.
As can be seen, all of the tunnels stay at the back of the
cavity.All residues in the depth of the tunnel included Ile49,
Ser50, Ser52, Ser53, His77, Ile78, Leu80, Ile91, Val92,
Asp93, Val207, His210, Gln212, Phe213, Ile214, Tyr216,
Pro217, Ile218, Thr219 and Leu220.
After the validation of the docking protocol and finding

entrance tunnels, the 3D structures of 3,4-isoxazolediamide

Fig. 6 a The position of ligand in X-ray crystallography, b The position of ligand after redocking

Fig. 7 a Main cavity in Hsp90, b Four entrance tunnels in back of main cavity
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Table 7 Interactions between the docked 3, 4-isoxazolediamide derivatives and Hsp90 binding site residues

Comp. IC50
(μM)

ΔGbinding
(kcal/mol)

Hydrogen bonds between atoms of
compounds and amino acids

Hydrophobic amino acids

Atom of comp. Amino acid (Distance Å)

15 0.153 −2.08 Ortho- OH resorcinol ring Asp93(1.974) Lys58, Gly135, Ala55, Ile96, Asn106, Met98, Gly97, Asn51, Ser52,
Leu107, Phe138, Leu48, Thr184

Para- OH resorcinol ring HOHa(1.828)

16 0.184 −1.90 Ortho- OH resorcinol ring Asp93(1.910) Lys58, Gly135, Ala55, Ile96, Asn106, Met98, Gly97, Asn51, Ser52,
Leu107, Phe138, Leu48,Thr184, Val186

Para- OH resorcinol ring HOH(1.863)

18 0.130 −2.15 Para- OH resorcinol ring Lys58(2.164) Thr152, Ile96, Ala55, Ser52, Val186, Val150, Leu107, Tyr139,
Val136, Ile26, Asp93

HOH(2.153)

Ortho- OH resorcinol ring Asn106(2.155)

O atom- isoxazole HOH (2.632)

NH- isoxazole HOH(2.373)

19 0.074 −2.24 Para- OH resorcinol ring Asp93(1.887) Lys58, Gly135, Ala55, Ile96, Asn106, Met98, Gly97, Asn51, Ser52,
Leu107, Phe138, Leu48, Thr184, Val186

HOH(2.085)

O atom- isoxazole HOH(2.153)

20 0.037 −2.85 Ortho- OH-resorcinol ring Asp93(1.710) Leu48, Asn51, Asp54, Ser52, Ala55,Lys58, Ile96, Met98, Leu107,
Phe138, Thr184, Val186

Para- OH-resorcinol ring HOH(1.919)

NH- isoxazole Gly97(2.373)

21 0.085 −2.23 Para- OH-resorcinol ring Asp93(2.044) Leu48, Gly97, Asp54, Ser52, Ala55,Lys58, Ile96, Met98, Asn106,
Leu107, Lys112, Gly135, Phe138,T hr184, Val186

Ortho- OH-resorcinol ring Asn51(1.970)

22 0.167 −1.93 Ortho- OH-resorcinol ring Asp93(1.719) Leu48, Asn51, Asp54, Ser52, Ala55, Lys58, Ile96, Met98, Leu107,
Phe138, Thr184, Val186

Para- OH-resorcinol ring HOH(2.085)

NH- isoxazole Gly97(2.287)

24 0.160 −1.98 Para- OH resorcinol ring Asp93(1.819) Leu48, Gly97, Asp54, Ser52, Ala55, Asn51, Ile96, Met98, Asn106,
Leu107, Lys112, Gly135, Phe138, Thr184, Val186

HOH(2.115)

O atom- isoxazole HOH(2.200)

F atom-terminal ethyl HOH(1.813)

O atom-methoxy Lys58(2.105)

26 0.055 −2.58 Para- OH-resorcinol ring Asp93(2.225) Leu48, Asp54, Ser52, Ala55, Asn51, Ile96, Met98, Asn106, Leu107,
Phe138, Thr184, Val186

Ortho- OH-resorcinol ring Gly97(2.064)

O atom-terminal ethyl Lys58(1.812)

27 0.041 −2.59 Para- OH resorcinol ring HOH(2.111) Leu48, Gly97, Asp54, Ser52, Ala55,Lys58, Ile96, Met98, Asn51,
Gly95, Asp93, Leu107, Lys112, Gly135, Phe138, Thr184, Val186

O atom-terminal ethyl HOH(2.459)

NH- terminal amid Asn106(2.124)

28 0.190 −1.92 Para- OH resorcinol ring Thr184(1.724) Asp93, Asp54, Ser52, Ala55, Asn51, Ile96, Met98, Leu107, Phe138,
Val186

Ortho- OH-resorcinol ring Gly97(2.262)

NH- isoxazole HOH(2.022)

NH- isoxazole HOH(1.113)

NH- terminal amid Asn106(2.492)

30 0.240 −1.85 Para- OH-resorcinol Ala55(1.640) Asp93, Asp54, Ser52, Lys58, Asn51, Gly97, Met98, Asn106,
Leu107, Phe138, Gly135, Thr184

Ortho- OH-resorcinol HOH(2.397)

46 0.026 −3.02 Para- OH-resorcinol ring Asp93(2.106) Thr152, Gly97,Ile96, Val186, Ala55, Asp102, Leu107, Tyr132,
Gly108, Val136, Ile110

Ortho- OH-resorcinol ring Asn51(2.058)

O atom- isoxazole Asn51(2.805)

NH- isoxazole HOH(2.433)

O atom-methoxy Lys58(2.933)
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Table 7 Interactions between the docked 3, 4-isoxazolediamide derivatives and Hsp90 binding site residues (Continued)

57 0.084 −2.31 Ortho- OH-resorcinol ring Asp93(1.887) Leu48, Asn51, Asp54, Ser52, Ala55, Lys58, Ile96, Met98, Leu107,
Phe138, Thr184, Val186

Para- OH-resorcinol ring HOH(1.800)

S atom-terminal amid HOH(1.129)

O atom-terminal ethyl HOH(1.830)

NH- isoxazole Gly97(2.314)

58 0.022 −3.40 Ortho- OH-resorcinol ring Asp93(1.799) Leu48, Asn51, Ser52, Ala55, Lys58, Ile96, Met98, Asn106, Leu107,
Phe138, Gly135, Thr184, Val186, Val150

Para- OH-resorcinol ring HOH(1.773)

NH- isoxazole Gly97(2.375)

59 0.250 −1.84 Para- OH-resorcinol ring Thr184(1.814) Asp93, Leu48,, Asn51, Ser52, Ala55, Lys58, Ile96, Met98, Gly97,
Asn106, Leu107, Gly135

O atom-terminal ethyl HOH(2.385)

61 0.040 −2.68 Ortho- OH-resorcinol ring Asp93(1.832) Leu48, Asn51, Ser52, Ala55, Lys58, Ile96, Met98, Asn106, Leu107,
Phe138, Gly135, Thr184, Val186, Val150

Para- OH-resorcinol ring HOH(1.816)

NH- isoxazole Gly97(2.328)

NH-thiazole HOH(2.308)

64 0.260 −1.82 Para- OH-resorcinol ring Lys58(2.045) Asp93, Asn51, Ser52, Ala55, Asp54, Ile96, Met98, Gly97, Phe138,
Gly135, Val136, Tyr139, Asn106, Leu107, Thr184, Val186

HOH(2.032)

Ortho- OH-resorcinol ring Asn106(2.134)

O atom- isoxazole HOH(2.449)

NH-isoxazole HOH(2.340)

65 0.048 −2.62 O atom- isoxazole HOH(2.733) Asp93, Asn51, Ser52, Ala55, Lys58, Ile96, Met98, Gly97, Phe138,
Gly135, Val136, Tyr139, Asn106, Leu107, Thr184, Val186

66 0.062 −2.46 Para- OH-resorcinol ring Lys58(2.144) Asp93, Asn51, Ser52, Asp54, Ala55, Ile96, Met98, Gly97, Phe138,
Gly135, Val136, Tyr139, Gly137, Leu107, Thr184, Val186

HOH(1.937)

Ortho- OH-resorcinol ring Asn106(2.074)

O atom- isoxazole HOH(2.477)

NH- isoxazole HOH(2.218)

NH-terminal ethyl Asn106(1.829)

69 0.020 −3.50 Para- OH-resorcinol ring HOH(2.022) Asn51, Ser52, Asp54, Ala55, Lys58, Ile96, Met98, Phe138, Gly135,
Val136, Tyr139, Asn106, Leu107, Thr184, Val186

Ortho- OH-resorcinol ring Asp93(1.909)

S atom-terminal amid HOH(1.969)

NH- isoxazole Gly97(2.365)

73 0.040 −2.80 Ortho- OH-resorcinol ring Asp93(2.067) Asn51, Ser52, Asp54, Ala55, Lys58, Ile96, Gly97, Phe138, Gly135,
Val136, Gly137, Leu107, Thr184, Val186

Para- OH-resorcinol ring HOH(1.968)

NH- isoxazole Met98(2.082)

O atom-terminal ethyl HOH(2.277)

81a 0.230 −1.88 Para- OH-resorcinol ring Asp93(2.250) Asn51, Ser52, Asp54, Ala55, Ile96, Met98, Asp106, Thr184

Ortho- OH-resorcinol ring Gly97(1.942)

O atom-terminal ethyl Lys58(1.888)

81b 0.430 −1.76 Ortho- OH-resorcinol ring Asp93(1.704) Lys58, Ser52, Asp54, Ala55, Ile96, Met98, Gly97, Asp106, Leu107,
Thr184, Val186

Para- OH-resorcinol ring HOH(2.099)

NH- terminal methoxy Asn51(2.160)

81c 0.620 −1.65 Ortho- OH-resorcinol ring Asp93(1.724) Lys58, Ser52, Asp54, Ala55, Ile96, Met98, Asp106, Leu107, Thr184,
Val186, Phe138

Para- OH-resorcinol ring HOH(1.860)

NH- isoxazole Gly97(2.305)

NH-cyclohexane Asn51(2.153)
aHOH = Crystallographic water
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derivatives (25 compounds) were docked into crystallog-
raphy structure 3OWD. In .dlg files, the structures were
ranked by binding energy and clusters. All of the com-
pounds were perched into the cavity of the active site
(Table 7). The compounds were divided into three groups.

Group A (compounds 15–24)
In this Group, the meta-position of resorcinol ring was
substituted by a large chloro group. So, when R1 group
was small, for example like the CH3 group, hydroxyl
groups in resorcinol ring could interact well with Asp93.
On the other hand, large groups in R1 such as 1,2,3-tri-
methoxybenzene groups, due to steric hindrance, chan-
ged steric orientation of hydroxyl groups in resorcinol
and hydroxyl groups could interact with Asp93 by a
water-bridge hydrogen bond. According to what was
mentioned above, compound 20 was the best inhibitor
in this group. Compound 18 had a 1,2,3-trimethoxyben-
zene group, but trimethoxy groups created a better
hydrogen bond with Lys112 than methoxy group.

Group B (compounds 26–73)
Meta position of resorcinol ring was occupied by an iso-
propyl in this group. According to the biological assay,
the lowest IC50 was related to compound 69 and it was
the strongest compound that docking analysis revealed.

The ortho-hydroxyl group of resorcinol ring with Asp93,
para-hydroxyl with Ser52 by a water-bridge, and nitrogen
atom of isoxazole with Gly97 was created the hydrogen
bonds. Steric orientation in compound 58 was observed to
be similar to that of 69. But, 69 was stronger than 58, be-
cause sulfur atom of R1 group in 69 created a hydrogen
bond with Phe138 and Asn51 by a water-bridge. In com-
pound 46, para-hydroxyl made a hydrogen bond with
Asp93 and O atom in methoxy group could create H-
bond with Lys58. The steric orientation in cyclohexane
made compound 28, and 30 could not directly create a
hydrogen bond with Asp93. The connected R1 group to
carbonyl was isoxazole in 73 and 59 but 73 was a stronger
inhibitor than 59. The connected benzene group to this
isoxazole changed the steric orientation in resorcinol and
could not directly make a hydrogen bond with Asp93. Un-
like Group A, in this group the compounds with smaller
R1substituent were not potent inhibitors.

Group C (compounds 81a-81c)
In this group, on meta-position of resorcinol ring was
placed a large chloro group and R1 was connected to
NH. 81a was stronger than both 81b and 81c. Thiophene
group was better than either methoxybenzen or cyclo-
hexane. The same as Group A, the compounds with
small R1 groups were stronger inhibitors.

Fig. 8 The predicted novel inhibitors based on QSAR model and docking

Fig. 9 Orientation and main interaction between three predicted compounds and Hsp90
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Predicted ligands and molecular dynamic simulation
Three novel compounds (Fig. 8) were predicted with the
modification of compounds based on results of QSAR
model and molecular docking.
Docking study was performed on the predicted com-

pounds. In these compounds, similar to previously eval-
uated compound, the hydroxyl groups of resorcinol ring
interacted with Asp93 (Fig. 9). The binding energy of
compound II was the lowest (−8.20 kcal/mol).
To ensure the stability of the new ligand II in the ac-

tive site of protein, the MD simulation was carried out
and its interaction modes with compound 69 in Hsp90
active site was also compared. The best conformation of
docking was chosen to perform 50 ns MD simulation.
The time-dependent behavior of MD trajectories were
analyzed including root mean square deviation (RMSD)
for all backbone atoms and ligands, average fluctuations
of the residues (RMSF) and gyration radius (Rg) for all
backbone atoms.
The RMSD of backbone atoms was figured to assess-

ment the conformational stability of the protein during
the simulation. The RMSD of backbone atoms between
complexes of Hsp90-ligand 69 and Hsp90-predicted lig-
and II was measured with a 10 ps time interval. As illus-
trated in Fig. 10a, the RMSD profile in the two
complexes was almost the same in the first 10 ns. Varia-
tions of RMSD were not very considerable, which denote
the stability of both complexes. The ligand RMSD pro-
file in Fig. 10b shows that the ligand 69 after 3 ns and
predicted ligand II after 8 ns become stable. The RMSD
variations were almost 0.1 nm in ligand 69 and predicted
ligand II, it can be observed that both of the ligands
were also fit in the active site and stabilized. The protein
compactness was evaluated by the gyration radius (Rg).
The Rg plot is shown in Fig. 11. In the first 27 ns and
the last 10 ns, the Rg values of ligand 69 and the pre-
dicted ligand II were superimposed and the conjunction
of both complexes was conserved during the simulation.

The variations of protein flexibility were identified by
the root mean square fluctuation (RMSF) of backbone
residues. As shown in Fig. 12, in residues 45–61 and
89–107, the fluctuation of predicted ligand II was lower
than compound 69 which disclose that predicted ligand
II was more stable than compound 69 in these parts.
This can be attributed to the attendance of these resi-
dues in the active site of protein. In residues 61–70 the
fluctuation was high, which indicates that these parts of
the protein were more unstable than other parts during
the MD simulation, especially in the predicted ligand II.
To discover the conformations and interactions of the

predicted ligand II and compound 69 during simulation,
3D plots of the different times of simulation were shown
(Fig. 13). Figure 13 shows the comparison between the
compound 69 and predicted ligand II in the active site
of Hsp90 during 0, 25 and 50 ns of the simulation (a, b
columns). In all simulation times, the resorcinol hy-
droxyl group of both compounds formed hydrogen bond
with Asp93. On other side of both compounds perched

Fig. 11 The gyration radius plot of backbone. Compound 69 (violet),
predicted ligand II (green)

Fig. 10 The RMSD profile. a Hsp90 backbone in complex with compound 69 (violet), predicted ligand II (green). b Compound 69 (violet), predicted
ligand II (green) as a function of simulation time
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toward out of pocket and was not involved in interac-
tions between ligand and protein. Since the beginning
until the half of simulation (0–25 ns), the hydrogen
bond was built with crystallography water molecules in
both compounds. In compound 69, at the end of simula-
tion (50 ns), the N atom of isoxazole ring and the resor-
cinol hydroxyl group made hydrogen bonds with Asp93

but the crystallography water molecules was not in-
volved in interactions between ligand and protein. Add-
ing amine group to benzothiophene moiety,
conformation of predicted ligand changed and the inter-
action between ligand and the crystallography water
molecule was seen with 1.88 Å distance. According to
the MD simulation analysis and also the evaluation of
the interactions between compound 69 and predicted
ligand II with Hsp90, adding amine group was effective
in improving of binding energy of ligand and protein.

Conclusion
In current study, quantitative relationships between the
molecular structure and Hsp90 inhibitory activity of 3,
4-isoxazolediamide derivative were verified by MLR and
GA-PLS. In MLR, the connectivity index (X5A) has a
significant effect on the inhibitory activity. This method
made suitable results for the prediction set. In addition
to MLR, genetic algorithm method was used which illus-
trated much more promising results in comparison with
stepwise regression. It can be concluded from the two
methods that structural features of the molecule such as
size, shape, symmetry, and branching are particularly
important in design of new Hsp90 inhibitors based on
3,4-isoxazolediamide scaffold. The molecular docking

Fig. 13 3D plots of the interaction between two ligands and Hsp90 at different times during the MD simulation. Column a The interaction of
compound 69 with Hsp90. Column b the interaction of the predicted ligand II with Hsp90

Fig. 12 The RMSF plot. Hsp90-compound 69 (violet), Hsp90-predicted
ligand II (green)
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simulation was also done for 25 compounds in three
groups (A, B and C).
Based on QSAR models and molecular docking

analysis were predicted three novel compounds. The
ligand II was chosen in term of binding energy and
steric orientation. Molecular dynamic simulation was
done and analyses such as RMSD, RMSF and Rg,
displayed that proposed ligand II, is stable in the
Hsp90 active sites.
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