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Abstract 

Background  Stable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associa-
tions between species and substrates, as well as the activity of species. The application of these approaches ranges 
from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions 
in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS allow to analyze incorporation of stable 
isotopes with high coverage of taxa in a community and at the single cell level, respectively, however they are limited 
in terms of sensitivity, resolution or throughput.

Results  Here, we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Pro-
tein-SIP), which cuts cost for labeled substrates by 50–99% as compared to other SIP and Protein-SIP approaches and 
thus enables isotope labeling experiments on much larger scales and with higher replication. The approach allows 
for the determination of isotope incorporation into microbiome members with species level resolution using stand-
ard metaproteomics liquid chromatography-tandem mass spectrometry (LC–MS/MS) measurements. At the core of 
the approach are new algorithms to analyze the data, which have been implemented in an open-source software 
(https://​sourc​eforge.​net/​proje​cts/​calis-p/). We demonstrate sensitivity, precision and accuracy using bacterial cultures 
and mock communities with different labeling schemes. Furthermore, we benchmark our approach against two 
existing Protein-SIP approaches and show that in the low labeling range used our approach is the most sensitive and 
accurate. Finally, we measure translational activity using 18O heavy water labeling in a 63-species community derived 
from human fecal samples grown on media simulating two different diets. Activity could be quantified on average 
for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared 
to a high fiber diet. Surprisingly, among the species with increased activity on high protein were several Bacteroides 
species known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of 
intestinal microbes on fiber, including fiber-based prebiotics.

Conclusions  We demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01 to 10% label) detec-
tion of stable isotopes of elements found in proteins, using standard metaproteomics data.
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Introduction
Microbial communities drive chemical transforma-
tions from global element cycling to human nutri-
tion. Unfortunately, the overwhelming complexity 
of these communities is often a barrier to unraveling 
their functionality. Use of isotopic or chemical labe-
ling is a powerful solution to that problem. Even in 
the context of complex microbial communities, labe-
ling enables assigning activities and functions to taxa, 
tracking metabolic pathways and resolving trophic 
relationships among species [1–5]. Current labeling 
approaches include use of click-chemistry (BONCAT) 
[6], nanoscale secondary ion mass spectrometry (nano-
SIMS) [2], Raman microscopy [7], genomic sequencing 
of isotope labeled DNA/RNA (DNA/RNA-SIP) [8], sep-
arated from unlabeled DNA/RNA with density gradient 
centrifugation, and protein-based stable isotope prob-
ing metaproteomics (Protein-SIP) [9]. Some of these 
approaches use labels with defined chemistry such 
as non-canonical amino acids in BONCAT [6], which 
are directly assimilated into biomass. Others use more 
generic labels, such as substrate molecules labeled with 
heavy isotopes of carbon, nitrogen, oxygen and hydro-
gen [2, 7, 10, 11]. When spatial organization of samples 
is important, approaches are available to image labe-
ling outcomes [12, 13]. When it is unknown in advance 
which species or pathway might be involved in a tar-
get process, labeling can be combined with untargeted 
metagenomics and metaproteomics analyses.

Recently, we developed an algorithm (Calis-p 1.0) to 
estimate natural isotope abundances (stable isotope fin-
gerprints, SIF) of carbon isotopes of individual species 
within complex microbial communities using metaprot-
eomics [14]. In nature, 13C and 12C occur side by side at 
a ratio of approximately 0.011 13C/12C. For microbial bio-
mass, very subtle changes to this ratio, as little as 0.0001, 
already provide information about carbon assimilation 
pathways and carbon sources used. Our algorithm, which 
modeled mass spectra of individual peptides using fast 
Fourier transformations (FFTs), was able to detect these 
subtle changes. In the present paper we further develop 
this extremely sensitive approach to also work for stable 
isotope probing (SIP) experiments. This enables us to 
detect and quantify the assimilation of heavy isotopes 
by individual species in complex microbial communities 
using metaproteomics (Protein-SIP).

Protein-SIP differs from other metabolic labeling 
approaches in that the heavy isotopes from the substrate 
are incorporated into protein through de novo synthesis 
of amino acids from the substrates via biosynthetic path-
ways, rather than directly in the form of labeled amino 
acids. Such labeled amino acids are used, for example, 
in the “Stable Isotope Labeling by Amino Acids in Cell 

Culture” (SILAC) approach [15]. The “random” incorpo-
ration of label into various amino acids and ultimately 
into peptides makes data analysis much more compli-
cated in Protein-SIP, at least compared to the predictable 
exact mass shifts resulting from direct assimilation of 
labeled amino acids in SILAC.

Protein-SIP approaches have been successfully devel-
oped before, but these approaches have their challenges 
(for an overview, see “Introduction” section of [10]). 
Metaproteomics relies on high-resolution mass spec-
trometry to detect, identify, and quantify peptides, which 
are then used for protein identification and quantifica-
tion [16, 17]. Using the same mass spectra already used 
for peptide identification to also quantify abundances of 
heavy isotopes in these peptides appears a straightfor-
ward add-on, as these spectra resolve the peptide iso-
topes and provide their intensities. However, unknown 
amounts of heavy isotopes shift peptide mass peaks 
by unknown numbers of mass-units, which makes the 
identification of peptides based on masses computation-
ally challenging. The existing Sipros algorithm solved 
this problem with brute force by coupling the detection 
of labeled peptides with the initial peptide identifica-
tion. Sipros predicts the most abundant peptide masses 
and isotopic distributions of b and y ions in an isotope 
atom% range of 0–100% in 1% increments [18]. This 
approach makes Protein-SIP experiments computation-
ally so expensive that dedicated smaller protein sequence 
databases have to be constructed for determination of 
stable isotope content of peptides [19] and even then 
the approach still requires a supercomputer to work. 
For example, one study using the Sipros approach had 
to invest around 500,000 CPU hours for a study with 
less than 10 labeled samples [10]. The MetaProSIP [20] 
and SIPPER [21] algorithms overcame the problem by 
using spectra of unlabeled peptides as a starting point 
for computations. In case of MetaProSIP, these unla-
beled peptides can be derived from the SIP experiment 
itself if a portion of the original unlabeled proteins is still 
present, or, alternatively, from a control sample that was 
incubated without label. MetaProSIP then detects the 
labeled peptides corresponding to the unlabeled pep-
tides and computes the relative isotope abundance and 
labeling ratio based on the comparison of the labeled 
and unlabeled form of peptides [20]. Because MetaPro-
SIP requires a labeled peptide’s spectrum to be shifted 
away from the mono-isotopic mass, it has been specu-
lated that it requires relatively heavy labeling (e.g., > 20.24 
atom% for 13C and > 73.1 atom% for 15 N [22]). In case of 
SIPPER the isotopic patterns for unlabeled peptides are 
generated in silico and subtracted from the experimental 
isotope patterns of peptides. Remaining peak intensities 
after subtraction are used for estimating isotope content. 
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SIPPER is designed to detect small changes in isotopic 
profiles of complex mixtures after short exposure to 13C 
label, with proposed scoring schemes to reduce the rate 
of false discoveries.

While the identification challenges can be solved by 
clever algorithms, underneath these challenges hides a 
more fundamental problem. Figure 1 shows the expected 
mass spectra of three E. coli peptides after 1/8 generation 
of labeling with 13C-glucose. The figure illustrates the 
problem with these data: assimilation of heavy isotopes 
into peptides leads to broadening of spectra. Thus, a pep-
tide’s matter gets divided over ever more peaks, reduc-
ing sensitivity. Also, because many peptides get injected 
into the mass spectrometer simultaneously, especially 
for complex samples such as a microbial community, the 
probability of the peptide’s spectrum overlapping with 

another spectrum increases as it broadens, reducing data 
quality. Heavy peptides are especially sensitive to these 
issues. Counter-intuitively, for Protein-SIP, sensitivity is 
highest when using small amounts of label.

Our previous algorithm was developed to estimate 
slight differences in isotopic content based on pep-
tide mass spectra, to determine natural carbon isotope 
abundances [14]. It made use of the fact that in nature, 
heavy isotopes are distributed randomly, yielding spec-
tra that are perfect Poisson distributions. This enabled us 
to reduce the noisiness of the data by identification and 
rejection of imperfect spectra. Spectra in Protein-SIP 
experiments do not have such conveniently predictable 
properties. With labeled samples, the shape of spec-
tra cannot be predicted using FFT, because these spec-
tra become mixtures of spectra associated with labeled 

Fig. 1  Modeled spectra of three E. coli peptides after 1/8 generations of growth on 1% (left) and 10% (right) 13C1-6 glucose (13C/12C 0.02 and 0.11 
respectively). Assimilation of 13C into peptides leads to a shift of matter away from the monoisotopic mass (shown as *). The resulting peak intensity 
changes are shown in red—for peaks with decreased intensity -, and blue - for peaks with increased intensity after labeling. Dashed lines show 
experimentally determined average detection limits for peaks (see “Methods” section). Peaks below the dashed line would not be recorded by 
the mass spectrometer. Percentages above lines indicate how much of the actual change is detectable in practice. Peptide 1 - IGLETAR; peptide 
2 - AFEMGWRPDMSGVK; peptide 3 - QIQEALQYANQAQVTKPQIQQTGEDITQDTLFLLGSEALESMIK
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and unlabeled peptides. Both the proportion of heavy 
isotopes in the labeled peptides and the extent of labe-
ling—the relative abundances of labeled versus unlabeled 
populations of peptides—are unknown in advance. For 
analysis of these data, we therefore developed rigorous 
noise filtering and estimated isotopic content based on 
neutron abundance, requiring no assumptions about a 
spectrum’s shape.

Conclusions
We present new algorithms and software for sensitive and 
quantitative estimation of isotopic content of individual 
species in stable isotope probing experiments with com-
plex microbial communities. The new algorithms have 
been integrated into the Calis-p software together with 
the SIF algorithms, and the software was completely re-
written to enable Protein-SIP (new version is Calis-p 2.1). 
The software decouples peptide identification from label 
detection and is thus compatible with most standard pep-
tide identification pipelines. Computation of label con-
tent is very fast, a high-end desktop computer only needs 
one minute for processing ~ 1 Gb of data, corresponding 
to ~ 10,000 MS1 spectra or ~ 40 min of Orbitrap runtime. 
Using pure cultures of bacteria and mock communities, 
we show that Protein-SIP with Calis-p yields best results 
when substrates are partially labeled. For example, for 
carbon the fraction of heavy atoms should make up < 10% 
of the total. For abundant organisms, assimilation of label 
(such as 13C) into protein can be quantified within min-
utes after adding the label, within 1/16 of a generation. 
Even for rare organisms making up ~ 1% of a commu-
nity, a single generation of labeling is sufficient for robust 
detection of label assimilation. We believe these advances 
will be helpful to microbiome researchers and micro-
bial ecologists seeking to assign functions and activities 
to taxa, to track metabolic pathways and for resolving 
trophic relationships among species.

Results
Previously, we presented algorithms and software for 
estimating natural isotope fingerprints from peptide 
mass spectra [14]. Our previous algorithm made use of 
the stochastic distribution of isotopes in nature and mass 
spectra that can be modeled by fast Fourier transforma-
tions. Quality control is intrinsic to that approach, as 
poor quality spectra cannot be modeled with FFT and 
can be rejected. Examples of low quality spectra are spec-
tra that overlap with other spectra or low intensity spec-
tra that are affected by noise. Feeding microbes labeled 
substrates for Protein-SIP experiments leads to peptide 
mass spectra with irregular shapes that cannot be mod-
eled with FFT, as explained in the “Introduction” sec-
tion. Isotopic composition of such spectra can still be 

inferred, by adding up the mass intensities of all peaks in 
the spectrum according to Eq. 1 in the “Methods” section 
(implemented as “neutron abundance” model in Calis-
p). Unfortunately, that approach does not enable rejec-
tion of low quality spectra. Therefore, we implemented a 
simple noise filter based on unsupervised Markov clus-
tering of all spectra associated with a single peptide (see 
“Methods” for details). The assumption underlying this 
approach is that most spectra are relatively unaffected 
by noise and will form the largest cluster. Spectra outside 
the largest cluster should be rejected for being of lower 
quality.

The performance of this filter was benchmarked using 
previous natural-isotope abundance data of pure cultures 
and mock communities of microbes (Supplementary 
Results and Discussion, Figure S1, Tables S1 and S2). The 
FFT estimates of 13C/12C ratios for filtered spectra was as 
good or better than reported previously without filtering 
[14]. Even better, after filtering the estimates of 13C/12C 
ratios according to Eq.  1 (see “Methods” section) were 
now almost as good as for FFT. The average difference 
between the actual and estimated median δ13C values for 
the fifteen most abundant organisms of a mock commu-
nity was 2‰ for FFT and 4‰ for the neutron abundance 
model. Implementation of the filter also dramatically 
reduced computation times because fewer FFT opera-
tions were needed.

To test the performance of Eq.  1 for 13C labeled pep-
tides, we labeled cells of two model organisms, Escheri-
chia coli K12 and Bacillus subtilis ATCC 6051, to 
saturation, with 13C glucose. Three replicate cultures 
were grown overnight with fully labeled glucose (13C1-

6) and single-labeled glucose (13C2), with the percentage 
of spiked-in 13C increasing from 0 and 10% of total glu-
cose in seven steps. The glucose that was used as unla-
beled glucose had the natural 13C content of around 1.1%. 
Protein was extracted, peptides were prepared, subjected 
to LC–MS/MS, and identified with SEQUEST HT in Pro-
teome Discoverer and results analyzed in Calis-p (see 
“Methods” section).

Surprisingly, adding as little as 1% label could already 
severely compromise the identification of peptides by 
search algorithms such as SEQUEST. For example, for 
B. subtilis average peptide-spectrum matches (PSMs) 
dropped by almost 90% at 10% added label. To miti-
gate these losses, we tested five potential improvements 
to search strategies (see “Methods” section and Sup-
plementary Results and Discussion for details). These 
ranged from computationally costly, open mass window 
searches to more confined, faster approaches. All strat-
egies improved identification outcomes (Fig.  2 and Fig-
ure  S2). However, for the “open search” and “dynamic 
modifications” strategy, computation times became 
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impractical. For example, basic peptide identifica-
tion on a high performance desktop computer with the 
SEQUEST algorithm for single 140 min LC–MS/MS file 
from a microbial community took 17 min to search with 
our standard search parameters, while it took 72  min 
with a search strategy that included modifications of the 
peptide termini, and 1947 min for a search strategy with 
an open (20 Da) mass window. We selected the Modifi-
cations of Termini (N = low, C = high) strategy as a prac-
tical compromise between peptides identified and extra 
computation time needed. This strategy adds six custom 
“post-translational” modifications to the protein identifi-
cation search. These modifications generated more PSMs 
by enabling addition of one to three neutron masses 
at the N-terminus of a peptide and four to six neutron 
masses to its C-terminus. We observed a strong differ-
ence in how label amount impacted the number of PSMs 
between B. subtilis and E. coli. For B. subtilis a small 
amount of added label strongly increased the number of 
PSMs, which then sharply dropped at 1% label. We cur-
rently have no good explanation for this phenomenon.

After assigning peptides to spectra with the improved 
peptide identification strategy, low quality spectra were 

rejected using the filter described above. For the remain-
ing spectra, the number of neutron masses added as cus-
tom modifications during the identification step already 
provided a qualitative, or at best semi-quantitative, 
measure for label incorporation (Fig.  3, Supplementary 
Table  S3). However, inference of the 13C/12C ratios by 
Eq. 1 was much more precise, even for minimally (0.01%) 
labeled cells providing a limit of detection < 0.01% label 
in most cases (see supplementary information). Preci-
sion and especially label recovery were both higher when 
using glucose labeled at only a single position rather than 
with fully labeled glucose. For the latter, the recovery was 
only 75–79%, meaning that the 13C/12C ratio was 21–25% 
lower than expected. Potentially, this was caused by 
broadening of spectra with fully labeled glucose (Fig. 1). 
As explained in the “Introduction” section, broader spec-
tra reduce sensitivity. Interestingly, the breadth of spec-
tra could be used to infer to what degree 13C carbon was 
assimilated in clumps of multiple atoms (pie charts in 
Fig. 3). This approach, which only works when all atoms 
in a substrate are labeled and when cells are labeled to 
saturation, could be used to infer the number of carbon 
atoms in substrates that a given species is assimilating. In 

Fig. 2  A small modification of the peptide identification approach drastically increases the number of peptides with 1–10% label that can be 
identified. Number of peptide spectral matches (PSMs) identified at different 13C label percentages using six different peptide identification 
strategies. Cultures of a B. subtilis and b E. coli were grown in Bacillus minimal medium or M9 minimal medium (E. coli) in which a percentage of the 
glucose was replaced with 13C1-6 glucose for > 10 generations to achieve close to complete labeling. Three biological replicates were run for each 
label percentage. Peptides were identified using the SEQUEST HT Node in Proteome Discoverer (version 2.2) with six different strategies to account 
for the mass shifts caused by addition of heavy atoms. Standard search: no dynamic modifications to account for addition of label; open search: the 
precursor mass tolerance was set to 20 Da allowing for the potential addition of 20 neutrons (e.g., 13C atoms) in a peptide; dynamic modifications: 
allowing for up to three dynamic modifications each of two custom peptide modifications adding a 1 neutron mass shift and a 2 neutron mass shift 
(up to 9 neutrons in total per peptide); modifications on termini: six dynamic modifications were set up that were restricted to either the C or the 
N-terminus of the peptide. The modifications account for mass shifts of 1 to 6 neutrons and depending on the search strategy the low mass shifts 
(1, 2, and 3 neutrons) were set up as modifications on the C or the N-Terminus or low and high mass shift modifications were distributed between 
both termini. Each modification can only be added to a terminus once. This strategy allows for a total of 21 neutron additions to a peptide
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other words, Protein-SIP can provide hints on whether 
a species incorporated carbon as one-carbon units or 
in the form of (organic) multiple carbon compounds 

and thus if the species was using an autotrophic or het-
erotrophic metabolism. We carried our similar labeling 
to saturation experiments with 15  N (E. coli labeled to 

Fig. 3  The number of labeled atoms per substrate molecule impacts the ability to quantify label incorporation accurately. Labeling, to saturation, 
of E. coli and B. subtilis with single-labeled (13C2) and fully labeled (13C1-6) glucose. The 13C/12C ratio in the substrate was varied. Note that unlabeled 
glucose (0% added 13C glucose) has a natural 13C content of around 1.1%. Each orange circle is the median 13C/12C ratio of all peptides measured 
in one replicate incubation (on average 2758 peptides per replicate). Determined 13C/12C ratios increased linearly with substate 13C/12C ratios 
(R2 > 0.999). Almost 100% of the substrate 13C was recovered in protein for 13C2 glucose labeled cells. Recovery was lower for 13C1-6 glucose. The 
proportion of neutron masses detected via the improved peptide identification strategy using N- and C-terminal modifications (yellow circles) 
increased with substrate 13C/12C ratios, but at low linearity and sensitivity. The number of Calis-p filtered peptide spectrum matches (PSM) 
decreased for 13C/12C ratios above 2.5% (insets) as expected based on Fig. 2 and Fig. 2. Assimilation of carbon into amino acids in clumps of multiple 
13C atoms was detectable in peptide spectra of cultures fed with 13C1-6 glucose as shown in pie charts for experiments fed with 13C/.12C 1% above 
natural background. The detailed data for this figure can be found in Supplementary Table S3
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saturation with 2.5% 15 N ammonium) and obtained simi-
lar results (data not shown, but available via PRIDE see 
“Availability of data and materials” section).

The data of Fig. 3 are not yet a meaningful representa-
tion of what an actual Protein-SIP experiment would look 
like. In practice, we would always avoid labeling a micro-
bial community to saturation, because all community 
members would end up being labeled equally, providing 
no new information on elemental fluxes and substrate 
uptake in the community. To mimic an actual Protein-
SIP experiment, we mixed labeled and unlabeled cells of 
E. coli at different ratios, leading to compound spectra as 
shown in Fig. 1.

The results indicated that estimation of 13C/12C ratios 
with this type of compound spectra was more challeng-
ing (Figure  S3, Supplementary Table  S4). Also, the dif-
ference between single labeled and fully labeled glucose 
was more pronounced, with the former yielding much 
better sensitivity and label recovery than the latter. For 
example, at 1% label recovery was 92% for single labeled 
glucose, while it was 80% for glucose with 6 labeled car-
bons. We also compared the performance of two center 
statistics for 13C/12C ratios, the intensity-weighted mean 
and the median. The intensity-weighted mean displayed 
higher sensitivity and precision than the median in these 
experiments (for contrasting results for community sam-
ples, see below). However, both with 1% and 10% single 
labeled glucose, even the median 13C/12C ratios accu-
rately quantified label assimilation within 1/16 of a gen-
eration (simulated by mixing of labeled and unlabeled 
cells), corresponding to as little as 1–2 min of growth for 
E. coli.

Next, we investigated whether our approach was 
capable of detecting label assimilation in the context of 
a microbial community. For this, we used a previously 
described mock community, comprising > 30 microbes, 
including gr + and gr- bacteria, an archaeum, a eukary-
ote (algae) and several phages [23]. This community 
also included E. coli K12, at ~ 6% abundance. Here, 
we mixed cells of E. coli labeled with 1%, 5%, and 10% 
13C1-6-glucose into the unlabeled mock community at a 
ratio corresponding to one generation of growth for E. 
coli. Quantification of 13C content of labeled E. coli was 
straightforward and linear (R2 0.99, Fig. 4A, Supplemen-
tary Table S5). This was perhaps not surprising because a 
relatively large amount of label was used and the relative 
abundance of E. coli in the mock community was high, 
i.e., ~ 12% after addition of the labeled cells.

Figure 4 also shows to what extent the addition of the 
labeled cells of E. coli led to the incorrect inference of 
label assimilation by five other members of the mock 
community. The relative abundance of these unlabeled 
organisms was between 0.1% and 7%. The determined 

13C/12C ratios for the > 20 other members of the mock 
community are reported in Supplementary Table  S5. 
We found that the choice of center statistic used has 
a major impact on the false-positive detection of label 
incorporation. When using the median, the overall (i.e., 
all unlabeled species in all replicates) false-positive rate 
(FPR) of label detection for populations with nine or 
more peptides (after filtering) was 3.4% and for popu-
lations with eight or fewer peptides it was 45%. In con-
trast, when using the weighted mean the FPR was 51% 
for populations with nine or more peptides and 50% for 
populations with eight or less peptides. In our dataset, 
the nine peptide threshold corresponded to ~ 1% rela-
tive abundance of strains/species within the mock com-
munity. We investigated the massive differences in FPRs 
between the two center statistics by manually checking 
spectra causing false positives and found that low-inten-
sity peptide spectra associated with less abundant popu-
lations were often affected by the overlap with broadened 
spectra of a labeled, more-abundant population. There-
fore, we concluded that for label detection in microbial 
communities the median should be used (see detailed 
discussion in Supplementary methods). Figure  4 shows 
examples of false-positive inferences for Pseudomonas 
pseudoalkaligenes.

To investigate whether presence of label can be cor-
rectly inferred for less abundant populations, we down-
sampled (bootstrapped, up to ten times) the set of > 6000 
peptides collected for E. coli, using the peptides of each 
other organism as templates. In the resulting datasets, 
each E. coli peptide was matched to a peptide of the 
other organism with a similar intensity. Based on infer-
ences for these bootstrapped datasets shown in Fig.  4, 
label assimilation could be robustly estimated, at least for 
populations associated with nine or more peptides, cor-
responding to ~ 1% abundance. This number of peptides 
is much smaller than the ~ 30 peptides needed for estima-
tion of natural carbon isotope content in a species using 
Protein-SIF (Supplementary Results and Discussion, 
Figure S1).

Next, we analyzed how well we could detect incor-
poration of label into individual proteins based on how 
many peptides passed the Calis-p quality filters for a pro-
tein. For this we analyzed the Calis-p reported 13C/12C 
ratios for proteins from the mock communities with 5% 
labeled E. coli spiked-in and without spiked in E. coli. 
13C/12C ratios in E. coli proteins from the 5% spike-in 
samples were on average much higher than the ratios for 
proteins from the unlabeled mock communities and the 
unlabeled mock community members in the 5% spike-
in samples (Fig.  5a). Even for proteins for which only 1 
peptide passed the Calis-p quality filters, this pattern 
was observed. This indicated that label incorporation 
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into individual proteins can be detected with as few as 
one identified peptide. For some proteins from unlabeled 
organisms, for which 3 or less peptides passed the Calis-p 
quality filter, 13C/12C ratios that were above the expected 
value of 0.011 (Fig. 5a), indicating that, as expected, the 
accuracy of the ratio estimates increases with more pep-
tides available per protein.

To test if meaningful results can be obtained from pop-
ulations in mixed communities that shift their metabo-
lism and physiology we analyzed 13C/12C ratios in E. coli 

proteins from the 5% spike-in samples in more detail. 
For this analysis it is important to know that the unla-
beled E. coli cells that were part of the mock community 
were grown at well oxygenated conditions in a complex 
medium containing organic nutrients such as amino 
acids and vitamins (LB broth), while the E. coli grown in 
the presence of 13C1-6-glucose (5% of total glucose) were 
grown under oxygen limited conditions in a minimal 
medium (M9 broth) that contained glucose as the only 
carbon source and nitrogen only in inorganic form. This 

Fig. 4  Detection of 13C content of labeled E. coli within a mock community of 32 microorganisms developed by [23]. In each experiment, half 
of the E. coli cells were labeled using 13C1-6-Glucose, corresponding to one generation of labeling, with glucose containing 0, 1, 5, and 10% 13C 
on top of natural abundance 13C (three replicate samples were generated for each labeling percentage and measured separately). Label in E. coli 
(orange circles in a), but not in other organisms (blue circles shown for five organisms in b–e), was clearly detectable and reproducible. Yellow box 
plots show the measured 13C content of sets of E. coli peptides, obtained by downsampling of the results in a, mimicking the spectral intensities 
of the peptides collected for each unlabeled organism in panels b–e, i.e., only E. coli peptides that corresponded in intensity to peptides of the 
analyzed organism were used. The percentage in parentheses indicates the relative abundance of the organism in the mock community based 
on its proteinaceous biomass and the “n = ” indicates the average number of peptides passing the filters in Calis-p for SIP value calculation for 
the organism in each experiment, which also corresponds to the number of E. coli peptides used in downsampling. These results show label 
incorporation can be estimated, even for relatively rare species. Supplementary Table S5 shows results for each species
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mixing of unlabeled LB grown and labeled M9 grown E. 
coli led to the following expectations: (1) proteins that 
are produced exclusively or almost exclusively by cells 
growing on LB would show no label incorporation in 
the 5% label mock communities and thus have 13C/12C 
ratios close to the expected value of 0.011; and (2) con-
versely proteins that are produced exclusively or almost 
exclusively by cells growing on M9 would show high 
label incorporation in the 5% label mock communities 
(13C/12C ratios of > 0.04). We only looked at proteins that 
were detected in at least two replicates of one condition 
(Supplementary Table S6, Fig. 5b). Proteins for the deg-
radation of amino acids and other carbon sources were 
unlabeled, indicating that they were only produced by E. 
coli in complex medium, but not when growing on M9. 
Proteins for amino acid biosynthesis pathways, glycolysis, 
mixed acid fermentation and iron acquisition were heav-
ily labeled, indicating that lack of amino acid sources in 
the medium led to expression of biosynthesis pathways, 
oxygen limitation led to induction of fermentation path-
ways and that potentially cells growing in M9 were iron 
limited.

Comparison with existing Protein‑SIP approaches
To compare the performance of Calis-p with existing 
Protein-SIP approaches four of the above described data-
sets with labeled E. coli spiked into a mock community 
were processed by expert operators of the SIPPER and 
MetaProSIP workflows. We would like to highlight here 
that these two approaches were developed for higher 
label amounts (MetaProSIP) and low level labeling after 
short label exposure (SIPPER) and they may well out-
perform Calis-p under specific conditions. However, 
we focused our comparison on the low label amounts 
for which the ultra-sensitive Protein-SIP within Calis-p 
was developed and a comparison at high label amounts 
(> 10% label) was outside the scope of this study.

The three approaches differed strongly in the num-
ber of peptides for which label content was quantified 
(Fig. 6b). Part of this was due to the fact that for each 
of the three approaches different peptide identification 

algorithms were used (Fig. 6b) leading to differences in 
the number of peptides that served as input for label 
quantification. The MSGF + search engine used by 
SIPPER yielded the lowest number of identified pep-
tides. While MetaProSIP quantified label content for 
the highest proportion of input peptides in all cases 
(> 80%), Calis-p provided isotope contents for the low-
est proportion of input peptides (25–31%). This large 
difference for identified and isotopically quantified 
peptides for Calis-p is caused by the multiple quality 
filtering steps in Calis-p that remove large numbers of 
peptides and spectra from consideration for various 
quality-related issues (e.g., flagged for ‘no valid PSM’, 
‘too few spectra’, ‘no majority vote while clustering’). 
With the higher number of peptides for which 13C con-
tent was quantified by MetaProSIP, MetaProSIP pro-
vided sufficient peptide numbers (> 9 for a species) to 
quantify label content for the highest number of species 
(Fig. 6, Figure S4).

The three approaches also differed in the number of 
false-positive detection of above natural abundance 
13C in peptides (Figure  S4, Tables  S7–S10) and species 
(Fig.  6a, Figure  S4). Calis-p overestimated 13C content 
only in a small number of peptides and in none of the 
species (i.e., median 13C content was at or below expected 
value). MetaProSIP also did not overestimate label con-
tent in any of the species, instead it had the tendency to 
underestimate isotope content of unlabeled species. SIP-
PER had a high rate of false-positive detections, while for 
the 1% labeled sample all 13C content estimates (includ-
ing the estimate for the labeled E. coli) were strongly 
underestimated. 13C content of unlabeled species for 
which enough peptides were quantified (9 peptides) were 
strongly overestimated. This false-positive label detection 
is likely due to the underlying principle of SIPPER, which 
is to identify labeled peptides, while not trying to classify 
unlabeled peptides. This means that truly unlabeled pep-
tides are not available for calculation of label content of 
species and a small number of false-positive label detec-
tion in peptides can lead to miss estimation of label con-
tent in species and proteins.

Fig. 5  Measurement of 13C label content in individual proteins. Analysis of a subset of the data shown in Fig. 4. E. coli grown in standard LB medium 
without label (0% added label) was part of a mock community consisting of 32 microorganisms [23]. To this mock community E. coli grown in 
minimal M9 medium with glucose (5% of total glucose as 13C1-6-Glucose) in air tight bottles under oxygen limiting conditions was added in a 1:1 
ratio to the unlabeled LB grown E. coli cells in the mock community. a Detection of increased 13C/12C ratios in individual proteins as a function of 
the total number of different peptides detected for each protein. Proteins from all species in the unlabeled mock community are compared to 
the proteins of all unlabeled species in the mock community that contained the 5% labeled E. coli cells, as well as to the proteins from E. coli in the 
mock community that contained the labeled E. coli cells. The boxes indicate the 25th and 75th percentile, the line the median, the whiskers the 
10th and 90th percentile, and the dots the 5th and 95th percentile. b Examples of E. coli proteins that showed no or high label incorporation in 5% 
13C glucose grown E. coli in the mock community. Unchanged 13C/12C ratios shown in the table between treatments indicate that proteins were not 
produced in cells that were grown in M9 medium with labeled glucose, but were present in cells grown in LB. Proteins with high ratio were mostly 
or exclusively produced by cells grown in M9. 13C/.12C ratios in the table are averages of three replicate samples. Only proteins that were detected in 
at least two replicates in one of the conditions are shown. The full table is Supplementary Table S6

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Finally, the three approaches also differed in the accu-
racy of 13C content estimates for the labeled E. coli. For 
the 1% labeled E. coli Calis-p was the only approach to 
detect the label in E. coli with the median 13C content 
being close to the expected value (Fig. 6 and Figure S4) 
indicating a higher sensitivity of Calis-p at low label 
contents. For the 5% and 10% labeled E. coli, all three 
approaches detected label in E. coli with the median 13C 
values being closest to the expectation for Calis-p in both 
cases indicating a higher accuracy of the Calis-p estimate.

In summary, while MetaProSIP outperformed Calis-
p in terms of quantity of peptide isotope quantification, 
Calis-p was more sensitive and accurate. The sensitiv-
ity of MetaProSIP was, however, much better (detec-
tion down to at least 5% 13C) than recently suggested by 
Starke [22]. Both MetaProSIP and Calis-p showed high 
specificity; the lower specificity shown by SIPPER was 
likely caused by SIPPER’s primary focus on the detec-
tion of labeled peptides. Finally, while all three tools are 
independent of the search engine (in contrast to Sipros), 
Calis-p has been implemented to work with the open 
search engine output format mzIdentML, which will 
minimize compatibility issues between search engine 
output and Calis-p.

Case study: differential heavy water incorporation 
reveals activity changes for intestinal microbiota species 
in response to dietary changes
To demonstrate the power of the Calis-p approach and 
to test our approach for additional elements we analyzed 
data from a complex microbial community grown with 
two types of heavy water [11]. Both 2H and 18O water 
can function as markers of translational activity [10, 24] 
and thus allow to detect activity changes in members of 
microbial communities in response to changes in envi-
ronmental conditions or use of complex substrates with-
out relying on direct labeling with a specific substrate. 
The community consisted of 63 species isolated from 
human fecal material and was grown in bioreactors with 
either a high fiber medium or a high protein medium 
to simulate different dietary conditions encountered by 
the intestinal microbiota. For each diet treatment three 
replicate cultures were grown for 12  h with unlabeled 

water and water in which 25% were either replaced with 
2H2O or H2

18O. We obtained thousands of peptides pass-
ing Calis-p quality filtering for each sample (mean 4602 
peptides/sample, SD 1140, Figure  S5) and we were able 
to quantify heavy water incorporation (> 9 peptides pass-
ing Calis-p filters for species) for 21 to 30 species per 
sample (mean = 27, median = 28). We found that overall 
incorporation of 18O was much higher than incorpora-
tion of 2H (Figure S4). The low measured incorporation 
of 2H can potentially be attributed to variation in reten-
tion times of isotopically different forms of a deuterated 
peptide in reversed-phase chromatography [25, 26]. Such 
retention time variation can generate distinct isotope 
patterns for the same peptide at different retention times, 
which would lead to failure to cluster by the Markov 
clustering in Calis-p during spectrum filtering. Since the 
amount of 2H used in this experiment was relatively high 
we do expect relevant retention time shifts of deuterated 
peptides. Additional factors that might explain low meas-
ured incorporation of 2H are the known strong fractiona-
tion of hydrogen isotopes in organisms [27], the fact that 
many hydrogen atoms on peptides can freely exchange 
with water leading to loss of label during sample prepa-
ration [28], the dilution of 2H in stable C–H bonds in de 
novo synthesized amino acids by hydrogens derived from 
organic growth substrates [24, 29], and the known toxic-
ity of deuterium to many organisms slowing down their 
growth rates and thus reducing the rate of incorporation, 
which however usually occurs at higher concentrations 
(> 50%) of deuterium than used in this experiment [24, 
30]. Finally, incorporation of 18O over 2H may be favored 
because for incorporation of 18O into non-exchangeable 
positions amino acid de novo synthesis is not required. 
18O can be incorporated into the carboxyl group of 
amino acids during proteolytic cleavage of substrate pro-
teins [31] and remain in the peptide bond upon forma-
tion of new peptide bonds. While 18O in peptide bonds 
is stable and does not freely exchange with water, 2H in 
many positions on the peptide readily exchanges with H 
from water [28]. For hydrogen to be in positions with low 
exchangeability, amino acid de novo synthesis is required, 
because the necessary carbon-hydrogen bonds are only 
generated then [28].

(See figure on next page.)
Fig. 6  Comparison of the output from the three Protein-SIP approaches: SIPPER, MetaProSIP, and Calis-p. Four datasets were processed by expert 
operators for each approach using optimal parameters for each approach. The outputs from each tool were filtered for comparability by retaining 
only distinct protein unique peptides (PUPs), defined as peptides unique to a protein sequence and with a unique combination of sequence, 
charge state, and m/z. a Median.13C values were determined for organisms with 9 or more peptides. The expected 13C atom % value for each 
experimental condition was subtracted from each experimental SIP value and the deviation of the experimental value from the expected value is 
displayed. b Table showing the total number of protein unique peptides identified and used as the input for each approach and the total for which 
isotope values were quantified. c Summary of the parameters used for each tool/approach and additional post-processing steps as recommended 
by each expert operator. Each tool output was filtered for distinct protein unique peptides, i.e., isotope values were only used if the peptide 
could be uniquely assigned to a single species. MetaProSIP required an additional post-processing step for selecting the highest relative isotope 
abundance (RIA) value in cases where the tool reported multiple RIA values. Detailed data for this figure is shown in Figure S4 and Tables S7–S10
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Fig. 6  (See legend on previous page.)
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On the whole community level, label incorporation 
was significantly higher in communities grown with high 
protein as compared to high fiber (Figure  S5). On the 
level of single species, we observed that responses to a 
change in “diet” were species-specific with some species 
such as Akkermansia muciniphila, Bacteroides ovatus, 
and Clostridium bolteae incorporating significantly more 
label under high protein conditions, while other species, 
such as Alistipes onderdonkii, Clostridium lavalense, and 
Flavonifractor plautii, showed no change or non-signif-
icant trends toward higher incorporation under high 
fiber conditions (Fig. 7). While incorporation trends for 
species between 2H and 18O were mostly consistent with 
each other, much fewer comparisons tested significant 
for 2H (4 for 2H versus 9 for 18O) likely due to the over-
all low measured incorporation of 2H and resulting low 
sensitivity. Our results indicate that availability of higher 
amounts of protein increases the translational activity of 
many intestinal microbiota species, which is in line with 
previous studies showing nitrogen, and by extension pro-
tein, is the limiting nutrient for the intestinal microbiota 
[32, 33]. This indicates that mixed community bioreactors 
can be a useful analog to the intestinal tract for studying 
specific ecological factors (such as nitrogen limitation) 

driving community function. Surprisingly, although typi-
cally described as fiber degrading specialists [34–36], 
we saw a significant increase of activity in several Bacte-
roides species in the high-protein medium relative to the 
high-fiber medium. This shows that it is critical to assess 
nitrogen/protein supply when analyzing fiber dependent 
growth of intestinal microbes. Furthermore, it suggests 
that nitrogen/protein supply is critical to consider when 
developing fiber-based prebiotics to manipulate intesti-
nal microbiota species [37, 38], which to our knowledge 
has not been considered so far. In summary, our results 
show that the use of heavy water for Protein-SIP allowed 
us to detect changes in the activity of microbiota mem-
bers in response to changes in complex substrates.

Summary of practical workflow considerations
The Protein-SIP workflow consists of several steps 
including (1) incubation of a microbial community with 
a isotopically labeled substrate, (2) metaproteomic sam-
ple preparation and LC–MS/MS data acquisition, (3) 
peptide identification, which requires a protein sequence 
database [39], (4) data conversion and input to Calis-p, 
(5) isotope pattern extraction and computation of isotope 
content in Calis-p, and (6) analysis and interpretation 

Fig. 7  Strong differences in heavy water incorporation in intestinal microbiota species in response to diet. Sixty-three species isolated from human 
intestinal microbiota were grown together in triplicates in either a high fiber or high protein medium in the presence of unlabeled water or water 
with either 25% 2H or.18O [11]. Calis-p-based stable isotope ratios are shown for the 20 species for which at least 9 peptides passed Calis-p filtering 
conditions in all replicates. Each box shows the data for all peptides of the triplicate cultures combined (27 to 2225 peptides per box). The red lines 
indicate the average median for each species in the control samples with unlabeled water. Statistically significant differences are indicated with ‘*’ 
based on Student’s t test on the means of replicates at p < 0.05
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of data provided by Calis-p (Fig.  8). The provision of 
isotopically labeled substrates in experiments can take 
many forms, such as addition of substrate to incubations 
of enrichment cultures/bioreactors [11], addition to ani-
mal feed [40, 41], CO2 in plant incubation chambers [42] 
or as 15 N in plant fertilizer, and in situ incubations [10]. 
For the Protein-SIP approach presented here, substrate 
should be supplied with 1–10% of the total substrate 
containing the heavy isotope (label). Please note that this 
range refers to 13C, for other elements, such as N, which 
make up a smaller portion of atoms in a peptide, a higher 
amount of label can be used, as the associated peptide 
mass shifts are smaller. If the substrate is a small molecule 
(e.g. glucose), but contains multiple atoms per molecule 
of the element to be labeled, ideally only one of the atoms 
is labeled (or a small portion of atoms if it is a very large 
molecule) to avoid isotope “clumping”, as this can lead to 
a reduction in sensitivity (Fig.  3). Calis-p can, however, 
handle “clumped” data if needed. Similarly, if a complex 
substrate is used (e.g., complete plant leaves) ideally the 
complex substrate should only be partially labeled (e.g., 
by growing plants in an atmosphere with 10% of the CO2 
being labeled) rather than using fully labeled substrate.

Other considerations for the labeling experiments 
include the number of replicates that are required, which 
depends on the biological question of the experiment, 
if a time course or a single time point will be sampled, 
and if a control with unlabeled substrate will be carried 
out, which is not needed for Calis-p, but can be helpful 
in data interpretation. Generally, we recommend to carry 
out a feasibility study, if at all possible, to determine the 
correct amount of label that works for the study system 
and time points that need to be sampled. Measurement 
of bulk label incorporation using an isotope ratio mass 
spectrometer can be useful in determining if an experi-
ment worked prior to starting sample preparation for 
Protein-SIP.

The produced samples should be processed with a 
standard metaproteomic sample preparation method 
tuned to the particular sample type (an overview of the 
metaproteomic workflow with citations can be found in 
[17]). In contrast to the protein-SIF method [14], which 
requires calibration for a small isotope offset caused by 
the instrument, no calibration reference material needs 
to be prepared for Protein-SIP. The produced peptide 
mixtures need to be analyzed by 1D or 2D liquid chroma-
tography (LC) and tandem mass spectrometry (MS/MS) 

using a high-resolution Orbitrap mass spectrometer with 
standard metaproteomic LC–MS/MS approaches (see 
“Methods” section and e.g., [43]). One important consid-
eration for the data acquisition in the mass spectrometer 
is the choice of resolution particularly for experiments 
involving 15N labeling (see Supplementary Results and 
Discussion). As in most metaproteomic applications, the 
availability of a well-curated protein sequence database 
for peptide and protein identification is critical and the 
generation of such a database is extensively discussed in 
Blakeley-Ruiz and Kleiner (2022) [39].

The steps for data preparation for Calis-p and the com-
putational steps implemented in Calis-p are described in 
detail in the “Methods” section and on the Calis-p soft-
ware repository website (https://​sourc​eforge.​net/​proje​
cts/​calis-p/).

Discussion
The developed Protein-SIP approach provides a means 
to detect and quantify the incorporation of stable iso-
topes from labeled substrates into many individual 
species in microbial communities in one LC–MS/
MS measurement and with minimal computational 
cost. Our approach has many advantages over other 
SIP approaches and previously developed Protein-
SIP approaches. First, the approach allows for high 
throughput, as compared to most other stable isotope 
probing methods, such as DNA/RNA-SIP and nano-
SIMS because as little as 2  h of LC–MS/MS time will 
allow to quantify label incorporation for a good num-
ber of the more abundant species in a sample. For 
example, in bioreactors with 63 species, we were con-
sistently able to obtain sufficient measurement depth 
to quantify heavy water incorporation in >= 20 species 
(Fig. 6). In contrast, nanoSIMSonly allows for measure-
ment of isotope incorporation into a limited number 
of individual cells of very few species (2–3) in this time 
frame as species assignment of cells depends on species 
specific probes, and DNA-SIP is limited by the number 
of samples that fit into the ultra-centrifuge rotor (usu-
ally six) needed for fine scale separation of heavy and 
light DNA and the cost associated with sequencing of 
a great number of individual density gradient fractions 
per sample. Second, our approach is a departure from 
previously developed Protein-SIP approaches in that it 
is highly sensitive and affords a large dynamic range of 
three orders of magnitude detecting label incorporation 

(See figure on next page.)
Fig. 8  Protein-SIP and direct Protein-SIF workflow using Calis-p 2.1. The data filtering and computations illustrated in step (5) all happen in Calis-p 
in a fully automated fashion. The user has the ability to set specific parameters when starting the program. Full details on how to operate Calis-p are 
provided in the Wiki at https://​sourc​eforge.​net/​proje​cts/​calis-p/. Not shown in the figure is that for Protein-SIF calibration of values with a reference 
material is needed, for details on this see the supplementary text and the original Protein-SIF publication [14]. In step (3), as in most metaproteomics 
applications, a well-curated protein sequence database is needed for peptide identification (see details in [39])

https://sourceforge.net/projects/calis-p/
https://sourceforge.net/projects/calis-p/
https://sourceforge.net/projects/calis-p/
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Fig. 8  (See legend on previous page.)
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in the range of 0.01–10% of added label, while previous 
Protein-SIP detection principles require much higher 
label amounts to enable detection and usually offer 
only a dynamic range of one order of magnitude [22]. 
Similar is true for DNA/RNA-SIP-based approaches, 
which require at least 20% label for detection [8]. The 
high sensitivity, accuracy and large dynamic range of 
our approach brings numerous advantages, including 
significant cost reduction due to lower use of often very 
expensive isotopically labeled substrates, the ability to 
work with much shorter labeling times, and simultane-
ous detection of label incorporation in slow and fast 
growing microorganisms. A massive cost reduction 
compared to other SIP approaches is possible, because 
most existing (Protein-)SIP approaches use upward of 
20% (most often 100%) labeled substrate, while when 
using the Calis-p approach experiments with 1–10% 
label can be done cutting the experimental isotope use 
by 50–99%. Using shorter incubation times is possible 
because incorporation of labels into proteins does not 
require for replication to occur, which is the case for 
DNA-SIP. It is important to note here that the 13C-label 
content of the substrate needs to be kept at 10% or 
below for our approach to work (higher percentages 
can be used for other elements see “Summary of prac-
tical workflow considerations” section). A short labe-
ling pulse with a substrate with higher label percentage 
would generate a heavy peptide population that would 
be completely mass shifted away from the unlabeled 
peptide population and thus become undetectable by 
Calis-p. Such strongly mass shifted peptide populations 
would be detectable with the MetaProSIP [20] and SIP-
PER [21] software. Third, we developed our approach 
to work with stable isotopes of all elements present 
in proteins, which allows tracking of assimilation of a 
large diversity of simple and complex substrates, as well 
as general activity markers such as 18O water. Based on 
our 2H and 18O case study results, we would recom-
mend to use 18O water as the activity marker if com-
patible with the experimental design, as the current 
Calis-p version showed much higher sensitivity with 
the 18O data. More testing and optimization of Calis-p 
will be needed in the future for deuterated water using 
data to be generated with lower 2H labeling amounts. 
Fourth, Protein-SIP does not require isotope-based 
separations of biological material such as the density 
gradient centrifugation used for DNA/RNA-SIP. That 
approach thus requires larger amounts of sample mate-
rial as compared to Protein-SIP, as well as sequencing 
of multiple fractions per sample. For this reason, Pro-
tein-SIP can be done with very small amounts of sam-
ple with an ideal starting amount of 1  mg or more of 

wet weight cell mass [14]. However, we have achieved 
good isotope estimates with as little as 50  µg using 
Calis-p for stable isotope fingerprinting [44].

There are situations where our Protein-SIP approach is 
limited and where other SIP approaches will perform bet-
ter. For example, DNA/RNA-SIP can provide much more 
depth than any other SIP approach in terms of taxa cov-
ered by sequencing of the recovered DNA/RNA to great 
depth and in contrast to Protein-SIP it does not require 
prior information in the form of a protein sequence data-
base. On the other hand, nanoSIMS and Raman micros-
copy provide isotope incorporation data on the single cell 
level showing variation in cell activity within a population 
and if applicable also reveal spatial differences in label 
acquisition within tissues or biofilms that would not be 
detected by other approaches [2, 7] Additionally, nano-
SIMS can be used to detect isotopes of multiple elements 
in parallel, while Protein-SIP and other SIP approaches 
are currently limited to one isotope at a time.

Currently, Protein-SIP only allows for labeling with one 
isotope per sample as changes in peptide isotope pat-
terns cannot be attributed to specific elements. However, 
in the future it might be possible to develop Protein-SIP 
approaches that allow for parallel measurement of 15N 
and 13C incorporation in a single sample, because added 
neutron masses for 15N and 13C are sufficiently different 
from each other—due to differences in nuclear bind-
ing energy—to allow for their separation in ultra-high-
resolution mass spectrometers (Supplementary Results 
and Discussion). The current limitation for generating 
ultra-high-resolution data suitable for separating peptide 
carbon and nitrogen isotopes is that higher resolution 
comes at slower mass spectrometric acquisition time. 
Thus, there is a tradeoff between ultra-high-resolution 
data acquisition and obtaining a large number of MS2 
spectra for peptide identification. Instruments with faster 
acquisition times and potentially alternative data acquisi-
tion modes such as data-independent acquisition (DIA) 
metaproteomics could make dual-label Protein-SIP feasi-
ble in the next few years.

Methods
Generation of labeled pure culture samples
The following steps were followed for single-carbon 
labeled and six-carbon labeled 13C glucose experiments 
with both Escherichia coli K12 (Obtained from Salmo-
nella Genetic Stock Centre at the University of Calgary, 
Catalogue # SGSC 268) and Bacillus subtilis strain ATCC 
6051. M9 and Bacillus minimal media were prepared 
without glucose. For M9 minimal medium we dissolved 
Na2HPO4 (12.8 g), KH2PO4 (3.0 g), NaCl (0.5 g), NH4Cl 
(1.0  g) in DI Water (978  ml) and autoclaved. Once the 
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solution had cooled, we added the following filter-steri-
lized solutions: 1 M MgSO4 (2 ml), 1 M CaCl2 (0.1 ml), 
and 0.5% w/v thiamine (0.1  ml). Bacillus minimal 
medium (0.062  M K2HPO4, 0.044  M KH2PO4, 0.015  M 
(NH4)2SO4, 0.000 8  M MgSO4 × 7 H2O) was prepared, 
the pH adjusted to 7 and autoclaved.

Twenty percent stock solutions of both unlabeled and 
13C-labeled glucose were combined to make a total of 
eight glucose mixes with final 13C-labeling percentages 
(% w/w) as follows: 0, 0.01, 0.025, 0.1, 0.25, 1, 5, and 10. 
Please note that the unlabeled glucose contained natural 
abundances of 13C of around 1.1% and that the percent-
age of 13C from labeled glucose has to be added to this. 
For unlabeled glucose we used D-( +)- glucose (> 99.5%) 
from Sigma Life Science, cat no. G7021 and for labeled 
glucose we used either D-glucose-U-13C (99%, Cam-
bridge Isotope Laboratories, cat no CLM-1396–10) or 
D-glucose-2-13C glucose (99%, Aldrich, cat no. 310794).

Cell growth
Frozen stock cultures were streaked on LB agar plates 
and incubated overnight at 37˚C. A single colony was 
picked from the plate and grown overnight at 37  ˚C in 
liquid media. Nine milliliters of overnight culture were 
spun down at 18,000 × g for 5 min, the supernatant was 
discarded and pellets were washed twice with PBS to 
remove unlabeled glucose. Pellets were resuspended in 
1 ml PBS.

Labeling
Ten milliliters of liquid media without glucose were ali-
quoted into a total of 24 serum bottles per strain (tripli-
cate bottles for each of the eight 12C/13C glucose mixes). 
Two hundred microliters of the 12C/13C mixes and 10 µl 
of overnight culture were added into the serum bot-
tles. The bottles were then crimped, the headspace was 
flushed three times with CO2-free air and cultures were 
incubated overnight at 37 ˚C while shaking at 100 rpm.

Sample processing
Serum bottles were depressurized by inserting a steri-
lized needle into the septum to release air. Ten milliliters 
of culture from each bottle were spun down at 18,000 × g 
for 5 min. The supernatant was discarded and the pellet 
resuspended in 2 ml of PBS to make two 1 ml aliquots. 
50 µl of 1%, 5%, and 10%-labeled glucose grown cells were 
used for cell counts using a Neubauer counting chamber. 
Cells were pelleted at 10,000 × g for 5 min, the superna-
tant was discarded and pellets were flash-frozen in liquid 
nitrogen before being transferred to − 80 °C.

Mock community spike‑in experiments
The generation of the mock community (UNEVEN type) 
is described in Kleiner et al. (2017) [23]. We mixed E. coli 
cells grown in 1, 5, and 10% 13C6-labeled glucose contain-
ing media into three replicate samples of this mock com-
munity. We mixed the labeled E. coli cells in a 1:1 ratio to 
unlabeled E. coli cells already present in the mock com-
munity based on cell counts.

Heavy water incubations of a microbial community derived 
from the human intestinal tract
The growth conditions, sample preparation and LC–MS/
MS methods for the human intestinal microbiota grown 
in bioreactors has been described in Starke et  al. [11]. 
Briefly, two bioreactors were inoculated with 63 bacterial 
strains (six phyla) isolated from a healthy human fecal 
sample. Bioreactors were fed with two custom media for-
mulations representing different diets—high fiber and 
a high protein (see Table  S2 in [11]). Two milliliters of 
batch cultures were set up using material from the biore-
actors and 1 ml of pre-reduced, double strength medium 
(high fiber or protein), as well as 1 ml of unlabeled, 18O or 
2H water was added. After a 12-h incubation at 37 °C in 
an anaerobic chamber samples were collected by centrif-
ugation. The protein sequence database for identification 
of peptides from these samples was generated from the 
Uniprot reference proteomes for the species most closely 
related to the 63 isolates based on the 16S rRNA infor-
mation published in Starke et al. [11]. When computing 
18O and 2H abundances with Calis-p for these samples we 
corrected for offset, which can be caused by the natural 
deviation of the 13C abundance from the standard value 
as described in the Supplementary methods.

Sample preparation and one‑dimensional (1D) LC–MS/MS
Peptide samples for proteomics were prepared as 
described by Kleiner et  al. (2017) [23] following the fil-
ter-aided sample preparation protocol described by Wis-
niewski et  al. (2009) [45]. Peptide concentrations were 
quantified using a Qubit® Protein Assay Kit (Thermo 
Fisher Scientific).

1D‑LC–MS/MS
Samples were analyzed by 1D-LC–MS/MS as described 
in Hinzke et al. (2019) [43]. Replicate samples (e.g., rep-
licate 1 at 1%, 5%, and 10%) were run consecutively fol-
lowed by two wash runs and a blank run to reduce 
carryover. For 1D-LC–MS/MS, 0.4 μg (pure culture sam-
ples) or 2 μg of peptide (mock community-spike in sam-
ples) were loaded onto a 5 mm, 300 μm i.d. C18 Acclaim 
PepMap 100 precolumn (Thermo Fisher Scientific) using 
an UltiMate 3000 RSLCnano Liquid Chromatograph 
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(Thermo Fisher Scientific). After loading, the precolumn 
was switched in line with either a 50 cm × 75 μm (pure 
culture samples) or a 75 cm × 75 μm (mock community–
spike in samples) analytical EASY-Spray column packed 
with PepMap RSLC C18, 2  μm material. The analytical 
column was connected via an Easy-Spray source to a Q 
Exactive Plus hybrid quadrupole-Orbitrap mass spec-
trometer (Thermo Fisher Scientific). Peptides were sepa-
rated on the analytical column using 140 (pure culture 
samples) or 260 (mock community-spike in) min gradi-
ents and mass spectra were acquired in the Orbitrap. The 
resolution used on the Q Exactive Plus for MS1 scans, 
which provide the isotope pattern information used by 
Calis-p, was 70,000.

Peptide identification and data preparation for Calis‑p
Briefly, the LC–MS/MS data were used as the input for 
peptide identification using the database search engine 
SEQUEST HT implemented in Proteome Discoverer 2.2 
(Thermo Scientific). Note, other standard search engines 
such as Andromeda implemented in MaxQuant [46] 
can be used as well. We used experiments specific pro-
tein sequence databases for the searches and these data-
bases have been submitted along with the LC–MS/MS 
data sets (see “Availability of data and materials” section). 
Taxonomic information available for protein sequences 
in the search database, for example from metagenomic 
binning and classification, was indicated as a prefix in the 
accession number (e.g., > TAX_00000) to enable Calis-p 
to report isotope values for each taxonomic group. The 
searches were modified to increase peptide identifica-
tion rates for higher label amounts using customized 
modifications (see Supplementary Results and Discus-
sion). The peptide spectrum matches (PSMs) produced 
by the search engine were exported from the search 
engine either in tabular format or in the open format 
mzIdentML and provided to Calis-p together with the 
mass spectrometry raw data in the open mzML format. 
The mzML files were generated from the raw data using 
MSConvertGUI via ProteoWizard [47] with the follow-
ing options set: output format: mzML, Binary encoding 
precision: 64-bit, Write index: checked, TPP compatibil-
ity: checked, Filter: Peak Picking, Algorithm: Vendor, MS 
Levels: 1 (The MS/MS scans are not needed for isotope 
pattern extraction).

Once input files and optional parameters are pro-
vided Calis-p extracts isotope patterns for all identified 
peptides using a procedure optimized for Protein-SIP. 
The isotope patterns are extensively filtered for qual-
ity and high quality patterns are used for calculation of 
peptide isotope content using three different models. 
The “default” model developed for Protein-SIF, the “neu-
tron abundance” model, which usually works best for 

Protein-SIP, and the “clumpy” model (see “Methods” sec-
tion). Calis-p automatically provides output files for all 
three models for taxa, proteins and peptides in a tabu-
lated format that can subsequently be used in statistical 
and other data analysis software such as R.

SIP computation algorithms and computational 
improvements to increase speed and accuracy of isotopic 
pattern extraction
As a starting point for estimation of stable isotope com-
position of isotopically labeled samples, we augmented 
the Calis-p software previously developed for estimation 
of 13C at natural abundance [14]. For estimating natural 
13C abundance the software uses a model that assumes 
random distribution of 13C atoms in peptides, leading to 
peptide spectra with predictable isotope patterns. These 
isotope patterns are modeled in Calis-p with fast Fou-
rier transformations (FFT). With labeled samples, the 
shape of spectra cannot be predicted using FFT, because 
these spectra become mixtures of spectra associated with 
labeled and unlabeled peptides. Both the proportion of 
heavy isotopes in the labeled peptides and the extent of 
labeling—the relative abundances of labeled versus unla-
beled populations of peptides—are unknown in advance. 
Therefore, we used the following more general equation 
to infer the number of neutrons from peptide isotope 
patterns to implement a “neutron abundance” model:

With, on the left, considering an isotope pattern of size 
n peaks, p is the peak number, and I is the intensity of 
peak p. On the right, for each isotope, e is its element 
[C,H,O,N,S], n the number of additional neutrons, φ its 
abundance (fraction), and a the number of atoms of the 
element in the peptide associated with the spectrum. 
Table 1 shows the estimates for natural abundances of the 
isotopes used in calculations.

(1)
n
p=1p · Ip
n
p=1Ip

=
e={C ,H ,O,N ,S}

4

n=1
n · ϕe,n · ae

Table 1  Estimates for natural abundances of the isotopes used 
in calculations based on the IUPAC technical report on the 
atomic weights of the elements [48]

Isotope

Element  + 0  + 1  + 2  + 3  + 4

C 0.9889434148335 0.011056585 0 0 0

N 0.996323567 0.003676433 0 0 0

O 0.997574195 0.00038 0.002045805 0 0

H 0.99988 0.00012 0 0 0

S 0.9493 0.0076 0.0429 0 0.0002
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We can rearrange this equation to, for example, calcu-
late the fraction of 13C, assuming all other isotopes are at 
natural abundance, as follows:

The second SIP computation algorithm was imple-
mented in Calis-p as the “clumpy label” model. When 
labeling with substrates that contain multiple isotopi-
cally labeled atoms, for example fully labeled 13C1-6 glu-
cose, this can lead to assimilation of clumps of labeled 
atoms into a single amino acid. For example, fully 
labeled glucose will be converted to fully labeled pyru-
vate, which, in turn, will be converted to fully labeled 
alanine, which will be incorporated into protein. This 
leads to peptide spectra that display higher-than-
expected intensity at a higher isotopic peak numbers. 
To estimate the “clumpiness” of heavy isotopes in pep-
tides, we developed the following procedure (detailed 
explanation in Figure  S6): First, only the monoiso-
topic peak (A =  + 0) and A + 1 peaks of the spectrum 
are used to estimate the fraction assimilated in clumps 
of one heavy atom (e.g., 13C). Next, the experimental 
intensity of the A + 2 peak is compared to its expected 
intensity assuming all label was assimilated in clumps 
of one heavy atom. Any additional intensity of the A + 2 
peak is assigned to assimilation of clumps of two heavy 
atoms. This way, all peaks up to A + 6 are inspected. 
The algorithm assumes the peptides are completely 
labeled, i.e., labeled to saturation. Usually, stable iso-
tope probing experiments do not proceed that long, but 
doing so would enable determination of the number of 
labeled atoms in the substrate assimilated by each spe-
cies via this procedure.

In typical proteomics data, tens to hundreds of MS1 
spectra are collected for each detected peptide, at differ-
ent elution times and mass over charge ratios. MS1 spec-
tra can be crowded, especially for samples from more 
complex microbial communities. Unfortunately, over-
lap between isotopic patterns associated with different 
peptides can lead to overestimation of labeling. We have 
added new filtering routines, which remove such compro-
mised isotopic patterns in two steps. First, any isotopic 
patterns with uneven spacing between peaks (which could 
indicate overlap with another spectrum) are discarded. On 
average, the peaks that form an isotopic pattern associated 
with a given peptide are separated by 1.002  Da, divided 
by the charge z of the peptide. If a pattern’s median peak 
spacing was < 1.000/z or > 1.004/z, or if the average sum of 
squares of the difference between the actual spacings and 
the median spacing was > 1 × 10−5, the entire isotopic pat-
tern was discarded.

(2)

ϕe=C ,n=1 =

(∑n
p=1 p · Ip∑n
p=1 Ip

−
∑

e={H ,O,N ,S}

∑4
n=1n · ϕe,n · ae

)
÷ ac

Next, remaining spectra are filtered out by unsuper-
vised Markov clustering of all remaining spectra asso-
ciated with a peptide [49]. The premise of this filtering 
approach is that clean spectra will be similar to each 
other, while spectra affected by noise are likely to be more 
different from each other. After filtering, all remaining 
spectra are truncated to the most common number of 
peaks, and spectra with fewer peaks are discarded. Spec-
tra are then normalized to a total intensity of 1, and an 
average (weighed by total spectral intensity) normalized 
spectrum was calculated for each peptide. The averages 
are weighed by intensity because high intensity spectra 
are more accurate and less noisy.

The normalized spectrum of each peptide is used to 
estimate the peptide’s isotopic composition using the 
original “fast Fourier transformations”-based model (also 
called “default”), as well as the new “neutron abundance” 
(Eq. 1) and “clumpy label” models. For each species and 
protein in the sample, two center statistics are calculated 
based on all peptides associated with a species or pro-
tein: the median and the intensity-weighted average. The 
Supplementary methods provide a detailed discussion of 
which center statistic to use when.

Generating an additional label incorporation measure 
and increasing peptide identification by using mass shift 
modifications in peptide identification searches
In addition to estimates based on MS1 spectra, we also 
estimated the degree of labeling based on the output of 
the search engine used for peptide identification. For this, 
we defined six custom post-translational modifications 
in the search engine that enable the dynamic addition of 
1–6 neutrons to a peptide during the search. We tested 
multiple implementations of these dynamic modifications 
(Fig. 2 and Figure S2, Supplementary Results and Discus-
sion). Details on the implementation of the modifications 
in a search engine can be found in the Calis-p software 
documentation (https://​sourc​eforge.​net/p/​calis-p/​wiki/​
PSM%​20fil​es/).

Other improvements of the Calis‑p software
In addition to expanded functionality with regard to fil-
tering of peptides and labeling, the software was also 
improved in many other ways: It now computes isotopic 
content of peptides with post-translational modifica-
tions and peptides containing sulfur peptides. It finds 
many more MS1 spectra for each peptide by searching 
for spectra at additional mass to charge ratios. Next to 
tab-delimited text PSM files exported from Proteome 
Discoverer, it now also parses open source mzIdentML 
XML files (http://​www.​psidev.​info/​mzide​ntml). Finally, 
code efficiency improvements and implementation of 

https://sourceforge.net/p/calis-p/wiki/PSM%20files/
https://sourceforge.net/p/calis-p/wiki/PSM%20files/
http://www.psidev.info/mzidentml
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multi-threading led to much faster computation, requir-
ing less than one minute to process all spectra recorded 
during a 2-h run on a QExactive Plus Orbitrap mass 
spectrometer, using 10 threads. Source code and more 
details about algorithms and procedures can be found at 
http://​sourc​eforge.​net/​proje​cts/​calis-p/.

Comparison with existing Protein‑SIP tools
To benchmark and compare Calis-p against existing Pro-
tein-SIP tools under optimal operation conditions, we 
invited developers/operators of Sipros [18], MetaProSIP 
[20], and SIPPER [21] to participate in a tool compari-
son. Drs. Sachsenberg (MetaProSIP) and Tolić (SIPPER) 
joined our effort. We were unfortunately not able to find 
an operator for Sipros and were also unable to get the 
tool to work on our own. For the comparison we used 
four raw files from the mock community spike-in experi-
ments including unlabeled, 1% label, 5%, label, and 10% 
label in the spiked in E. coli and the corresponding pro-
tein sequence database. For processing with Calis-p we 
used the optimized settings from this study.

The SIPPER tool was developed at the Pacific Northwest 
National Laboratory and is available as an open source soft-
ware written in C#. SIPPER requires an unlabeled incuba-
tion MS dataset as a reference for extracting target peptide 
IDs to which all stable isotope incubated datasets are com-
pared. To generate peptide-spectrum matches to be used 
for isotope estimates the MSGF + search algorithm [50] 
was used to search the unlabeled sample against the pro-
tein sequence database. The precursor mass tolerance was 
set to 20 ppm and oxidation of M and N-terminal acetyla-
tion were included as dynamic modifications and carba-
midomethylation of C as static modification. The search 
provided 112,580 identified target sequences (including 
contaminant IDs). The parameters for the SIPPER isotope 
calculation run included summing 7 precursor spectra 
around each target scan number, a 10  ppm tolerance for 
mass accuracy, 10% tolerance for normalized elution time, 
and filter confidence ID criteria outlined in the manuscript.

The MetaProSIP tool is integrated into the OpenMS 
open source software GUI [51]. An OpenMS workflow 
including a database search with Comet followed by 
the MetaProSIP tool was built according to the recom-
mended parameters from the original publication with 
the minor modification that we activated the MetaProSIP 
setting to subtract the mono isotopic peak value. A refer-
ence (unlabeled) incubation was not needed to perform 
isotope calculations, because we expected part of the E. 
coli peptide population in the sample to be unlabeled due 
to the presence of unlabeled E. coli in the mock commu-
nity thus all four data files were run through the work-
flow. The database search parameters were 10 ppm mass 
tolerance for precursor ions, up to two missed cleavages, 

carbamidomethylation of C as static modification, and 
oxidation of M as dynamic modification. Results were 
reported as relative isotope abundances (RIA) per ID. The 
MetaProSIP algorithm can split the RIA distributions of 
peptides with higher abundances into multiple isotope 
abundance clusters, leading to multiple reported RIAs 
per peptide. This happened on average for ~ 9% of pep-
tides in our datasets (0.3% in unlabeled, 6% in 1% labeled, 
14% in 5% labeled, and 13% in 10% labeled). If the algo-
rithm provided multiple RIAs for a peptide, we only used 
the highest RIA value in all downstream calculations.

To make the output data from both SIPPER and 
MetaProSIP comparable to the Calis-p output we used 
the tables from both approaches that report 13C content 
per PSM or peptide. SIPPER 13C content was reported 
in terms of percent carbon and percent peptides labeled, 
MetaProSIP 13C content was reported as relative isotope 
abundance, and Calis-p 13C/12C ratios were converted 
to 13C atom percent. We filtered the data to only include 
distinct protein unique peptides then calculated the 13C 
content for each species by taking the median. For visual 
representations (Figure  S4), we additionally filtered the 
data for which 13C values were provided for at least 9 
peptides per species (equivalent to filter used for Calis-p).

Estimation of the average detection limits for peaks 
in Fig. 1
To determine the average detection limit for peaks in 
Fig.  1, we recorded the intensity of the final, highest-
mass peak of each peptide pattern associated with the 
data underlying Fig. 3 top left panel (E. coli, 13C glucose, 
fully labeled). The highest-mass peak always has the low-
est intensity among a pattern’s detected peaks. Thus, 
the mean of these intensities represented a conservative 
estimate for the detection limit of a pattern’s peaks. We 
modeled the patterns in Fig.  1 to have the mean inten-
sity among patterns in the data underlying Fig. 3 top left 
panel, allowing us to estimate how many peaks would be 
detected on average in the presented scenarios.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01454-1.

Additional file 1. Supplementary Results and Discussion. Differences 
when using Calis-p for quantification of natural carbon isotope ratios 
(Protein-SIF) versus labeling with heavy isotopes (Protein-SIP). Figure 
S1. Comparison of the previously published version of Calis-p (v0.0) [1] 
with the new version (v2.1) in regards to their accuracy for quantifying 
natural carbon isotope abundances (Protein-SIF) of species in microbial 
community samples. The absolute difference between δ13C values of 
individual species in mock communities determined with the Fast Fourier 
Transforms algorithm (i.e. default model) and isotope ratio mass spec-
trometry (IRMS) of the corresponding pure cultures is shown (method 
details in [1]). Five mock community datasets with a total of 32 species 

http://sourceforge.net/projects/calis-p/
https://doi.org/10.1186/s40168-022-01454-1
https://doi.org/10.1186/s40168-022-01454-1
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and strains were analyzed. For 20 species, the δ13C values were known 
from IRMS performed on pure cultures. For these species, the δ13C values 
were determined. Each dataset contained different amounts of data. The 
absolute difference between δ13C values obtained via protein-SIF and 
IRMS was calculated and sorted according to how many peptides or PSMs 
were available for SIF calculation by Calis-p after filtering the peptides. The 
plots give the absolute differences for different ranges of peptide and PSM 
numbers used for SIF calculation. Additionally, for Calis-p v2.1 plots are 
also shown using the median as the center statistic for δ13C value calcula-
tions. Figure S2. Number of peptide spectral matches (PSMs) identified 
at different 13C label percentages using six different peptide identifica-
tion strategies. For the spike-in samples E. coli cells labeled at different 
percentages with 13C6 glucose were mixed into a mock community con-
sisting of 32 species of bacteria, archaea, eukaryota and bacteriophages 
(UNEVEN community from Kleiner et al. (2017) [6]), which also contained 
unlabeled E. coli cells. Labeled and unlabeled E. coli cells in the spike-in 
sample were at a 1:1 ratio.Three biological replicates were analyzed for 
each label percentage. Peptides were identified using the SEQUEST HT 
Node in Proteome Discoverer (version 2.2.) with six different strategies to 
account for the mass shifts caused by addition of heavy atoms. Standard 
search: no dynamic modifications to account for addition of label; Open 
search: the precursor mass tolerance was set to 20 Da allowing for the 
potential addition of 20 neutrons (e.g. 13C atoms) in a peptide; Dynamic 
modifications: allowing for up to three dynamic modifications each of 
two custom peptide modifications adding a 1 neutron mass shift and a 2 
neutron mass shift (up to 9 neutrons in total per peptide); Modifications 
on termini: six dynamic modifications were set up that were restricted to 
either the C or the N-terminus of the peptide. The modifications account 
for mass shifts of 1 to 6 neutrons and depending on the search strategy 
the low mass shifts (1, 2 and 3 neutrons) were set up as modifications 
on the C or the N-Terminus or low and high mass shift modifications 
were distributed between both termini. Each modification can only be 
added to a terminus once. This strategy allows for a total of 21 neutron 
additions to a peptide. Figure S3. Assimilation of 13C in a mock labeling 
experiment created by mixing labeled and unlabeled cells of E. coli in 
ratios corresponding to 1/100 to 1 generations of growth. Cells were 
labeled with 1% 13C glucose (top row) and 10% 13C glucose (bottom row). 
Cells were labeled with CC2-labeled glucose (left column) and fully (C1-6) 
labeled glucose. Peptide identification-based detection of excess neutron 
masses was most sensitive, able to reproducibly detect growth for 1/100 
generation, but not quantitative. Use of 1% 13C glucose with a single atom 
labeled resulted in the best quantitation (R2 >0.996) and label recovery 
(92%). The detailed data for this figure can be found in Suppl. table S4. 
Figure S4. Comparison of existing Protein-SIP approaches with Calis-p. 
Three Protein-SIP approaches (SIPPER, MetaProSIP, and Calis-p) were 
compared using optimal parameters chosen by an expert operator for 
each tool. We used the datasets from the mock community with added 
1%, 5%, or 10% 13C labeled E.coli and as a control the mock community 
with only unlabeled E. coli. The resulting 13C atom % output values from 
SIPPER, MetaProSIP, and Calis-p for each dataset were filtered such that 
organisms for which 13C content was quantified for 9 or more peptides 
were considered for plotting. The black line in each plot represents the 
expected 13C atom % value for all unlabeled peptides. The red line in each 
plot represents the expected 13C atom % value for the E. coli peptides 
from each respective dataset after accounting for the expected mixing of 
labeled and unlabeled E. coli peptides in the sample. The number of pep-
tides used for each box and other details can be found in tables S7-S10. 
Figure S5. Strong differences in heavy water incorporation in intestinal 
microbiota in response to different diet conditions. 63 species isolated 
from human intestinal microbiota were grown together in triplicates in 
either a high fiber or high protein medium in the presence of unlabeled 
water or water with either 25% 2H or 18O [7]. Calis-p based stable isotope 
ratios are shown for all species combined per replicate. Each box shows 
the data for all peptides for one replicate. The ‘n’ gives the number of 
peptides that passed the Calis-p quality filters. The solid red lines indicate 
the average quartiles for the three replicates, the dashed red line the aver-
age median for the three replicates. Statistically significant differences are 
indicated with ‘*’ based on Student’s t-test on the medians of replicates at 
p < 0.05. The script (Suppl. file S1, also available here https://​github.​com/​

yihua​liud/​Data-​analy​sis-​of-​Calis-p-​prote​in-​SIP-​resul​ts/​blob/​main/​Heavy%​
20Wat​er_​SIP_​Calisp_​final.R) and Calis-p output peptide datasets (Suppl. 
Datasets S1 and S2) used to generate this figure and Figure 7 have been 
provided as an example. Supplementary Methods. How Calis-p calculates 
center statistics for a species based on its peptides. Figure S6. Explanation 
of procedure how clumpiness of label is estimated.

Additional file 2. Supplemental Tables and Supplemental Files.
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