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Abstract 

Background  Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. 
Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabo-
lism of organic matter by altering microbial physiology and function. These physiological responses are mediated in 
part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical 
role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or 
how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we 
conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then 
measured the response of the soil lipidome and metabolome during the first 3 h after wet-up.

Results  Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting 
in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the 
prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associ-
ated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly 
present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid 
land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in 
several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with 
saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccha-
rides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid 
metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, 
suggesting that members of this phylum were positively impacted by rewetting.

Conclusions  Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, 
substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient 
limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon 
rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free 
lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-
chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance 
of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and 
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triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representa-
tive bacteria once the environmental conditions are conducive for growth. These results underscore the importance 
of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-
environment reactions.

Keywords  Soil, Lipidomics, Summer drought, Drying-rewetting, Metabolomics

Background
Across the globe, intense heatwaves and droughts are 
becoming more frequent and severe [1, 2]. Inextricably 
linked, heat can exacerbate drought, which in turn can 
cause hotter temperatures. These drought events increase 
moisture and heat stress, with important implications 
for soil functions [3, 4], including shifts in carbon (C) 
cycling. Microbial metabolic activity is generally reduced 
during heat and moisture stress or drought periods, 
either due to cell death or transformation to a dormant, 
metabolically inactive state [5]. Upon wetting of dry soils, 
there is a rapid physiological response of the soil microbi-
ome, most often measured as a burst of respiration (CO2) 
known as the Birch effect [6]. We and others have previ-
ously shown that in multiple soils, including the soil from 
this field site, the CO2 production peaks within the first 
180 min of rewetting [7, 8]. In dry grassland ecosystems, 
this pulse can contribute disproportionately to the eco-
system carbon budget [9]. In addition to respiration rates, 
previous studies [7, 10–15] have investigated the effects 
of soil drying and rewetting on microbial biomass, com-
munity structure, taxon-specific growth rates, substrate 
use efficiencies, compatible solutes, protein, and gene 
expression [13, 14, 16]. However, our understanding of 
how the rewetting of dry soil impacts microbial physi-
ology and metabolism in those first few hours following 
moisture addition remains unclear. Environmental stress 
can have interdependent effects on microbial metabolism 
and community composition. The metabolic response of 
microbial members to environmental change is impor-
tant to characterize because it can influence community-
level metabolic interactions and dependencies [17] which 
can shape composition and potentially have ecosystem-
scale impacts.

Lipids are generally recognized as being highly 
responsive to environmental perturbations [18–20] 
and could play a role in enabling the adaptation of soil 
microbial communities to drought stress. Soil micro-
organisms can modulate the biophysical properties of 
their membranes, such as fluidity, to confer resilience 
to a changing environment. Changes in lipid composi-
tion can initiate and indicate the activation of the cellu-
lar stress responses and impact key metabolic pathways 
required for growth [18, 21, 22]. Cellular lipids can be 
remodeled to conserve energy and optimize the use of 

essential nutrients such as C, nitrogen (N), and phos-
phorus (P) under conditions of nutrient limitation. 
They can also be degraded and used as endogenous C 
and energy sources [23]. Therefore, characterizing how 
the soil lipidome shifts during drought and rewetting 
should provide valuable knowledge about the physi-
ological response of soil microbes to environmental 
changes. However, for the vast majority of soil lipids, 
their identity is currently unknown let alone their 
response to environmental change. A few key microbial 
lipids have provided insights into C cycling and climate 
variability [24], warranting a closer and more compre-
hensive understanding of what types of biogeochemical 
information can be harnessed from intact soil lipids.

For soil microorganisms, the main types of lipid anal-
yses that have been widely studied to date are phospho-
lipid fatty acids (PLFAs) and fatty acid methyl esters 
(FAME), which have provided a quantitative measure 
of bacterial and fungal biomass [25], a molecular sig-
nature of microbial guilds that are present in envi-
ronmental samples [26–28], and a means to track the 
assimilation of C substrates [29]. However, both PLFA 
and FAME analyses profile fatty acids that have been 
cleaved from either phospholipids or from all ester-
linked lipids, respectively. In doing so, these techniques 
fail to capture information on the intact lipid molecu-
lar structure from which the fatty acids originate. PLFA 
targets phospholipids, which represent only a fraction 
of the entire lipidome in soil and therefore omits other 
potentially interesting and informative lipid classes. 
The longstanding focus on glycerophospholipids as 
a proxy for membrane lipids has meant that little is 
known about other lipids common in soil microbes—
such as glycerolipids and sphingolipids. This is a criti-
cal knowledge gap because, as this study demonstrates, 
these lipids are very responsive to environmental per-
turbation. For instance, during phosphorus limitation, 
which can be an indirect effect of drought, bacteria 
replace their membrane phospholipids with phosphate-
free betaine lipids and even novel sphingolipids [30]. 
By contrast, the study of intact lipids via global or tar-
geted lipidomics can provide deeper structural insights, 
enabling improved characterization of how microbial 
communities in natural settings adapt to environmental 
change [31–35].
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Here we report a comprehensive lipidomics analysis of 
an arid grassland soil incubation experiment that simu-
lates the simultaneous temperature and moisture stress 
of summer drought, followed by rewetting. This study 
addresses an important knowledge gap surrounding 
the rapid microbial response to wet up after a summer 
drought by evaluating the lipidome and metabolome dur-
ing the 3-h period immediately after wetting. This is an 
important window of time during which a burst of res-
piration that is much higher than the basal level is com-
monly observed [8, 36–38]. We hypothesized that like 
respiration, distinct metabolic changes at the lipid level 
will rapidly occur in response to rewetting a dry soil. We 
expected to observe increased abundances of lipids asso-
ciated with microbial stress tolerance and remodeling of 
cellular lipids due to reduced nutrient transport under the 
dry condition. We also hypothesized that the lipidome 
would be altered upon rewetting, reflecting an adaptive 
response when the water deficit is relieved. We demon-
strate the immense potential for harnessing information 
from the soil lipidome to understand how soil microbi-
omes adapt and respond to stress. Comprehensive cover-
age of a broad range of lipid classes combined with our 
ability to characterize the fatty acid compositions of the 
measured lipids is an important advantage of our work, 
enabling the discovery of previously unknown responses 
at the lipid subclass and fatty acid level. Our findings sug-
gest that lipids may be critical in orchestrating the broad 
differences in stress response strategies used by bacteria 
and fungi to survive environmental stress. Furthermore, 
our findings demonstrate the value of investigating the 
soil lipidome as a direct measure of the soil community’s 
physiological response to perturbation.

Methods
Field sampling and laboratory incubations
The soil was collected in October 2017 from the Wash-
ington State University Irrigated Agriculture Research 
and Extension Center field site located in Prosser, WA, 
USA (46° 15′ 04′′ N and 119° 43′ 43′′ W). The site and 
soil characteristics were described previously [39]. The 
soil represents a Warden silt loam that is characterized 
as a coarse-silty, mixed, super active, and mesic Xeric 
Haplocambid. The soil represents a marginal soil with 
low organic matter content (3.7%), low water holding 
capacity (24%), and pH of 8. It is not uncommon for 
summertime high temperatures to exceed 40°C in the 
semi-arid desert climate of Eastern Washington, where 
our field site is located, and such conditions are becom-
ing more prevalent in many regions due to climate 
change [40–42]. The hot summers in this region are also 
the driest time of the year with under 5 mm of average 
precipitation in July. Samples from this grassland were 

homogenized using a 4-mm sieve and stored at 4°C, 
then incubated at 45°C for 7 days to simulate a sum-
mer drought. The soil was determined to be completely 
dry when no difference in weight was observed over a 
24-h period. Aliquots of dried soil (15 g) were weighed 
into 50-mL Olympus tubes for each incubation sample 
(Genesee Scientific Corporation, San Diego, CA). Five 
independent replicates were established for each of the 
6 sampling time points (0, 10, 20, 30, 90, or 180 min), 
resulting in a total of 30 incubation chambers. After 
harvesting the 0 min samples, the remaining 24 repli-
cates were wet to 19% gravimetric water content using 
sterile DI water and incubated at 36°C for 10, 20, 30, 
90, or 180 min. Nineteen percent gravimetric water 
was chosen to realistically mimic a precipitation event 
relevant to our field conditions, given the low water 
holding capacity of the soil and low average summer-
time precipitation. At each time point, 5 replicates were 
flash-frozen in liquid N and stored at −80°C.

Sample extraction for metabolomics and lipidomics
A modified Folch extraction, MPLEx [43, 44], was used 
for the extraction of polar metabolites and lipids from 
soil samples. Briefly, 10 mL of stainless steel and gar-
net beads were added to each soil sample, followed by 
the addition of 20 mL of cold 2:1 (v/v) mixture of chlo-
roform: methanol. Samples were then vortexed into a 
solution for 30 s, and 4 mL of cold Milli-Q water was 
added to each tube. Samples were horizontally vor-
texed for 10 min at 4°C and then allowed to completely 
cool. Each sample was probe sonicated with a 6-mm 
(1/4”) probe at amplitude 60% for 1 min each and then 
cooled. This was followed by horizontal vortexing for 2 
h, cooling at −80°C for 15 min, probe sonication for 1 
min, and cooling at −80°C. Samples were centrifuged 
at 4000 g for 5 min at 4°C resulting in separation into 
three defined upper layers: the upper-most aqueous 
(metabolite) layer, the protein interlayer, and the lower 
organic (lipid) layer with the remaining debris at the 
bottom. The polar metabolite and lipid fractions were 
collected separately in 20-mL glass vials and dried in 
a vacuum concentrator (Labconco, Kansas City, MO). 
Dried extracts were reconstituted in 1 mL of 2:1 chlo-
roform to methanol and transferred to 1.7 mL SafeSeal 
tubes (Sorenson Bioscience Inc., Salt Lake City, UT), 
centrifuged at 9000 g for 5 min at 4° C to remove any 
debris, and the supernatant was transferred to 1.6 mL 
total recovery autosampler vials (Waters, Milford, MA). 
Samples were stored at −20°C until further analysis. 
Dried metabolite extracts were derivatized (see Supple-
mentary Info for detailed methods) prior to gas-chro-
matography mass spectrometry (GC-MS) analysis.
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Mass spectrometry and data analysis
To characterize changes in the intact lipid profile 
in response to drying and rewetting, the total lipid 
extracts (TLEs) were analyzed by reversed-phase LC-
ESI-MS/MS using a Waters Aquity UPLC H class sys-
tem (Waters Corp., Milford, MA) coupled with a Velos 
Pro Orbitrap mass spectrometer (Thermo Scientific, 
San Jose, CA). TLEs were stored in 2:1 chloroform to 
methanol and evaporated then reconstituted at 9:1 
chloroform to methanol mixture prior to injecting 10 
μl onto a Waters column (CSH 3.0 mm × 150 mm × 
1.7-μm particle size) maintained at 42°C. Lipid species 
were separated using a 34-min gradient elution at a flow 
rate of 250 μl/min. Mobile phases A and B consisted of 
ACN/H2O (40:60) containing 10 mM ammonium ace-
tate and ACN/IPA (10:90) containing 10 mM ammo-
nium acetate, respectively. The full gradient profile 
was as follows (min, %B): 0,40; 2,50; 3,60; 12,70; 15,75; 
17,78; 19,85; 22,92 25,99; 34,99; and 34.5,40. The UPLC 
system used a Thermo HESI source coupled to the mass 
spectrometer inlet. The MS inlet and HESI source were 
both maintained at 350°C with a spray voltage of 3.5kV 
and sheath, auxiliary, and sweep gas flows of 45, 30, and 
2, respectively. Each TLE was analyzed in both positive 
and negative ion modes in separate runs. Lipids were 
fragmented by both HCD (higher-energy collision dis-
sociation) and CID (collision-induced dissociation) 
using a precursor scan of m/z 200–2000 at a mass res-
olution of 60k followed by data-dependent MS/MS of 
the top 4 ions. An isolation width of 2 m/z units and 
a maximum charge state of 2 were used for both CID 
and HCD scans. Normalized collision energies for 
CID and HCD were 35 and 30, respectively. CID spec-
tra were acquired in the ion trap using an activation Q 
value of 0.18, while HCD spectra were acquired in the 
Orbitrap at a mass resolution of 7.5k and a first fixed 
mass of m/z 90. Confident lipid identifications (Supple-
mentary Table S1) were made using LIQUID [45], and 
the tandem mass spectra and corresponding fragment 
ions, mass measurement error, and retention time were 
manually examined. LIQUID allowed the identification 
of co-eluting species and the presence of structural iso-
mers that were separated using reverse-phase LC. For 
the relative quantification of lipids, a reference data-
base containing identified lipids and observed m/z, and 
retention time was used for the alignment of lipid fea-
tures using MZmine 2 [46]. Aligned features were man-
ually verified, and peak apex intensities were used for 
downstream statistical analysis for the identified lipids. 
Positive and negative mode data were analyzed sepa-
rately. Enrichment analysis of lipid ontology terms was 
done using the Lipid Mini-on [47] online tool based on 
a Fisher’s exact test (p<0.05). Details of the untargeted 

analysis of polar metabolites using GC-MS are pro-
vided in the Supplementary Info.

Statistics and lipid ontology enrichment analysis
Statistical analysis of metabolomics and lipidomics data 
was performed using the pmartR package [48] with R ver-
sion 4.0.2 [49]. Data were log2-transformed and normal-
ized via global median centering. Statistical comparisons 
were performed for each time point after soil rewetting 
(10, 20, 30, 90,180 min) back to the dry 0-min soil group 
using ANOVA with a Dunnett test correction [50, 51]. 
For each lipid and polar metabolite, these adjusted p val-
ues and the mean log2 fold changes for each of the above 
comparisons are reported (Supplementary Tables S2 and 
S4), along with the number of observations per group. 
Lipid ontology enrichment [47] was used to extract bio-
logical information from the lipid name, highlighting sig-
nificant trends in lipid categories, lipid class, sub-class, 
fatty acyl chain characteristics, total number of fatty acid 
carbons, and double bonds (Supplementary Table S3). 
Enrichment analysis was done separately for subsets of 
lipids that were significantly more abundant in either dry 
soil or wet soil to uncover significant shifts with change 
in soil moisture.

Amplicon sequencing and data analysis
DNA was extracted from the soil samples using the Qia-
gen PowerSoil® DNA Isolation Kit (Qiagen, Germantown 
MD). Amplicon analysis was carried out as described 
previously [39] with 16S rRNA gene primers targeting 
the V4 hypervariable region of the 16S small-subunit 
(SSU) [52]. The ITS primers used were the ITS1f and 
ITS2 primers targeting the ITS1 region [53]. Amplicons 
were sequenced on an Illumina MiSeq using the 500-
cycle MiSeq Reagent Kit v2 (Illumina, San Diego CA) 
according to the manufacturer’s instructions. QIIME2 
(v2021.4) was used to denoise resulting Illumina MiSeq 
reads via DADA2 (q2-dada2), cluster amplicon sequence 
variants (ASVs), and assign taxonomy (q2-feature-classi-
fer) using the SILVA database (v138) for 16S rRNA gene 
amplicons and the UNITE database (v8-10.05.2021) for 
ITS amplicons [54–57]. Statistical analyses on 16S rRNA 
gene and ITS datasets were performed using the program 
R, with the ggplot2, ggpubr, and gridExtra packages used 
to generate figures [49, 58–60]. First, poorly sequenced 
samples (<10,000 total counts) were removed from the 
dataset. The ASV datasets were rarefied (rrarefy; vegan 
package v2.5-7 [61]) based on the sample with the lowest 
ASV count (11,027 counts for the 16S rRNA gene dataset 
and 12,408 counts for the ITS dataset). Multivariate dif-
ferences were detected by performing a Bray-Curtis dis-
similarity-based (vegdist; vegan package v2.5-7) principal 
coordinate analysis (PCoA; pcoa, ape package v5 [62]). 
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PERMANOVA was conducted using the “adonis” func-
tion inside the “vegan” package (Supplementary Table 
S5). Differences in phylum relative abundance through 
time were measured using an ANOVA, with pairwise 
time differences within phyla conducted using the Stu-
dent’s t test and a false-discovery rate p value adjustment 
(Supplementary Tables S6 and S7). A differential abun-
dance analysis on the rarefied data was conducted using 
DESeq2 in order to detect ASVs which were significantly 
more abundant at the 180-min time point (wet) as com-
pared initial time point (dry) [63]. In order to assist in vis-
ualization, results were plotted at the genus level. Feature 
volatility analysis was conducted using a q2-longitudinal 
plugin [64] in QIIME2 in order to identify important fea-
tures or ASVs (importance > 1%) with temporal dynam-
ics most predictive of the sample state over time and 
visualize the longitudinal abundance (volatility plots) of 
these features. In this analysis, random forest machine 
learning regressors are used to identify “important” fea-
tures (including low-abundance features) that change 
over time, and whose abundance is predictive of the spe-
cific time point, indicating a temporal relationship. Note 
that feature importance is intended as an exploratory 
method for identifying potentially relevant features for 
subsequent investigation and does not indicate statistical 
significance [64].

Correlation network analysis
Amplicon (rarefied ASV 16S rRNA gene and ITS region 
sequence counts) and lipidomics data (normalized rela-
tive abundance) from the same samples, across all 6 
timepoints (0, 10, 20, 30, 90, and 180 min) were matched 
and concatenated as a data matrix to perform a Pearson 
correlation using the R “cor.test” command. A correla-
tion threshold of 0.75 and a p value threshold of 0.05 was 
used and rows with greater than 75% missing data were 
removed. Hierarchical All-against-All Association testing 
(HAllA) [65] was also applied to the same data (similar-
ity measure: Pearson correlation, FDR correction: Benja-
mini–Hochberg–Yekutieli) to control the false discovery 
rate (FDR). The resulting network was visualized using 
Cytoscape [66].

Results
Characterization of the soil lipidome
To identify microbial traits associated with summer 
drought and rewet events, we investigated the short-term, 

rapid physiological response of an arid grassland micro-
biome to a simulated drought-rewetting event. Samples 
were collected following a drying period of 7 days (0 min, 
dry soil) and then at 10, 20, 30, 90, and 180 min after 
rewetting. Lipid and metabolite data were collected from 
all of the samples to determine the response of the soil 
microbiome to the different conditions. Lipid classes that 
were most prevalent under drought with elevated tem-
peratures, and most sensitive to rewetting events, were 
identified by an untargeted approach that provided broad 
coverage of the soil lipidome. A total of 837 unique lipids 
were identified in positive and negative ionization modes, 
from the soil samples across all 6 timepoints.

We characterized lipids across three lipid categories—
glycerolipids, glycerophospholipids, and sphingolip-
ids–and 18 lipid subclasses (Fig. 1A and Supplementary 
Table S1). Fifty percent (420) of unique lipids identified 
belonged to the glycerolipid category. These included 
species belonging to subclasses diacylglyceride (DG), 
sulfoquinovosyl diacylglycerol (SQDG), betaine lipids 
(DGTSA), and triacylglyceride (TG). Here, DGTSA 
represents two types of betaine lipids—1,2-diacylglyc-
eryl-3-O-4’-(N,N,N-trimethyl)-homoserine (DGTS) 
and 1,2-diacylglyceryl-3-O-2’-(hydroxymethyl)-(N,N,N-
trimethyl)-β-alanine (DGTA). The majority of the glyc-
erolipids identified, 338 of the 420 species, belonged to 
the TG subclass. We also identified 319 (38%) unique 
lipids in the glycerophospholipid category. Those that 
we identified belonged to multiple subclasses (Fig.  1A), 
including diacylglycerophosphocholine (PC), diacylglyc-
erophosphoethanolamine (PE), diacylglycerophospho-
glycerol (PG), and diacylglycerophosphoinositol (PI). 
Ether-phospholipids characterized by an alkyl (PC-O, 
PE-O, and PG-O) or 1Z-alkenyl ether (PC-P, PE-P, and 
PG-P, known as plasmalogens) substituent at the sn-1 
position of the glycerol backbone were also identified. 
Finally, we identified 101 (12%) sphingolipids, including 
ceramides (Cerd), phytoceramides (Cert), and hexosyl-
ceramides (HexCer). A significant strength of our study 
over previous untargeted lipidomics studies in the soil 
is that we were able to determine the chain length and 
degree of unsaturation of the individual fatty acid chains 
in each lipid. Using this approach, the percent distri-
bution of fatty acyl chains in unique lipid species was 
identified across the three lipid categories (Fig.  1B–D). 
We observed the presence of a wide range of fatty acyl 
chain lengths (12 to 24 C) and determined their degree 

(See figure on next page.)
Fig. 1  Distribution of lipids identified in soil samples from all time points. A Lipids were identified across 3 lipid categories [glycerolipids 
(yellow) glycerophospholipids (blue) and sphingolipids (orange)] and 18 sub-classes. Major sub-classes with greater than 10 lipids are shown. PC 
diacylglycerophosphocholine, LPC monoacylglycerophosphocholine, PE diacylglycerophosphoethanolmine, PG diacylglycerophosphoglycerol, 
PX-O ether PX, PX-P plasmalogen PX, DG diacylglyceride, TG triacylglyceride, DGTSA betaine lipid, and Cer ceramide. The number of lipids identified 
is indicated next to the subclass. Distribution of fatty acyl chains in B glycerolipid, C glycerophospholipid, and D sphingolipid categories
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Fig. 1  (See legend on previous page.)
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of unsaturation (0 to 6) across both the glycerolipid and 
glycerophospholipid categories. Relatively fewer shorter-
chain fatty acyl chains were present amongst the sphin-
golipids which ranged between 14 to 26 carbons in 
length and were either saturated or monounsaturated. 
2’-Hydoxylation of the fatty acyl chain was observed in 
specific fatty acids among the sphingolipids.

Unknown features in the soil lipidome
Of the 1653 LC-MS features with MS/MS spectra, only 
470 (28.4%) were annotated. Therefore, the majority of 
the soil lipidome remains uncharacterized, which is the 
current bottleneck of metabolomics due to challenges 
associated with accurate compound identification. A 
large number of metabolites or lipids features detected 
during untargeted profiling remain unknown and major-
ity of studies typically report less than 20% identification. 
Although we mainly focus on the identified subset of the 
lipidome, we examined how the total lipidome, including 
unknowns, might be changed following the rewetting of 
dry soil, across the time points in the study (See Supple-
mentary information).

Lipidome shifts with changes in soil moisture 
and temperature
Relative quantification of identified lipids across all sam-
ples, before and within 180 min after rewetting, revealed 
significant changes in the soil lipidome. Statistical com-
parisons to the dry (0 min) soil group were performed for 
each time point after soil wetting (10, 20, 30, 90,180 min). 
Nearly half of the lipid species, 43.8% (206 out of 470), 
significantly changed (Dunnet-corrected p value<0.05) 
in abundance in at least one of the pair-wise compari-
sons during the 180 min window of time following wet-
ting. The mean log2 fold change for these lipids ranged 
from −2.16 to 2.55 (Fig.  2, Supplementary Table S2). 
While some lipids (46 out of 206; 22%) showed significant 
changes in abundance as early as 10 min following rewet-
ting, the majority of the lipid species (160 out of 206; 
78%) were significantly different by the end of the incuba-
tion (0 min versus 180 min). The main findings for each 
lipid category are detailed in the following sections.

Glycerolipids
The majority of the lipid species identified in the soil sam-
ples belonged to the glycerolipid category, and 22% (50 
out of 230) of these had statistically significant changes in 
abundance following rewetting. Of the DGTSA, 83% (10 
out of 12) were significantly more abundant in dry soil, 
prior to rewetting. The two lipid species that were excep-
tions were DGTSA (15:0/15:0) and DGTSA (15:0/18:0), 
which showed the opposite trend. Interestingly, these 
two were the only DGTSA lipids with no double bonds 

(saturated) and both contained the 15:0 fatty acid sugges-
tive of bacterial origin. Only two SQDG lipids were iden-
tified, and these were also significantly more abundant in 
dry soil. Both DGTSA and SQDG are phosphorus-free 
membrane lipids.

Most of the significantly shifting DG lipids (10 out of 
12) showed increased abundances in response to soil 
rewetting. For the TG lipids that showed significant 
changes in abundance with soil rewetting, the direction 
of change depended on the sum of total fatty acid car-
bons and the sum of double bonds. Within the signifi-
cantly changing TG lipids, 41.6% (10 out of 24) increased 
in abundance after soil rewetting and contained between 
40 and 48 total fatty acid Cs and 0–2 double bonds. These 
TG lipids comprised fatty acids with C chain lengths 
between 12 and 18 that were either saturated or mono-
unsaturated. By contrast, 50% (12 out of 24) of TG lipids, 
having longer fatty acid chain lengths and polyunsatura-
tion, were significantly more abundant in dry soil. These 
lipids contained longer sum total fatty acid C, rang-
ing from 51 to 60 C with 3–14 total double bonds. The 
remaining two TG lipids showed no significant change in 
abundance following rewetting.

Glycerophospholipids
A majority, 63.3% (116 out of 183) of the detected glyc-
erophospholipids significantly changed in abundance 
following soil rewetting. The bulk of responsive lipids in 
subclass PE (21 out of 23; 91.3%) increased after rewet-
ting. These PE lipids contained between 30 and 36 fatty 
acid C and up to 2 double bonds. Only two PE lipids were 
significantly more abundant in the dry soil and had either 
a higher sum total of fatty acid C (38) or total number of 
double bonds (3). Thus, the direction of change trended 
with the sum of the total fatty acid C and double bonds, 
similar to what was observed for the TG lipids. All the PE 
lipids comprised fatty acids with chain lengths between 
14 and 20 C and 0–2 double bonds. Similar to the PE 
lipids, all the responsive PG lipids significantly increased 
in abundance after rewetting. The trend of PC, PC-O, 
and PC-P lipids depended on the sum total fatty acid C. 
Of the significant PC lipids, 20.8% (10 out of 48) were 
higher in abundance after rewet and had between 19 
and 31 total fatty acid C and up to 2 total double bonds. 
Most of these PC lipid species contained 14:0, 14:1, 15:0, 
or 15:1 fatty acids. In dry soil, 77 % (37 out of 48) of the 
significant PC lipids and all of the significant PC-P and 
PC-O lipid species were higher in abundance and they 
had between 33 and 40 total fatty acid C and up to 10 
double bonds.
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Fig. 2  Heatmaps of mean auto-scaled log2 normalized abundance for lipid species that differed significantly between a later time point following 
soil wetting and the initial time 0 for dry soil (Dunnett-adjusted p value < 0.05 for at least one comparison). Heatmaps contain lipids from both 
positive and negative ionization modes, where each lipid species was auto-scaled individually; the mean for each time point is displayed in the 
heatmap. Sum total fatty acid carbons and double bonds are indicated
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Sphingolipids
For the identified sphingolipid species, 70.2% (40 out of 
57) had statistically significant changes upon rewetting. 
Of these, 95% (38 out of 40) were higher in abundance in 
dry soils with a decreasing trend after rewetting (Cer and 
HexCer in Fig. 2).

An enrichment analysis of lipid ontology terms (Sup-
plementary Table S3) indicated that sphingolipids were 
enriched in the subset of lipids that were significantly 
higher in dry soils. Polyunsaturated glycerophospholip-
ids, such as those with polyunsaturated fatty acid (PUFA) 
chains 18:2, 18:3, 20:3, 20:4, 20:5, and glycerolipids with 
PUFA chains 18:2, 18:4 were also enriched in dry soil. 
An enrichment in glycerophospholipids with 3, 5, and 6 
double bonds and in triacylglycerols with 4 and 10 double 
bonds was observed in dry soil. In contrast, saturated and 
monounsaturated triacylglycerols and glycerophospho-
lipids were enriched in the subset of lipids with higher 
abundance after soil rewetting. The lipids that were more 
abundant in wet soils included glycerophospholipids (PG, 
PE). In addition, saturated and monounsaturated fatty 
acid chains were enriched in triacylglycerols (14:0, 14:1 
15:0, 16:0) in wet soil. The relative percent distribution of 
the fatty acid chains present in intact lipids (glycerolipids, 
glycerophospholipids, and sphingolipids respectively) 
that were significantly more abundant in either dry (0 
min) or wet (10-180 min) soils are shown in Supplemen-
tary Fig. S1.

Characterization of the polar metabolome
Untargeted metabolomics analysis using gas chroma-
tography coupled mass spectrometry (GC-MS) detected 
244 features, of which 52 were identified and 22 were 
putatively identified by superclass across eight super-
classes. The majority of the identified metabolites were 
carbohydrates (46 identifications comprising monosac-
charides, disaccharides, sugar alcohols, oligosaccharides, 
and glycosyl compounds) and fatty acyls (14 identifi-
cations comprising hydroxy fatty acids, saturated fatty 
acids, and fatty nitriles). Relative quantification of polar 
metabolites across all samples indicated that the soil 
metabolome shifted in composition following rewetting. 
Statistical comparisons to the dry, 0-min soil group, were 
performed for each time point after soil wetting (10, 20, 
30, 90, 180 min), and a total of 39 identified metabolites 
showed statistically significant changes (Fig.  3, Supple-
mentary Table S4) in abundance across all the compari-
sons. At the superclass level, these metabolites were 
comprised of carbohydrates (21), fatty acyls (6), organic 
acids (5), organic oxygen compounds (3), nucleic acids 
(2), a glycerolipid, and a benzenoid. Amongst the carbo-
hydrates, while no clear trend in the direction of change 
was apparent in the monosaccharides, the disaccharide 

metabolites were less abundant in dry soil and increased 
in abundance after rewetting. Inositols, nucleic acids, 
organic acids, and 2 of the 3 amino acids also showed an 
increasing trend upon rewet. The majority (6 out of 7) of 
the fatty acid and lipid-related metabolites were signifi-
cantly more abundant in dry soil.

Bacterial and fungal community response to soil rewetting
The microbial community response over time to soil dry-
ing and rewetting was analyzed by amplicon sequenc-
ing of the 16S rRNA gene for bacterial/archaeal and ITS 
region for fungal communities. Multivariate analyses 
via principal coordinate analyses and associated PER-
MANOVA tests revealed that time significantly impacted 
both the bacterial/archaeal (p = 0.001; Fig. 4A) and the 
fungal community structures (p = 0.006; Fig.  4B). Sta-
tistically significant p values (p < 0.05) were observed in 
the pairwise PERMANOVA analyses (Supplementary 
Table S5) for the bacterial/archaeal community as early 
as 10 min after rewetting. Significant p values were also 
obtained for 0 vs 20 min, 0 vs 90 min, and 0 vs 180 min 
pairwise comparisons but not for the 0 vs 30 min com-
parison. In contrast, for the fungal community data, the 
only significant pairwise comparisons were 0 vs 180 min, 
10 vs 180 min, 20 vs 180 min, and 30 vs 180 min indi-
cating no detectable shifts in the fungal community until 
180 min.

When analyzing the microbial community members 
that were driving these multivariate differences, we 
observed that the bacterial/archaeal community was, on 
average, dominated by the phyla Proteobacteria (21.7%), 
Acidobacteriota (16 %), Actinobacteriota (12.6%), and 
Firmicutes (10.9%); all other taxa were <10% on aver-
age (Fig.  4C). Meanwhile, fungal communities were 
dominated by Mortierellomycota (44.4%), followed by 
Ascomycota (34%) and Basidiomycota (12.1%), while 
all other fungal taxa were lower in abundance (Fig. 4D). 
After rewetting, there was a significant increase in the 
relative abundance in members of the Firmicutes phylum 
(ANOVA p value <0.001) and a significant decrease in 
members of the phyla Acidobacteriota (p value <0.001), 
Chloroflexi (p value <0.001), Crenarchaeota (p value 
0.024), Gemmtimonadota (p value 0.003), Planctomyce-
tota (p value: 0.043), and Proteobacteria (p value: 0.036) 
(Fig.  4E, Supplementary Table S6). By contrast, there 
were no significant shifts in the relative abundances of 
fungal phyla following rewetting (Fig. 4F, Supplementary 
Table S7).

DESeq2 was used to identify differentially abundant 
ASVs between the most divergent timepoints 0 min (dry) 
and 180 min (3h after rewet) (Fig. 5) to better understand 
the response of the bacterial community to soil drying 
and rewetting conditions. There were 12 bacterial ASVs 
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that were significantly more abundant after the 180 min 
incubation (Fig. 5). Most of these ASVs (10) belonged to 
the Firmicutes and were distributed across three gen-
era: Bacillus, Tumebacillus, and an unknown genus from 
the order Bacillales. In order to put these differences in 
context, the average relative abundances before DESeq2 
normalization for these taxa at 180 min ranged from 0.11 
to 6.63%. The largest increases in taxa from 0 min to 180 
min were for a Tumebacillus ASV (from 0.93 to 5.7% rel-
ative abundance) and an order Bacilliales ASV (from 1.21 
to 6.63% relative abundance). The remaining two ASVs 
were Actinobacteria from the genera Mycobacterium and 
Geodermatophilus. There was only a single ASV belong-
ing to the genus Clarireedia that was significantly more 
abundant within the fungal community after 180 min, 
likely due to it being below detection at the 0 time point 
(average rarefied counts at 0 minutes: 0; average rarefied 

counts at 180 minutes: 1285). Comparisons between 180 
min or 0 min and 10, 20, 30, or 90 min timepoints are 
shown in Supplementary Figs. S8 and S9.

To better understand the volatility or variance of the 
relative abundance of bacterial/archaeal taxa over time, 
feature volatility analysis was used to identify the bac-
terial taxa that were most important in capturing the 
temporal dynamics in this experiment. Twenty-three 
bacterial ASVs had an importance > 1% (Fig.  6A), and 
the highest number (8) of these belonged to Firmicutes. 
Figure  6B shows the longitudinal abundances of these 
8 ASVs as volatility plots. The majority of these ASVs 
show an increasing trend in relative abundance after the 
30-min timepoint following soil wetting. Six of these 
eight Firmicutes ASVs were also identified as differen-
tially abundant in the DESeq2 analysis (Fig. 5) indicating 
an overlap in the findings from the two analyses.

Fig. 3  Heatmaps of mean auto-scaled log2 normalized abundance for polar metabolites that differed significantly between a later time point 
following soil wetting and the initial time 0 for dry soil (Dunnett-adjusted p value < 0.05 for at least one comparison). Each metabolite was 
auto-scaled individually, and the mean for each time point is displayed in the heatmap
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Integrative correlation network analysis
Pearson correlations were calculated between lipid spe-
cies and 16S rRNA gene/ITS region measurements 
across all time points to identify possible links between 
the soil microbiome and lipids (Supplementary Fig. 
S10, Supplementary Tables S8 and S9). One hundred 

sixty-four significant positive correlations (Fig.  7) were 
found between the microbiome and lipidome data point-
ing to potential relationships between specific microbial 
taxa and lipid species. Twenty-nine glycerophospholipids 
consisting of PC, PE, PG, and PG-P species, all of which 
significantly increased in abundance after soil rewetting, 

Fig. 4  Analysis of archaeal/bacterial and fungal community composition following 180 min of rewetting of dessicated soil. PCoA of A 16S rRNA 
gene (archaeal/bacterial) and B ITS region (fungal) amplicon sequencing datasets. Stacked bar charts illustrate the relative abundance of the 
archaeal/bacterial (C) and fungal (D) taxa which comprise at least 5% of the respective microbial community; phyla which are <5% are considered 
“low abundance.” A comparative analysis through time is presented as boxplots in panels (E) 16S rRNA gene (archaeal/bacterial) and F ITS region 
(fungal). P values represent the results of an ANOVA with values < 0.05 indicating that a significant difference in relative abundance exists between 
at least two timepoints. Pairwise t test comparisons through time and corresponding p values can be found in Supplemental Tables S6 and S7
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were correlated with at least one of the 8 ASVs corre-
sponding to the Firmicutes phylum (class Bacilli).

These glycerophospholipids were all comprised of total 
fatty acid C ranging between 29 and 35 with up to two 
total double bonds. Two fungal ASVs belonging to class 
Agaricomycetes (genus Typhula and an unidentified 
genus) were correlated with the betaine lipid DGTSA 
(34:2) and two bacterial ASVs, belonging to the classes 
Alphaproteobacteria and Oligoflexia, were correlated 
with DGTSA (17:0/19:1). Five sphingolipids including 
ceramides and phytoceramides with 2’-hydroxylation of 
the fatty acid chain were correlated with an ASV belong-
ing to the genus Vicinamibacteraceae and phylum Aci-
dobacteriota and these lipids were significantly higher in 
abundance in dry soils. Eight DG lipids were correlated 
with an ASV belonging to the phylum Actinobacteriota 
and genus Kribbella. Two bacterial ASVs belonging to 
the phylum Actinobacteriota (genera Mycobacterium and 
uncultured) were correlated with one and six TG lipids 
respectively. DGs can serve as lipid precursors for TG 

biosynthesis and while TG occurrence is rare in bacte-
ria, it is widespread among Actinobacteriota. An ASV of 
the class Gammaproteobacteria was correlated with 14 
TG lipids. Three ASVs belonging to the phylum Plancto-
mycetota were correlated with a total of 2 DG and 3 TG 
lipids.

Discussion
Large rainfall events following drought are known to 
cause pulses of CO2, often many times greater than the 
basal level of soil respiration [37]. But the microbial driv-
ers behind these respiration bursts remain elusive. As 
heatwaves and droughts are becoming more frequent 
and severe [1, 2], it is necessary to further reveal the 
physiological responses of soil microbial communities to 
drought-rewetting events. Our study uses a multi-omic 
approach to demonstrate distinctive physiological signa-
tures of microbial communities in response to drying-
rewetting events that can occur in many arid soils. Only a 
handful of studies [13, 35, 67–69] so far have investigated 

Fig. 5  Differentially abundant ASVs for the archaeal/bacterial datasets across the two extreme timepoints: 0 min (dry) and 180 min (wet). The points 
represent the log2 fold change of an ASV belonging to the genus outlined on the x-axis, colored based upon the corresponding phylum
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intact soil lipids, and this work represents the largest 
number of unique lipids identified in a soil microbiome 
to date.

Nutrient limitation in dry soil induces replacement 
of membrane phospholipids
Our study demonstrated a strong lipidomic response 
to soil desiccation and rewetting. In particular, 

Fig. 6  Longitudinal feature-volatility analysis of bacterial/archaeal ASVs. A The points represent the importance of an ASV belonging to the genus 
outlined on the x-axis, colored based on the corresponding phylum. Only ASVs with an importance > 1% are shown. B Relative abundances of the 
ASVs belonging to the Firmicutes phylum are shown across time for individual replicates (narrow black lines) and for group averages with thick lines 
colored based on genus
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Fig. 7  A network visualization of significant positive Pearson correlations between normalized lipid (squares) relative abundance and ASV counts 
from rarefied 16S rRNA gene (orange circles) and ITS region (green diamonds) amplicon data across all time points. Edge thickness is proportional 
to the correlation coefficient and node size is proportional to the number of connected edges. Edges are colored purple if FDR < 0.05. Bacterial and 
fungal nodes are labeled to indicate genus if available and class. Lipid node colors: glycerophospholipids, cyan; TGs, dark blue; DGs, light blue; and 
phosphorus-free betaine and SQDG lipids, yellow
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several bacteria remodeled their cell membrane lipids in 
response to contrasting resource access under dry and 
wet conditions. In dry soil, water is limited within soil 
pores in the soil matrix, which impedes the transport of 
C and nutrients and reduces nutrient access by microor-
ganisms. The glycerophospholipids are the major struc-
tural components of lipid bilayers in all cell membranes 
and influence cellular adaptability to stress [18]. Under 
dry conditions, membrane glycerophospholipids such as 
PC, PE, and PG were depleted and replaced with mem-
brane lipids that lack phosphorus, such as SQDG and 
DGTSA. Network analysis showed a significant correla-
tion between DGTSA lipids and ASVs belonging to the 
Basidiomycota and Proteobacteria phyla and included 
species that are known to synthesize betaine lipids 
[70, 71]. Although DGTSA is not common in bacteria, 
its presence and accumulation have been seen previ-
ously in some Alphaproteobacteria under conditions 
of phosphate limitation [19, 72]. Replacing membrane 
phospholipids such as PC and PE with phosphorus-
free membrane lipids can provide a fitness advantage by 
allowing microbes to conserve phosphate for other cel-
lular processes [72–74] required during drought stress. 
Under phosphate-limiting conditions, existing membrane 
phospholipids can be degraded as a source of phospho-
rus for the synthesis of essential biomolecules [75]. After 
rewetting, phospholipid abundance rapidly increased, 
which is consistent with increased nutrient transport and 
access, and enhanced glycerophospholipid biosynthe-
sis. These responses demonstrate a strong physiological 
response of the soil microbiome to rewetting.

The metabolomics data revealed that osmolyte accu-
mulation was not the dominant physiological strategy 
employed by soil microorganisms in our soil under these 
experimental conditions. Although culture-based stud-
ies have shown microbial accumulation of compatible 
solutes under osmotic stress-induced using salt [76, 77], 
this has not been consistently observed in soil [11, 13, 37, 
78]. Our results reveal that putative osmolytes including 
trehalose, mannitol, and glycerol did not change signifi-
cantly in abundance after rewetting of dry soil. However, 
several metabolites, including some with known osmo-
protective properties, such as amino acids, disaccharides, 
inositols, organic acids, and nucleic acids, increased in 
abundance after rewetting. This finding suggests that 
limited resource availability due to impeded diffusion in 
dry soils may affect microbial osmolyte production which 
would require substantial resources. An increase in the 
abundance of amino acids and nucleic acids upon rewet-
ting of dry soil is likely due to the increased availability 
of nitrogen which is required for the synthesis of these 
compounds. We did, however, observe that glucosylglyc-
erol, a compatible solute with osmoprotective properties 

was significantly more abundant in dry soil and showed 
a decreasing abundance over time upon rewetting. This 
suggests that certain microbes do produce osmopro-
tective metabolites during soil drying even if osmolyte 
production may not be a dominant acclimation strategy 
across the community.

PUFAs and sphingolipids may provide stress tolerance 
in dry conditions
Our results suggest that specific lipids that are typically 
found in fungi and select bacteria may play a key role in 
the metabolic response and adaptation of these taxa to 
hot and dry soil conditions that are often experienced 
during summer droughts. In particular, PUFAs with 
longer fatty acyl chain lengths—18, 20 C—were more 
prevalent in the lipids in dry compared to wet soil. Spe-
cifically, glycerophospholipids and triacylglycerols with 
highly unsaturated fatty acyl chains, typical of eukaryotic 
organisms [79, 80], were more abundant in the drought-
stressed soil. In fungi, fatty acid unsaturation and chain 
length are both known to play a role in mitigating the 
effects of osmotic and heat stress via a lipid-mediated 
downregulation of cellular stress response pathways [81, 
82]. Nitrogen and phosphorus availability can also alter 
the fatty acid composition of lipids and nutrient-limited 
conditions, such as those in dry soil, can promote PUFA 
biosynthesis in microalgae and fungi [83, 84]. Similarly, 
sphingolipids (specifically ceramides) which are common 
in fungi, but less so in bacteria, increased in abundance 
following hot and dry incubation conditions. Sphingolip-
ids are bioactive membrane lipids that have an important 
role in cell signaling and stress response [85, 86]. Elevated 
levels of these bioactive lipids are known to enhance heat 
and osmotic stress tolerance in yeast [87, 88]. Sphingolip-
ids also regulate polarized hyphal growth in filamentous 
fungi [89] contributing to drought stress tolerance by 
increasing access to water and nutrients in dry soil.

Amongst the soil biota, while bacteria have distinctive 
fatty acid signatures, it is harder to discriminate between 
eukaryotes such as fungi, microalgae, plants, and protists 
[90]. Protists generally prefer moist environments and 
their abundances drastically reduce under extreme soil 
drying, although they can survive as cysts [91]. Fungi on 
the other hand are known to be more drought tolerant [3] 
which led us to associate eukaryotic-like lipids that were 
more abundant in dry soils with fungi. These included 
long-chain PUFAs such as 20:4 and 20:5, which are com-
mon in eukaryotes, but rare in bacteria. Additionally, the 
majority of the glycerophospholipids that were higher 
under hot and dry conditions were PCs, which are abun-
dant and ubiquitous in membranes of eukaryotic cells. 
Although we make a general assumption in this study 
that the PUFAs are predominantly of fungal origin, it is 
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important to note that it is possible that certain soil bac-
teria may also be capable of synthesizing these PUFAs. 
Long-chain PUFAs have been identified in select bacte-
ria that inhibit high-pressure, low-temperature deep-sea 
habitats, and cold marine environments [92–94] and in 
terrestrial myxobacteria [95]. Given that our experimen-
tal incubations did not involve plants, we inferred that 
the lipids with eukaryotic characteristics are likely of fun-
gal origin. However, they could also originate from soil 
protists, and it is not possible to exclude the possibility 
that plant lipids could persist in the soil.

Our results suggest that the biosynthesis of PC lipids, 
PUFAs, and sphingolipids may be a key metabolic 
response, as evidenced by elevated lipid signatures under 
drought conditions. The relationship between the abil-
ity of certain microbial taxa to synthesize these lipids 
and their tolerance to drought warrants further inves-
tigation. However, the physiological changes revealed 
in the lipidome were not accompanied by clear shifts in 
fungal community composition during our experiment. 
While some previous studies have shown that fungal 
community composition is less affected by drought [96, 
97], other studies have observed a stronger functional 
response in the fungal community in comparison with 
bacteria [14]. Moreover, there was only a single fungal 
ASV belonging to the genus Clarireedia that was signifi-
cantly more abundant at the 180-time point than the 0. 
This points to the likelihood of a predominantly physi-
ological, rather than compositional response of soil fungi 
to drought stress in the first 180 min. This physiologi-
cal response, as suggested by our results, has important 
implications for determining the community metaphe-
nomic [98] response to environmental perturbations, 
that may not be detected by community profiling assays.

Bacterial activity increases upon rewetting
Bacterial lipid metabolism and growth responded rap-
idly to rewetting. Lipids typically associated with bacteria 
[99], increased in abundance upon rewetting, including 
PG, PE, PC, and TG lipids with saturated or monounsatu-
rated short fatty acid chains (14 and 15C). The increased 
abundance of membrane lipids (PG, PE, PC) and many 
primary metabolites (amino acids, nucleic acids, organic 
acids, sugars) within 180 min after rewetting suggests 
rapid growth [100]. Network analysis revealed significant 
correlations between many of these glycerophospholipid 
species and bacterial ASVs belonging to the phylum Fir-
micutes (class Bacilli), suggesting positive selection for 
Firmicutes during drought rewet events. Increases in the 
abundance of ASVs belonging to the phylum Firmicutes 
are consistent with the fitness advantages of thick cell 
walls that render gram-positive bacteria more resistant to 
stress associated with drying and rewetting. Firmicutes, 

and the genus Bacillus in particular, are known to form 
endospores, which aid their survival and resilience under 
adverse environmental conditions including desiccation 
stress [101]. The rapid growth of Firmicutes has previ-
ously been detected within 3 h of rewetting dry soil using 
quantitative stable isotope probing [15]. Although most 
studies typically measure microbial community compo-
sition days to months following rewet, the results from 
Blazewicz et al. [15] indicate that even within the first 3 h 
following wet-up, distinct population responses occurred 
in the community, underscoring the importance of the 
first few hours following rewet. In our study, 16S rRNA 
and ITS region amplicon sequencing reveal interest-
ing dynamics, especially in certain members belonging 
to the phylum Firmicutes. Our analysis indicates that 
6 ASVs belonging to the phylum Firmicutes not only 
changed significantly in relative abundance after soil 
wetting, but also had temporal trends that were predic-
tive of the soil rewetting in the first 3 h. By contrast, the 
relative abundances of organisms known to thrive in arid 
environments, like Chloroflexi and Gemmatimonadota, 
decreased after rewetting [102]. Phyla with slow-growing 
members, such as Acidobacteriota and Planctomycetota 
[103–105], also diminished in relative abundance after 
rewetting. While these traits are beneficial in dry soil, fast 
growers dominate after rewetting events, when resource 
access is high [106]. The rapid change in water potential 
can also cause cell lysis and death upon rewetting [15]. 
The abovementioned bacterial glycerophospholipids and 
TGs with short, saturated, and monounsaturated fatty 
acids were less abundant in dry soil and increased over 
time upon rewetting implying that growth of Firmicutes 
and/or physiological responses from other bacterial 
phyla—even those that may not have experienced detect-
able changes in abundance—could be responsible for 
observed changes in the lipidome.

Correlations observed between multiple TG lipid spe-
cies and Gammaproteobacteria were both unexpected 
and interesting, given that bacterial TG biosynthesis 
is thought to be largely restricted to the Actinomycetes 
phylum [107]. An alkane-degrading marine Gammapro-
teobacteria, Alcanivorax borkumensis, was found to syn-
thesize TGs enriched in saturated fatty acids [108]. This 
is a compelling reason to further investigate TG biosyn-
thesis in soil Gammaproteobacteria. Similarly, the cor-
relations between ceramides and Acidobacteriota raise 
the question of whether members of this phylum pro-
duce sphingolipids. Sphingolipid production in bacte-
ria is uncommon and based on current knowledge it is 
limited to members of Bacteriodetes, Chlorobi, and some 
Proteobacteria. However, it is possible and even likely 
that there exist yet unexplored soil bacteria that can syn-
thesize sphingolipids and other lipids that are currently 
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considered fungal [30]. Although correlation does not 
prove causation and statistically robust correlations 
between a lipid species and a microorganism may arise 
even from indirect interactions with other variables or 
features [109], the correlation analysis can help explore 
potential associations between taxa and lipids. Further 
investigation is warranted since the lipid composition 
of the vast majority of soil microorganisms has yet to be 
characterized.

Perspectives and conclusions
Our research demonstrates the rich and largely untapped 
reservoir of lipids present in the soil microbiome and 
highlights the sensitivity of this pool for assaying physi-
ological responses of microorganisms within the soil 
habitat. The wealth of dark matter within the lipidome 
may contain biochemical information critical to answer-
ing pressing soil ecology challenges, including predict-
ing how microorganisms will respond to climate change. 
Future needs include the development of a taxonomic 
catalog of soil microbial lipids and a better understand-
ing of how they change under varying environmental 
conditions. The development of a taxonomic catalog of 
soil microbial lipids and associated phenotypes could 
transform soil ecology by enabling an incredibly sensitive 
measure of both taxonomic and metabolic responses in 
a single assay. This would help determine if the ability to 
biosynthesize lipids with specific structural characteris-
tics are functional traits that influence microbial fitness 
under environmental change across taxonomic groups. It 
is possible that soil environments may contain microbes 
with unique lipid compositions that defy what we cur-
rently consider to be bacterial or fungal. For instance, 
there may exist yet undiscovered bacteria, capable of bio-
synthesizing lipids that we currently assume are fungal, 
which makes them more resistant to drought stress. It is 
also likely that there exist several unknown lipid synthesis 
pathways. Our study employs conventional LC-MS/MS-
based lipidomics which cannot ascertain the double bond 
position in the fatty acids and therefore significantly lim-
its any taxonomic association of intact lipids to microbes. 
Systematic characterization of lipidomes of soil microbial 
isolates to characterize the relative distribution of intact 
lipids along with details of lipid structure, including dou-
ble bond positions in fatty acids using multi-dimensional 
analytical platforms which incorporate ion mobility and 
ozone-induced dissociation (OzID) [110], can aid in 
more confident taxonomic associations. The ability to 
make high-throughput measurements of lipids in com-
plex samples using OzID and automated data process-
ing is a critical capability gap that needs to be addressed. 
Community-curated reference databases and advances in 
“standard-free” in silico approaches will further improve 

chemical space coverage and accurate identifications 
in metabolomics and lipidomics [111]. While this study 
uses amplicon sequencing of the 16S rRNA gene and ITS 
region for measuring the changes in the relative abun-
dance of microbial taxa, quantitative stable isotope prob-
ing of approaches would be better suited to detect rapid 
population responses and measure taxon-specific growth 
rates [15]. Our data along with the findings of Blazewicz 
et  al. [15] highlight the potential value of further inves-
tigating microbial population dynamics and metabolism 
during those initial minutes-hours which is currently 
under-studied.

Our study shows that the soil lipidome is a sensitive 
indicator of the soil microbial phenotypic response to 
abiotic stress, even at short time scales. Both lipidomic 
and metabolomic results point to physiological shifts 
in response to changes in nutrient access under dry-
ing-rewetting cycles. The simulated drought resulted 
in an increase in lipids implicated in mediating heat 
and osmotic stress and nutrient deprivation. It also 
induced elevated levels of lipids containing fatty acid 
moieties that were characteristic of fungal metabolism. 
This work reveals that functional traits such as polyun-
saturated and longer fatty acid chain length and sphin-
golipid biosynthesis may regulate drought tolerance 
and affect microbial fitness during summer droughts. 
For the first time, we show evidence of elevated levels 
of ceramides in soil and increased prevalence of long-
chain polyunsaturated fatty acids in glycerophospholip-
ids and triacylglycerols following drying. The increase 
in lipids with fatty acids typical of bacteria following 
rewetting suggested rapid metabolic reactivation in the 
bacterial community as nutrient diffusion increased 
and conditions became more favorable for growth. 
These results suggest that different taxa may have dis-
tinct metabolic adaptation strategies when faced with 
water stress based on the composition of their lipi-
domes. Anticipated increases in drought due to cli-
mate change can differentially alter bacterial and fungal 
metabolism at the lipid level which can have impor-
tant consequences on community-level functions. Our 
results demonstrate an exciting potential for lipidom-
ics to provide function-driven in situ measurements of 
physiological responses and community-level pheno-
types that occur over short time frames and may not be 
fully captured with genomic approaches alone.
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