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Abstract 

Background:  Ralstonia solanacearum (Rs) is a soilborne phytopathogen that causes bacterial wilt and substantial 
yield losses in many plants, such as tomatoes. A resistant tomato cultivar can recruit a beneficial microbiome from 
soil to resist Rs. However, whether this recruitment is inheritable from resistant parent to progeny has not been 
determined.

Results:  In the present study, we investigated the rhizosphere microbiomes of tomatoes with clear kinship and dif-
ferent resistance against Rs. Resistant tomatoes grown with the additions of natural soil or its extract showed lower 
disease indexes than those grown in the sterile soil, demonstrating the importance of soil microbiome in resisting Rs. 
The results of 16S ribosomal RNA gene amplicon sequencing revealed that the resistant cultivars had more robust 
rhizosphere microbiomes than the susceptible ones. Besides, the resistant progeny HF12 resembled its resistant par-
ent HG64 in the rhizosphere microbiome. The rhizosphere microbiome had functional consistency between HF12 and 
HG64 as revealed by metagenomics. Based on multi-omics analysis and experimental validation, two rhizobacteria 
(Sphingomonas sp. Cra20 and Pseudomonas putida KT2440) were enriched in HF12 and HG64 with the ability to offer 
susceptible tomatoes considerable protection against Rs. Multiple aspects were involved in the protection, including 
reducing the virulence-related genes of Rs and reshaping the transcriptomes of the susceptible tomatoes.

Conclusions:  We found promising bacteria to suppress the tomato bacterial wilt in sustainable agriculture. And our 
research provides insights into the heritability of Rs-resistant tomato rhizobacteria, echoing the inheritance of tomato 
genetic material.
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Background
The bacterial wilt caused by the soilborne phytopatho-
gen Ralstonia solanacearum (Rs) leads to numerous yield 
losses across a broad range of hosts annually [1]. Many 
methods have been applied to control its damage, includ-
ing soil fumigation and improvement [2, 3] and breed-
ing of resistant cultivars [4]. However, these methods are 
not ideal because of their drawbacks, such as the non-
selective elimination of potentially beneficial microbes 

and the lack of excellent parents that behave with stable 
resistance under changing environmental conditions [4, 
5]. The plant-associated microbiome is a promising Rs-
suppressive resource that interacts with plants intimately. 
It is as affected by the plant compartment [6], light expo-
sure [7], plant healthy status [8], and plant genotype [9], 
among others. It has great potential to help plants resist 
Rs. For example, the Rs-resistant tomato cultivar Hawaii 
7996 enriches a flavobacterium, which can alleviate the 
bacterial wilt caused by Rs, compared with the Rs-sus-
ceptible tomato cultivar Moneymaker [9]. However, the 
mechanism under this resistance is unclear.

The microbiome of a host can be considered as a host 
property, which is affected by the host genetic material 
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and environment similar to any other host trait [10]. 
Therefore, the microbiome can be transmitted as a trait 
across generations. This mechanism is defined as “micro-
biome heritability” in many publications [11–13]. Differ-
ent plant species are able to shape their own rhizosphere 
microbiome considering that different plant species 
grown in the same soil often have different rhizosphere 
microbiomes [14, 15]. In turn, the plant rhizosphere 
microbiome is important for plant resistance against 
pathogens [9, 16]. For instance, Mendes et al. found that 
the members of γ-Proteobacteria enriched in the rhizo-
sphere of sugar beet grown in disease-suppressive soil 
are involved in the suppression of a fungal root patho-
gen [16]. Therefore, the rhizosphere microbiome can be 
treated as an ideal trait to study the “microbiome herit-
ability” in the field of sustainable agriculture. However, 
whether the Rs resistance-contributing rhizosphere 
microbes that are enriched in the Rs-resistant parent 
can be inherited by the Rs-resistant progeny remains 
unknown.

In the present study, we aim to explore the heritability 
of tomato rhizobacteria-resistant against Rs by inves-
tigating the rhizosphere microbiomes of tomato culti-
vars with known kinship (parents and progeny) by using 
multi-omics approaches and experimental validation. 
We aimed to reveal the shared pattern of the rhizosphere 
microbiomes between the resistant parent and progeny 
compared with the rhizosphere microbiomes of the sus-
ceptible cultivars to determine potentially inheritable 
rhizobacteria with biocontrol ability. Then, we intended 
to validate the biocontrol effects of the potentially inher-
itable rhizobacteria by using strain isolation, plate inhibi-
tion, and pot experiments. Finally, we planned to explore 
the mechanisms of biocontrol against Rs by using RNA 
sequencing. The results validated the importance of soil 
microbiome. Besides, the results revealed that the resist-
ant cultivars had more robust rhizosphere microbiomes 
than the susceptible ones, which was consistent in the 
resistant parent and progeny. Some bacteria that were 
enriched both in the resistant parent and progeny could 
help in alleviating Rs infection, which involved multiple 
strategies. The results show promising bacteria for the 
suppression of tomato bacterial wilt in sustainable agri-
culture. Our work revealed the heritability pattern of the 
Rs resistant-contributing rhizobacteria in tomatoes, ech-
oing the inheritance of host genetic material.

Methods
Experimental design
To explore potential bacterial wilt suppression bacte-
ria that are inherited from parent to progeny, we used 
amplicon and metagenomic sequencing to study bacte-
rial communities and their functions in the rhizosphere 

of resistant tomato hybrid F1 HuaFan 12 (HF12) and 
its parents (HG70♂ × HG64♀) challenged with Rs 
GMI1000 or not (Fig. S1). In addition, a susceptible 
cultivar A57 was included as well. To study the micro-
biome dynamics, we collected the rhizosphere samples 
at three sampling time points with an interval of 5 days. 
As shown in Fig. S1, T1 indicates the first sampling time 
point without Rs, T2 means 5 days after T1 with Rs, T2C 
means 5 days after T1 without Rs, and T3 and T3C indi-
cate 10 days after T1 with and without Rs, respectively. 
Culturomics was performed to isolate the rhizosphere 
bacteria of the resistant F1.

Soil and plant growth conditions
See Additional file 1.

Tomato resistance test
See Additional file 1.

Rhizosphere soil collection
See Additional file 1.

Amplicon sequencing
See Additional file 1.

Metagenomic sequencing
See Additional file 1.

Amplicon data analysis
The primer sequences were removed from raw data using 
cutadapt (v2.3) [17], and the sequences that did not match 
were discarded. The clean data were processed using the 
pipeline Amp.sh (https://​github.​com/​yjiak​ang/​ampli​
con) that was programmed by ourselves. The command 
was “Amp.sh -i pe-33-manifest -o results_no_primer -m 
sample-metadata.tsv -n 12 -d dada2 -a silva_fl”. All of the 
procedures were completed in QIIME2 2019.7: DADA2 
was used to denoise the sequences [18]; the phylogenetic 
tree was constructed using FastTree [19] after aligning 
the amplicon sequence variant (ASV) by mafft [20]; a 
total of 56,299 sequences were selected for each sample 
for calculation of α diversity index (Shannon index) and 
β diversity index (weighted/unweighted Unifrac distance 
and Bray-Curtis dissimilarity); qiime feature-classifier 
classify-sklearn [21] was used to perform taxonomic 
annotation of ASVs by using the full-length Silva data-
base (132 99%) [22]. The α rarefication curves were visu-
alized using the package ggplot2 [23]. The normality of 
α diversity Shannon index was tested using shapiro.test() 
function. The visualization of Shannon index was con-
ducted by the package ggpubr [24], and the statistical test 
was performed using the Kruskal-Wallis nonparametric 
test. Principal Coordinates Analysis (PCoA) based on the 

https://github.com/yjiakang/amplicon
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weighted Unifrac distance and permutational multivariate 
analysis of variance (PERMANOVA) were analyzed using 
the betaDivPlot() and permanovaTest() functions, respec-
tively. These functions are included in the package micro-
Visu (https://​github.​com/​yjiak​ang/​micro​Visu), which is 
developed by ourselves. The visualization of the top 10 
genera in relative abundance and linear discriminant anal-
ysis effect size (LEfSe) were performed in the web-based 
tool MicrobiomeAnalyst [25]. The LDA score and P value 
thresholds were set to 2 and 0.1, respectively. The Venn 
diagrams were drawn using the web-based tool available 
at http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/.

Network construction
Samples from susceptible and resistant cultivars, 
which were inoculated with Rs GMI1000 or not, were 
used to construct networks separately. The molecu-
lar ecological co-occurrence networks were con-
structed based on genus relative abundances using the 
Molecular Ecological Network Analysis Pipeline with 
default parameters (http://​ieg4.​rccc.​ou.​edu/​mena/) 
[26]. Pearson correlation coefficients were calculated 
for network construction. Before network construc-
tion, random matrix theory was used to automati-
cally identify the appropriate similarity threshold (St), 
which defines the minimal strength of the connections 
between each pair of nodes [27]. Networks were visu-
alized using Gephi 0.9.2 [28] with the Fruchterman 
Reingold layout.

Metagenomic analysis
Raw data were quality controlled using fastp [29] with 
the following conditions: remove paired reads when the 
number of N in any sequencing read exceeds 10% of the 
bases and when the number of low-quality bases (Q ≤ 5) 
in any sequencing read exceeds 50% of the bases. After 
detection of contamination resulted from tomato (Sola-
num lycopersicum, assembly SL3.0) using FastQ Screen 
[30], we found there was about 7% contamination, which 
was removed using SOAPaligner/soap2 (v 2.21) [31]. 
The species-level composition was analyzed using Met-
aPhlAn2 with the default parameters, and the results 
were merged by the merge_metaphlan_tables.py included 
in the software [32]. The species-level taxonomic com-
position was extracted using customed shell commands 
and submitted to MicrobiomeAnalyst for visualization 
and LEfSe analysis with the same conditions as amplicon 
analysis except that the minimal filter value was set to 
zero. The Venn diagrams were drawn as described above. 
PCoA analysis was done using the R package vegan [33] 
and microVisu based on the Bray-Curtis distance. The 
correlation between taxonomic composition resulted 

from amplicon and metagenomics was analyzed at the 
phylum-level using spearman correlation coefficient.

Functions of the rhizosphere microbiomes were analyzed 
using HUMAnN2 [34]. The quality-filtered sequences with-
out host contamination were used to search against the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database using 
diamond blastx software [35]. The output was used as the input 
of HUMAnN2 with the following parameters: --id-mapping 
legacy_kegg_idmapping.tsv --pathways-database humann-0.99/
data/keggc. The pathabundance files of all samples were merged 
using humann2_join_tables script, and then, the merged file was 
renamed by humann2_rename_table script with the param-
eter -n kegg-pathway. To make reasonable comparisons between 
samples, we used humann2_renorm_table script to transform 
reads per kilobase (RPK) to copies per million for normaliza-
tion. The humann2_split_stratified_table script was used to split 
the table with taxonomic classification. The humann2_associate 
script was used to perform Kruskal-Wallis H-test, and P values 
were corrected using Benjamini & Hochberg method. Pathways 
with corrected P values lower than 0.05 were visualized using 
pheatmap, the rows were scaled [36]. Principal components 
analysis (PCA) was performed using prcomp function and visu-
alized using ggplot2 [23]. DESeq2 was used to examine differen-
tially enriched functions based on the RPK scores that were not 
scaled [37]. The analysis was done with default parameters. The 
criterion is that the corrected P value should be no larger than 
0.1.

Bacteria isolation and taxonomic identification
See Additional file 1.

Plate inhibition assays
The antagonistic activities of the potentially inherit-
able bacteria against the Rs GMI1000 (race 1, biovar 
3, phylotype I) were tested using the zone of inhibition 
assay. The Sphingomonas sp. Cra20 and Sphingopyxis 
sp. strain BF-R33 were streaked on R2A plates, and 
the Pseudomonas putida KT2440 and GMI1000 were 
streaked on NB (hipolypepton [trade name], 5.0 g; yeast 
extract, 1.0 g; beef extract, 3.0 g; sucrose, 10 g; distilled 
water, 1000 mL; pH 7.0) agar plates. Inoculating sin-
gle colonies into their corresponding liquid growth 
medium for propagation overnight with shaking (180 
rpm) at 28°C. Then, 100 μL of GMI1000 culture was 
spread onto NB agar plates, and 100 μL cultures of 
tested strains were added into the holes drilled by 1-mL 
pipette tips. The R2A or NB liquid medium was added 
as negative controls. Each tested strain had two plates 
except that KT2440 had only one plate in a replicate 
experiment, and each plate has three holes for the test 
and one hole for the control. Experiments were repli-
cated two times with similar trends, and representative 
pictures were displayed.

https://github.com/yjiakang/microVisu
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://ieg4.rccc.ou.edu/mena/
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Biocontrol effect test in the greenhouse
The Moneymaker tomato seeds were germinated on a 
plate for 7 days at room temperature and transferred into 
about 100 g of sterile nursery soil. Strains to be tested 
included Sphingomonas sp. Cra20, Sphingopyxis sp. strain 
BF-R33, and Pseudomonas putida KT2440. The first two 
strains were isolated in this study, and the last one was 
kindly provided by Professor Wenli Chen due to the lack 
of members of Pseudomonas putida in our isolations. It 
was an optimal alternative strategy so far to choose the 
KT2440 that belonged to Pseudomonas putida, which was 
identified as a candidate of the inheritable biocontrol spe-
cies by metagenomic analyses at the species-level. These 
strains and pathogen Rs GMI1000 were prepared as bac-
teria suspensions by resuspending the pellet centrifuged 
from cultures with dH2O. And the OD was adjusted to 1.0 
at 600 nm. Combinations containing two or three tested 
strains were prepared by mixing an equal volume of each 
strain. Two to 3 weeks later, 20-mL culture suspensions 
of strains to be tested were poured into each tomato as 
described above. Tomatoes inoculated with water were 
used as negative controls. Five days after, inoculating path-
ogen Rs GMI1000 as described above. We then tested the 
biocontrol effects on the susceptible male parent HG70 
using Sphingomonas sp. Cra20 and Pseudomonas putida 
KT2440 in light of their good biocontrol effects.

To simulate the natural conditions, we conducted bio-
control tests in natural soil on HG70 using Sphingomonas 
sp. Cra20 and Pseudomonas putida KT2440, and on 
Moneymaker using Sphingomonas sp. Cra20. It has been 
reported that Pseudomonas putida KT2440 is not able to 
confer resistance against bacterial wilt on Moneymaker in 
field soil [9]. The disease progression was monitored the 
same as before. Each treatment consisted of four to six 
tomato plants. Experiments were replicated two to five 
times. All data produced were used for analyses.

Given the fact that the Sphingomonas sp. Cra20 and Pseu-
domonas putida KT2440 showed considerable suppres-
sion effect against Rs GMI1000 on the susceptible cultivars, 
we tested their biocontrol effects against GMI1000 on the 
resistant cultivars grown in the sterilized nursery soil as 
described above. Experiments were replicated three times.

Scanning electron microscopy (SEM)
See Additional file 1.

Genome sequencing and analysis
See Additional file 1.

Quantitative reverse transcription polymerase chain 
reaction (RT‑qPCR)
The effects of Sphingomonas sp. Cra20 and Pseudomonas 
putida KT2440 on the virulence-related genes of Rs 

GMI1000 were investigated by RT-qPCR. These genes 
are as follows: exopolysaccharides (EPSs)-related genes: 
EpsA, EpsE, and EpsF; drug: proton antiporter gene: cel; 
motility-related genes: PilQ, fliT, and motA; type three 
secretion system (T3SS)-related genes: AWR​, PhcA, hrpB, 
hrcC, hrcV, hrpG, hapB, and hpaP. The methods are the 
same as our previous publication except that the P value 
correction method is Tukey [38].

RNA‑seq and data analysis
Four-week-old HG70 tomatoes grown in the above-
described pot containing sterilized nursery soil were inoc-
ulated with Cra20 or KT2440. We poured 20-mL bacterial 
suspensions (OD 1.0 at 600 nm) into each tomato, and 
tomatoes inoculated with water were controls (CK). Each 
group contained 3 tomato replicates. Twenty-four hours 
later, tomatoes were uprooted and then cleaned with PBS 
buffer. Roots were cut and flash-frozen in liquid nitrogen 
and stored at −80°C. The total RNA was extracted using the 
Trizol Reagent (Invitrogen Life Technologies), after which 
the concentration, quality, and integrity were measured 
using a NanoDrop spectrophotometer (Thermo Scientific). 
Three milligrams of RNA were used as input material for 
the RNA sample preparations. Sequencing libraries were 
generated using the TruSeq RNA Sample Preparation Kit 
(Illumina, San Diego, CA, USA). Briefly, mRNA was puri-
fied from total RNA using poly-T oligo-attached magnetic 
beads. Fragmentation was performed using divalent cati-
ons under elevated temperature in an Illumina proprietary 
fragmentation buffer. The first-strand cDNA was synthe-
sized using random oligonucleotides and SuperScript II. 
The second-strand cDNA synthesis was subsequently car-
ried out using DNA polymerase I and RNase H. Remaining 
overhangs were converted into blunt ends via exonuclease/
polymerase activities, and the enzymes were removed. After 
adenylation of the 3′ ends of the DNA fragments, Illumina 
PE adapter oligonucleotides were ligated to prepare for 
hybridization. To select cDNA fragments of the preferred 
200 bp in length, the library fragments were purified using 
the AMPure XP system (Beckman Coulter, Beverly, CA, 
USA). DNA fragments with ligated adaptor molecules on 
both ends were selectively enriched using Illumina PCR 
Primer Cocktail in a 15-cycle PCR reaction. The products 
were purified (AMPure XP system) and quantified using 
the Agilent high-sensitivity DNA assay on a Bioanalyzer 
2100 system (Agilent). The sequencing library was then 
sequenced on a NovaSeq platform (Illumina) by Shanghai 
Personal Biotechnology Cp. Ltd.

For the raw data, Cutadapt was used to remove the 3’-end 
adapter [17]. The removed part should be overlapped 
with known adapters by at least 10 bp (AGA​TCG​GAAG), 
allowing 20% base mismatches; sequences with an average 
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quality score lower than Q20 were removed. The filtered 
sequences were aligned to the tomato reference genome 
(GCF_000188115.4_SL3.0_genomic.fna) using HISAT2 
(http://​ccb.​jhu.​edu/​softw​are/​hisat2/​index.​shtml) software. 
The read count value of each gene was aligned with HTSeq 
as the original expression level of the gene [39]. Expression 
levels were normalized using fragments per kilo bases per 
million fragments (FPKM) with union mode, that is, when 
a sequence only partially covers the gene region or par-
tially covers the intron region of the gene, it is considered 
to belong to the gene. Analysis of differentially expressed 
genes (DEGs) was performed with Deseq2 with conditions 
|log2FoldChange| > 1 and Padj < 0.05 [37]. PCA was per-
formed based on the top 500 genes ordered by FPKM value 
using prcomp() function. To study the expression patterns 
of DEGs under different treatments, we performed k-means 
clustering. To determine an appropriate number of clus-
ters, we used the “Akaike information criterion” and “Sum 
of squared error.” Visualization was performed using the R 
packages ggplot2 and ComplexHeatmap [23, 40]. Functional 
enrichment analysis was performed using the R package 
clusterProfiler [41]. The codes of k-means clustering and 
functional enrichment analyses were adopted from [42].

Results
Soil microbiome is important for Rs resistance
We first validated tomato resistance against Rs and 
investigated the importance of soil microbiome in the 

resistance by using pot experiments. The susceptible 
cultivars showed high disease indexes in both natural 
and sterile soil. The resistant cultivars grown in natural 
soil showed a strong ability to conquer Rs, whereas those 
grown in sterile soil did not (Fig. 1). All of the cultivars 
grown in natural soil showed significantly lower disease 
indexes than those grown in sterile nursery soil (Fig. 1, P 
< 0.05). The resistance of resistant cultivars was rescued 
to a certain extent by natural soil extract, as indicated 
by the significantly lower disease indexes of the groups 
with natural soil extract than those in sterile nursery soil 
(Fig. 1, P < 0.05). These results validated the difference in 
the Rs resistance of the tomato cultivars and the impor-
tance of soil microbiome for Rs resistance.

Resistant cultivars have more robust rhizosphere 
microbiomes than susceptible ones
To explore the dynamic patterns and features of the 
rhizosphere microbiomes in resistant parent and prog-
eny compared with the susceptible ones, we conducted 
16S rRNA gene amplicon sequencing of bacterial com-
munities at three sampling time points before and after 
the inoculation of Rs. A total of 20,986,788 reads with-
out adaptors and primers were produced, resulting in 
an average of 174,889 reads per sample. After denoising 
by using the DADA2 algorithm, 45,410 ASVs were gen-
erated, resulting in an average of 756 ASVs per sample. 
The rarefaction curves of the Shannon index reached the 

Fig. 1  Validation of tomato resistance against Rs and the importance of soil microbiome for resistance. The significant difference between groups 
was tested via Wilcoxon test. The asterisk indicates statistically significant difference between sample treatments at P < 0.05 (*), P < 0.01 (**), and 
P < 0.0001 (****)

http://ccb.jhu.edu/software/hisat2/index.shtml
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plateau after sampling more than 556 sequences (Fig. S2), 
suggesting sufficient reads for further analysis.

We evaluated the general differences between the 
resistant and susceptible cultivars by using alpha- and 
beta-diversity analyses. When Rs was not inoculated, the 
Shannon index in all four cultivars showed no signifi-
cant difference (Fig. 2A). After inoculating Rs, the Shan-
non index decreased in all cultivars (Fig. 2A). Except for 
HG64 at T2, the resistant cultivars maintained a relatively 
higher level than the susceptible ones (Fig. 2A), indicat-
ing the microbiome stability of the resistant cultivars.

PCoA based on the weighted Unifrac distance showed 
that samples were not separated by the sampling time, 
and they were separated by the Rs inoculation on the 
first axis and separated based on the resistance property 
on the second axis (Fig. 2B). PERMANOVA results also 
showed that the influence of sampling time was lower 
than the tomato resistance property, which was more 
evident in the group inoculated with Rs (Table 1). There-
fore, Rs had a strong interference on the tomato rhizo-
sphere microbiomes, and the microbiomes were distinct 
between the resistant and susceptible cultivars. In addi-
tion, the resistant cultivars inoculated with Rs were closer 
to those healthy samples without Rs than the susceptible 
ones (Fig.  2B). The combination of this result and the 
Shannon index result (Fig. 2A) suggests that the microbi-
omes in the resistant tomato rhizospheres had a stronger 
ability to buffer pathogen interference than those in the 
susceptible ones.

To investigate the intrinsic interactions of the rhizos-
phere microbiomes in the four cultivars, we constructed 
the molecular ecological co-occurrence networks based 
on the relative abundances of genera. Without the chal-
lenge of Rs, no obvious differences were observed 
between the resistant and susceptible cultivars except 
that the resistant cultivars showed more positive links 
than the susceptible ones (Fig. 2C; Table 2). After inoc-
ulating Rs, the percentage of positive links increased in 
both the resistant (except for HG64) and susceptible cul-
tivars (Table  2), suggesting that the synergetic interac-
tions may play essential roles in counteracting bacterial 
wilt. The network of susceptible cultivars did not remark-
ably change after Rs challenge, while that of resistant 
ones showed more complex, more robust, and closer net-
works after Rs inoculation (Fig. 2C). In other words, the 
nodes increased from 1017 to 1793, the average degree 
increased by more than two folds, the average clustering 
coefficient increased to some extent, and the average path 
distance decreased from 4.96 to 3.79 (Table 2). In addi-
tion, this pattern of the resistant cultivars was consist-
ent between the resistant parent HG64 and the progeny 
HF12, as supported by the similar changes of HF12 and 
HG64 (Fig. 2C; Table 2). These results suggested that the 

resistant cultivars possessed highly responsive and robust 
networks, which were inherited from parent to progeny.

Resistant progeny HF12 resembles its resistant parent 
HG64 in the rhizosphere microbiome
To investigate the relationship between the resistant par-
ent HG64 and its progeny HF12, we analyzed the beta-
diversity at each sampling time point separately. In most 
of the treatments, the resistant and susceptible cultivars 
separated from each other clearly, and the progeny HF12 
was closer to its resistant parent HG64 than to the sus-
ceptible cultivars (Fig. S3). Therefore, the rhizosphere 
microbiome of the resistant progeny resembles that of its 
resistant parent.

Potentially inheritable biocontrol bacteria
The bacteria involved in resisting the pathogens and 
inherited from the resistant parent HG64 to the progeny 
HF12 were investigated by analyzing the taxonomic com-
position in the rhizospheres. Both in the field soil and 
tomato rhizospheres, the abundant genera were Sphin-
gomonas, Pseudoarthrobacter, Gemmatimonas, Devosia, 
and Bacillus (Fig. S4). Some differences were observed 
between the field soil and the tomato rhizosphere. For 
example, the Gemmatimonas was more abundant in the 
field soil than in the rhizosphere. The differences sug-
gested a selection effect of the plant. Consistent with the 
PCoA and PERMANOVA results, the taxonomic compo-
sition did not change considerably at different sampling 
time points, possibly because of the relatively short sam-
pling interval (5 days). The LEfSe at the three sampling 
time points showed that many bacteria such as Sphin-
gomonas, Flavisolibacter, Bryobacter, and Sphingobium 
were enriched both in the HF12 and HG64 compared 
with the susceptible cultivars (Fig. 3). Among these bac-
teria, Sphingomonas and Flavisolibacter were enriched 
at almost all of the sampling time points except for the 
T2C (Fig. 3), suggesting that they are potentially inherit-
able biocontrol bacteria that can resist the Rs pathogens. 
However, the Flavisolibacter owned low relative abun-
dance and was out of the top 10 abundant genera.

Metagenomic sequencing was conducted to study the 
microbial community at a more precise taxonomic level 
and explore their potential functions. We selected sam-
ples from the first two sampling time points because of 
the relatively small effects of sampling time, as indicated 
by the amplicon results. The correlation coefficient of the 
taxonomic composition (phylum-level) resulted from the 
metagenomics and amplicon was high (Spearman corre-
lation = 0.58, P < 0.001), indicating a considerable iden-
tity between these two datasets (Fig. S5). PCoA based on 
the Bray-Curtis distances at the species level showed that 
the samples were separated by the pathogen inoculation 
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Fig. 2  Stability of the resistant tomato cultivars. A Shannon indexes of the four cultivars at different sampling time points without (T1, T2C, and 
T3C) or with (T2 and T3) Rs inoculation. B PCoA based on the weighted Unifrac distance. C Molecular ecological co-occurrence networks of the 
resistant and susceptible cultivars with or without Rs inoculation. Each node represents a genus, and the taxonomic information is denoted by the 
corresponding color shown in the legend. The size of each node is proportional to its degree of connection. The red and green edges represent the 
positive and negative interactions, respectively
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on the first axis and were separated by the resistance 
property on the second axis (Fig. S6). At the T1 and T2C 
sampling time points that were not inoculated with the 
pathogen, the resistant and susceptible cultivars could be 
separated clearly on the second axis (Fig. S6), consistent 
with the PCoA result from the amplicon (Fig. 2B). At the 
T2 sampling time point, which was inoculated with the 
pathogen, the resistant and susceptible cultivars did not 
cluster clearly (Fig. S6), possibly because of the dominant 
reads of the inoculated Rs. The composition of bacteria 
at the species level showed that the abundant bacteria 
Sphingopyxis unclassified and Pseudomonas putida were 
enriched in the resistant cultivars compared with the 
susceptible ones (Fig. S7), as demonstrated by the LEfSe 
analysis (Fig.  4). These two strains were both enriched 
in the resistant parent and progeny at T1. Sphingopyxis 
unclassified was both enriched in the resistant parent 
and progeny at T2C, while no shared enrichment was 
observed between the resistant parent and progeny at T2 
(Fig.  4). Therefore, Sphingopyxis unclassified and Pseu-
domonas putida were the potentially inheritable biocon-
trol species.

In summary, we considered Sphingomonas, Sphingopyxis 
unclassified, and Pseudomonas putida as the potentially 
inheritable biocontrol bacteria against Rs.

Functional potentials of the rhizosphere microbiomes
The PCA plot based on the level-3 KEGG functional cat-
egories revealed that samples were separated by Rs inoc-
ulation along the first axis, but not by tomato resistance 
and sampling time point (Fig. S8). The heatmap of the 
statistically differential functions revealed that functions, 
such as xenobiotics biodegradation and metabolism, bio-
synthesis of other secondary metabolites, and cell motil-
ity increased after Rs inoculation (Fig. S9). Functions such 
as the metabolism of cofactors and vitamins, terpenoids 
and polyketides, energy, and amino acid were decreased 
after Rs inoculation (Fig. S9). To further explore the func-
tions that were enriched in both the resistant parent and 
progeny, differential enrichment analysis was performed 
by using DESeq2 based on the level-3 functions. We only 
analyzed samples that were collected without Rs inocu-
lation, because sequences from Rs may conceal the true 
change caused by tomato resistance. The ko00253: tet-
racycline biosynthesis decreased in the resistant parent 
HG64 and progeny HF12 compared with the susceptible 
cultivars at T1 and T2C, but the change was not signifi-
cant in HG64 at T2C (Fig. 5).

Isolation of the potential biocontrol bacteria in HF12
To obtain the potentially inheritable biocontrol bacteria 
enriched in the resistant cultivars and verify their poten-
tial biocontrol effects against Rs, we cultured the bacteria 
from the resistant progeny HF12 by adopting different 
culture media and conditions. A total of 259 bacteria 
belonging to 58 genera, 15 orders, and 7 classes were iso-
lated (Fig.  6A), indicating the considerable diversity of 
our isolates. Among these bacteria, Micrococcales, Bacil-
lales, Rhizobiales, and Streptomycetales had high rela-
tive abundances of 27.03%, 25.48%, 12.74%, and 8.11%, 
respectively. We have isolated 19.6% (18/92) of the top 
5% abundant genera detected in the amplicon results 

Table 1  PERMANOVA results for different sampling time points 
and tomato resistance properties

Rs inoculation Source of variation R2 Pr (>F)

No Time 0.1478 < 0.0001

Property 0.1627 < 0.0001

Yes Time 0.0315 0.3279

Property 0.3075 0.0004

Table 2  Molecular ecological network properties of the rhizosphere microbiomes at the genus level

Network 
indexes

Susceptible 
without Rs

Susceptible 
with Rs

HF12 without 
Rs

HF12 with Rs HG64 without 
Rs

HG64 with Rs Resistant 
without 
Rs

Resistant with Rs

Total nodes 341 313 456 503 436 427 327 316

Total links 878 618 1004 1426 887 1089 1017 1793

Average degree 5.15 3.95 4.40 5.67 4.07 5.10 4.96 11.35

Average cluster-
ing coefficient

0.23 0.21 0.20 0.32 0.24 0.26 0.28 0.34

Average path 
distance

4.26 6.32 6.65 6.04 7.17 6.11 4.96 3.79

Positive propor-
tion

61.28% 94.66% 83.17% 83.52% 89.85% 84.76% 95.18% 99.89%

Negative propor-
tion

38.72% 5.34% 16.83% 16.48% 10.15% 15.24% 4.82% 0.11%
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Fig. 3  Differentially enriched genera in the resistant parent HG64 and progeny HF12. A LEfSe for HG64 compared with susceptible cultivars. B LEfSe 
for HF12 compared with susceptible cultivars. C Venn diagrams showing the shared differentially enriched genera between HG64 and HF12
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(Fig.  6B). Among these bacteria, Bacillaceae, Strepto-
mycetaceae, Devosiaceae, and Sphingomonadaceae were 
isolated with high abundances (Fig.  6B). Approximately 
69% (40/58) of the cultured genera were not in the ampli-
con’s top 5% abundant genera, such as Chryseobacte-
rium, Arthrobacter, and Rhodococcus. We successfully 
isolated Sphingomonas sp. Cra20 and Sphingopyxis sp. 
strain BF-R33, which are potentially inheritable biocon-
trol bacterial genera. We mapped their 16S rRNA gene 
sequences back to the representative sequences obtained 
from amplicon analysis. Results showed that they had 
over 99% identity with the corresponding potentially 
inheritable biocontrol genera, indicating that the poten-
tially inheritable biocontrol bacteria might have been 

obtained. However, isolates belonging to Pseudomonas 
putida were not obtained. Pseudomonas putida KT2440 
was provided by Professor Wen li Chen as an alternative. 
In summary, the bacteria cultured in this study provided 
entities for our follow-up verification experiments and 
established a bacteria resource from the rhizosphere of 
tomato with resistance to bacterial wilt.

Validation of the disease resistance function
Based on the results of amplicon, metagenomics, and 
culturomics, we considered Sphingomonas sp. Cra20, 
Sphingopyxis sp. strain BF-R33, and Pseudomonas putida 
KT2440 as the potentially inheritable biocontrol bacte-
ria. Plate inhibition and pot experiments were carried 

Fig. 4  Differentially enriched species in the resistant parent and progeny. A LEfSe for HG64 compared with susceptible cultivars. B LEfSe for HF12 
compared with susceptible cultivars. C Venn diagrams showing the shared differentially enriched species between HG64 and HF12



Page 11 of 18Yin et al. Microbiome          (2022) 10:227 	

out to further validate their roles in resisting pathogen 
Rs and to reveal the causal relationship between their 
enrichments and tomato resistance against Rs. Direct 
inhibitory effects on Rs were not observed based on the 
plate inhibition experiments (Fig. S10). The pot experi-
ments showed that the Cra20 and KT2440 offered con-
siderable protection against Rs to the commonly used 
susceptible cultivar Moneymaker in sterile nursery soil, 
while BF-R33 only provided little protection (Fig.  7A). 
Notably, the combination of two or three of them almost 
lost this protection effect (Fig. S11). Next, we tested the 
biocontrol ability of Cra20 and KT2440 on the suscep-
tible parent HG70, and they both showed obvious pro-
tection in sterile nursery soil where Cra20 performed 
better than KT2440 (Fig.  7B). The biocontrol potential 
of these samples was determined under natural condi-
tions by conducting pot experiments similar to those on 
Moneymaker and HG70 in natural soil. Considering that 

KT2440 could not offer protection against Rs to Money-
maker in field soil [9], this experiment was skipped, and 
only its biocontrol potential on HG70 was tested. Results 
showed that Cra20 did not protect Moneymaker from Rs 
attack (Fig.  7C). Both Cra20 and KT2440 showed pro-
tection against Rs on HG70, but the effect of Cra20 was 
not as good as that in the sterile nursery soil (Fig. 7B, D). 
Considering the promising biocontrol effects of these 
two strains, their potential in reducing the disease index 
of the resistant cultivars HF12 and HG64 grown in ster-
ile nursery soil need to be determined. Pot experiments 
revealed that they did not significantly reduce the disease 
index (Fig. S12). This result, together with the results of 
the soil extract inoculation and natural soil pot experi-
ments (Fig.  1), suggest that other microbes and/or soil 
microenvironment are essential for Rs resistance. In 
summary, Cra20 and KT2440 are inheritable bacteria 
that can resist Rs.

Fig. 5  Analysis of the differentially enriched functions at level-3 categories. Solid and hollow circles indicate significance (Padj < 0.05) and 
non-significance, respectively. The function enriched both in HF12 and HG64 is denoted by the red rectangle

(See figure on next page.)
Fig. 6  Bacterial isolations from the resistant tomato rhizosphere. A Phylogenetic tree constructed using the full-length 16S rRNA gene sequences 
of 259 cultured bacteria. The numbers at the tip of the tree are the isolation number. The taxonomic classification at the order level is shown by the 
corresponding color of the legend. The size of circle is proportional to the bootstrap value. The branches were unscaled. B Comparison between 
culturable bacteria and amplicon result. The innermost layer denotes the top 5% bacterial genera in relative abundance in the amplicon results. The 
branch color represents the phylum-level classification. The triangles in the second layer indicate the successfully isolated genera. The third layer 
heatmap represents the abundance of the corresponding genus in the amplicon results. The color from light to dark represents the abundance 
from low to high. The outermost layer represents the percentage of this genus in all culturable genera
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Fig. 6  (See legend on previous page.)
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Characteristics of Cra20
Morphological observation and SEM showed that Cra20 
is a light-yellow and short rod-shaped bacterium on the 
R2A plate (Figs. S13A and B). For the genome sequenc-
ing of Cra20, 14,119,382 raw reads were obtained, among 
which 13,950,182 high-quality reads were retained after 
filtering. The average length of reads was 148 bp, and the 
sequencing depth was 462×. The draft genome of Cra20 
contained 10 contigs with a total length of 4,478,115 
bp, N50 of 1,004,282 bp, and GC content of 66.11%. 
The completion and contamination of the Cra20 draft 
genome were 98.10% and 0.90%, respectively. Taxonomic 
analysis based on the whole genome of Cra20 showed 
that its closest species was Sphingomonas sp. Cra20 NZ 
CP024923 (average nucleotide identity, ANI 85.59%). 
According to the minimal criteria for a new species pro-
posed by Chun et  al., the 16S sequence similarity is ≥ 
98.7% and the ANI is in the range of < 95 to 96% [43]. The 
Cra20 isolated in the present study is a potentially new 
species.

We predicted that Cra20 contains no CRISPRs, sug-
gesting that other methods (e.g., restriction modifica-
tion system) can be used to prevent the invasion of 
exogenous DNA. It contained 4139 genes, of which 1787 
were successfully annotated with KEGG function. They 
were mainly involved in genetic information process-
ing, cell movement, signal transduction, replication and 
repair, drug resistance, and carbohydrate and amino acid 
metabolism that maintain basic metabolic processes and 
interact with the outside world (Fig. S13C). Therefore, it 
can adapt to and colonize plant roots. Analysis of BGCs 
showed that it contained only four BGCs, one of which 
encoded terpenes, whose most similar known cluster 
was zeaxanthin in the database (similarity 100%) (Fig. 
S14), possibly explaining for its light-yellow colony. The 
three other BGCs did not have the most similar known 
clusters. No BGCs with known antagonistic effects such 
as non-ribosomal peptides and bacteriocins were found, 
thus supporting the lack of antagonistic effects on Rs 
(Fig. S10).

Fig. 7  Biocontrol test of the potentially inheritable biocontrol bacteria against Rs GMI1000. A Biocontrol effects on Moneymaker grown in sterile 
nursery soil. Replicates for each treatment: CK: 24, Sphingomonas sp. Cra20: 25, Sphingopyxis sp. strain BF-R33: 25, and Pseudomonas putida KT2440: 
10. B Biocontrol effects on the susceptible parent HG70 grown in sterile nursery soil. Each treatment containing 15 plants in total. C Biocontrol 
effects on Moneymaker grown in the natural soil. Each treatment containing 15 plants in total. D Biocontrol effects on the susceptible parent HG70 
grown in natural soil. Each treatment containing 15 plants in total. The dot and error represent the mean disease index and standard error of the 
mean, respectively
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Multiple mechanisms of disease resistance
Considering that both Cra20 and KT2440 did not 
antagonize Rs directly as shown by the plate inhibition 
experiments (Fig. S10), we investigated the potential 
mechanisms under the disease resistance provided by 
Cra20 and KT2440 from other aspects. Rs was treated 
with the culture metabolites of these two biocontrol bac-
teria. Results showed that Cra20 significantly repressed 
the expression of EPSs-related genes (i.e., EpsA, EpsE, 
and EpsF) and T3SS-related genes (i.e., PhcA, hrpB, and 
hpaP) of Rs (Fig.  8A, P < 0.05). KT2440 significantly 
repressed the expression of EPSs-related genes (i.e., EpsA, 
EpsE, and EpsF), T3SS-related genes (i.e., AWR​, hrpB, 
hrcC, and hpaP) and drug: proton antiporter gene (i.e., 
cel) of Rs (Fig. 8A, P < 0.05). Therefore, these two biocon-
trol bacteria could suppress the expression of virulence-
related genes of Rs with common ground and specificity.

Next, we investigated the responses of tomato root 
transcriptomes triggered by these two biocontrol bac-
teria to seek disease resistance clues from the host side. 
We obtained 334,077,748 high-quality reads after filter-
ing, with an average of 37,119,749 reads per sample. 
PCA results showed that samples treated with Cra20 and 
KT2440 were separated from CK samples, and samples 
treated with Cra20 and KT2440 were separated slightly 
from each other (Fig. 8B). Then, we conducted k-means 
clustering of DEGs, |log2 FoldChange| > 1 and Padj < 
0.05) triggered by Cra20 or KT2440 (Fig.  8C). For the 
selection of proper cluster number, “Akaike informa-
tion criterion” and “Sum of squared error” were used. 
Results showed that the proper cluster number was 
six (Fig. S15). Two clusters were induced (cl4) and sup-
pressed (cl6) by both Cra20 and KT2440, and the four 
other clusters were upregulated or downregulated differ-
ently (Fig. 8C). KEGG enrichment analyses showed that 
the cluster induced by Cra20 and KT2440 was mainly 
enriched in functions involved in plant hormone signal 
transduction (cl4, mainly including auxin-responsive 
proteins), as shown in Fig. 8D and Table S1. In the cluster 
that they both suppressed (cl6), the functions related to 
plant-pathogen interaction, phenylalanine metabolism, 
MAPK signaling pathway-plant, and arginine and pro-
line metabolism were enriched (Fig. 8C, D; Table S1). The 
cluster mainly specially induced by Cra20 was primarily 

enriched in functions involved in photosynthesis (cl2), 
while the cluster mainly specially induced by KT2440 
was primarily enriched in functions related to phenylpro-
panoid biosynthesis (cl1, which mainly involved peroxi-
dase-related proteins), as shown in Fig. 8C, D and Table 
S1. Overall view, Cra20 and KT2440 suppressed phe-
nylpropanoid biosynthesis (cl3, which mainly involved 
peroxidase-related proteins) and sulfur metabolism (cl5), 
respectively (Fig. 8C, D; Table S1). In summary, these two 
biocontrol bacteria interacted with tomato and reshaped 
tomato transcriptomes with similarity and specificity.

Discussion
Results show that natural soil or its extract could confer 
resistance to bacterial wilt in resistant tomatoes through 
greenhouse pot experiments, but the effect of its extract 
was slightly weaker than that of field soil. Therefore, in 
addition to the microorganisms in the natural soil, some 
chemical substances such as nitrogen and phosphorus, 
and the physical properties of the soil itself such as vis-
cosity and porosity, may affect the resistance.

The PCoA of amplicon and metagenomics showed 
that Rs inoculation caused a distinguishable separation 
of the rhizosphere microbiome. This observation may 
have been caused by the dominant sequences of Rs after 
inoculation, which reduced the probability of detecting 
sequences from other species when the same amount of 
sequencing was used, thereby causing differences. More-
over, Rs may have changed the host’s root exudates and 
thus changing the rhizosphere microbiome. The presence 
of Rs altered the phenolic compounds of tomato plants 
and increased the release of caffeic acid from tomato 
plants [44]. The amendment of exudates from the Rs 
infected plants changed the soil microbiome. Besides, 
the amendment of pure caffeic acid caused a similar shift 
in the soil microbiome [44]. Similarly, the distinguish-
able difference in the microbiome functional profile as 
revealed by PCoA may be in a similar case above.

The taxonomic composition obtained by amplicon 
and metagenomic analysis was generally consistent, 
but differences were also observed. This finding can 
be attributed to the following reasons: (i) there are dif-
ferences in the analysis itself. The amplicon used only 
partial fragments of the 16S rRNA gene for taxonomic 

(See figure on next page.)
Fig. 8  Various aspects involved in the resistance against Rs. A Effects of Cra20 and KT2440 on the expression of Rs GMI1000 virulence genes. 
EPSs-related genes: EpsA, EpsE, and EpsF. Drug-proton antiporter gene: cel. Motility-related genes: pilQ, fliT, and motA. T3SS-related genes: AWR​
, PhcA, hrpB, hrcC, hrcV, hrpG, hapB, and hpaP. The relative absolute abundances of these genes were normalized to that of the 16S rRNA gene. The 
relative quantity of each gene was normalized to the control. Each bar height indicates the mean abundance of a gene, and each error bar indicates 
standard error of mean (n = 4). The significance level was calculated using two-way ANOVA with Turkey correction (*P < 0.05; **P < 0.01; ***P < 0.001). 
B PCA plot based on the top 500 genes ordered by FPKM. C Heatmap of the DEGs. D Bubble plot of KEGG functional enrichment. The numbers in 
parentheses indicate the total number of DEGs with KEGG annotations. GeneRatio indicates the ratio of DEGs in a pathway to the total number of 
DEGs with KEGG annotations in the cluster
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Fig. 8  (See legend on previous page.)
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identification, while the metagenomic taxonomic 
identification in this study was conducted by align-
ing sequences to multiple species-specific marker 
genes. Hence, the difference in algorithm and database 
remarkably caused the difference. (ii) There are differ-
ences in 16S rRNA gene copy number and amplification 
preference. Therefore, the combination of the amplicon 
and metagenomic results can yield more comprehen-
sive information.

The resistant progeny HF12 had a more similar rhizos-
phere microbiome to its maternal parent HG64, which is 
resistant compared with its male parent HG70. This find-
ing was obtained possibly because the progeny directly 
inherits multiple maternal components such as plastids, 
endosperm, and seed coat in addition to the genetic 
material [45]. These maternal components may contain 
microbes that differ in species or relative abundance 
from their paternal counterparts, and/or that cannot or 
are less recruited through the expression products of the 
paternal genes, which can be recruited to the rhizosphere 
during tomato growth.

In the present study, the results show that the molec-
ular ecological network of rhizosphere microbiome in 
resistant cultivars was more complex and robust than 
that in sensitive cultivars after Rs inoculation. This pat-
tern can be inherited from the resistant parent to the 
resistant progeny. Complex molecular ecological net-
works are beneficial to plant health and growth. For 
example, the microbial molecular ecological interaction 
network in healthy watermelon rhizosphere soil is signifi-
cantly more complex than that in rhizosphere soil of dead 
watermelon suffering from Fusarium oxysporum wilt 
[46]. Therefore, a complex and robust microbial molecu-
lar ecological interaction network can help enhance plant 
resistance and buffer capacity against external distur-
bances, such as the invasion of pathogens.

A synthetic community usually could perform better 
than single species in disease suppression [47]. However, 
the results of the present study show that the biocon-
trol effect of the combination of biocontrol bacteria was 
almost lost. Nutrient competition might have been pre-
sent between them, thus decreasing their total amount 
and ability to resist the infection of Rs. The genomic 
evolution and horizontal gene transfer may hinder the 
performance of the combination [48]. Besides, some 
microbes might change their microbial expression under 
different environmental conditions [48]. Therefore, the 
functions of these microbes could be changed upon 
assembly, resulting in the loss of the biocontrol effect.

Our study showed that both Cra20 and KT2440 could 
suppress virulence-related genes of Rs, resulting in an 
alternative that brings little selective pressure and a 
minor possibility of bacterial resistance [49]. There is also 

a report shows that Sphingomonas is important to atten-
uate the virulence of the pathogen Erwinia amylovora 
[50]. Cra20 upregulated the expression of photosynthe-
sis-related functional genes and auxin-responsive protein 
genes in tomato roots, which may inhibit root growth 
[51], reduce wounds caused by root growth, and in turn 
reduce the risk of pathogen invasion. KT2440 induced 
tomato auxin-responsive protein gene and peroxidase 
(POD) gene expression. POD can regulate lignin syn-
thesis to increase the secondary wall thickness of plant 
cells [52]. Therefore, it may also inhibit root growth or 
increase cell wall thickness against invasion by Rs. Bene-
ficial bacteria like Bacillus velezensis can stimulate plant-
beneficial bacteria for plant health [53], thus exploring 
the changes of microbiome when they are inoculated 
might provide insight into the beneficial microbes they 
may recruit.

Conclusions
In this study, we demonstrated the importance of soil 
microbiome in resisting Rs. The results of multi-omics 
analysis and experimental validation revealed the robust-
ness of rhizosphere microbiomes of the resistant tomato 
cultivars, and two inheritable rhizobacteria that can offer 
susceptible tomatoes considerable protection against Rs 
were discovered. Furthermore, we revealed that multiple 
aspects were involved in the protection, including inter-
fering the virulence-related genes of Rs and reshaping the 
transcriptomes of the susceptible tomatoes. Our work 
provides insights into the heritability of tomato rhizobac-
teria that can enhance the resistance against Rs, echoing 
the inheritance of tomato genetic material.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01413-w.

Additional file 1: Figure S1. Schematic diagram of the experimental 
design. Tomatoes with wilted leaves and grey color represented that they 
had typical bacterial wilt symptoms. Samples were collected at three 
sampling time points. T1 indicates the first sampling time point without 
Rs, T2 means 5 d after T1 with Rs, T2C means 5 d after T1 without Rs, and 
T3 and T3C indicate 10 d after T1 with and without Rs, respectively. Figure 
S2. Rarefaction curves of samples grouped by the property at different 
sampling time points. Figure S3. PCoA based on the weighted Unifrac 
distance at different sampling time points. Figure S4. Composition of 
the bacterial communities at the genus level in the field and tomato 
rhizosphere soils. BS represents the field soil. Only the top 10 genera in 
relative abundance were shown, the rest was assigned as “Others”. ASVs 
without accurate classifications at the genus level were “Not assigned”. 
Figure S5. Correlation analysis between the community composition 
of amplicon and metagenomics. Figure S6. PCoA based on Bray-Curtis 
distances at the species level. Figure S7. Stacked barplot of the top seven 
bacteria composition at the species level. Figure S8. PCA based on the 
level-3 KEGG functional categories. Figure S9. Heatmap of the level-2 
differentially enriched KEGG functions in different samples. Figure S10. 
Antagonistic test of potentially inheritable biocontrol bacteria against Rs 
GMI1000. Figure S11. The biocontrol effects of strain combinations on 
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Moneymaker grown in sterile nursery soil. Replicates for each treatment: 
CK: 9, Sphingopyxis sp. strain BF-R33 + Sphingomonas sp. Cra20: 10, Sphin-
gopyxis sp. strain BF-R33 + Pseudomonas putida KT2440: 10, Sphingomonas 
sp. Cra20 + Pseudomonas putida KT2440: 10, and all three strains: 10. The 
dot and error represent the mean disease index and the standard error 
of the mean, respectively. Figure S12. Biocontrol effects of biocontrol 
bacteria on resistant tomatoes grown in sterile soil. The significance of the 
difference between groups was tested by the Wilcoxon test. The ns means 
not significant. Figure S13. Characteristics of Cra20. A. Colony property 
of Cra20 cultured on R2A plate. B. Scanning electron microscopy of Cra20. 
C. KEGG functional annotations of Cra20. The classification is shown with 
the corresponding color of the legend on the right. Figure S14. BGCs of 
Sphingomonas sp. Cra20. Figure S15. Determination of proper cluster 
number.

Additional file 2: Table S1. KEGG enrichment analysis of genes in differ-
ent clusters.
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