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Plant sex affects plant‑microbiome 
assemblies of dioecious Populus cathayana trees 
under different soil nitrogen conditions
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Abstract 

Background:  Dioecious plants have coevolved with diverse plant microbiomes, which are crucial for the fitness and 
productivity of their host. Sexual dimorphism in morphology, physiology, or gene expression may relate to different 
microbial compositions that affect male and female fitness in different environments. However, sex-specific impacts 
on ecological processes that control the microbiome assembly are not well known. In this study, Populus cathayana 
males and females were planted in different nitrogen conditions. It was hypothesized that males and females differ-
ently affect bacterial and fungal communities in the rhizosphere soil, roots, old leaves, and young leaves. Physiological 
traits and transcriptome profiles of male and female plants were investigated to reveal potential mechanisms that 
control the microbiome assembly.

Results:  Our results showed strong niche differentiation that shapes microbial communities leading to a rapid loss 
of diversity along a decreasing pH gradient from the rhizosphere soil to leaves. Sex had different impacts on the 
microbial assembly in each niche. Especially fungal endophytes showed great differences in the community structure, 
keystone species, and community complexity between P. cathayana males and females. For example, the fungal co-
occurrence network was more complex and the alpha diversity was significantly higher in young female leaves com-
pared to young male leaves. Transcriptome profiles revealed substantial differences in plant-pathogen interactions 
and physiological traits that clearly demonstrated divergent internal environments for endophytes inhabiting males 
and females. Starch and pH of young leaves significantly affected the abundance of Proteobacteria, while tannin and 
pH of roots showed significant effects on the abundance of Chloroflexi, Actinobacteria, and Proteobacteria, and on 
the bacterial Shannon diversity.

Conclusion:  Our results provided important knowledge for understanding sexual dimorphism that affects microbial 
assemblies, thus advancing our understanding of plant-microbiome interactions.
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Introduction
Dioecious angiosperms, including 15,600 species in 
987 genera and 175 families, have evolved indepen-
dently from hermaphroditic ancestors [1]. Genetic sex 

determination mechanisms that lead to separate male 
and female plants have been identified [2]. Males and 
females have sex-specific adaptions to different environ-
ments resulting in biased sex ratios in populations [3–5]. 
Sexual dimorphism in morphology, physiology, and gene 
expression, and biased sex ratios are due to selective 
pressures acting differently on males and females [6–8]. 
Populus species are widely distributed, and they are suit-
able woody model species to study sex-specific responses 
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of dioecious plants to different environments [5]. Previ-
ous studies have provided convincing evidence of male 
poplars having a better capacity to forage limited nutri-
ents in infertile soil and a higher resistance to other abi-
otic stresses when compared to female poplars [5, 7, 8].

Plant microbiota or microbiome comprises diverse and 
complex microbial communities containing bacteria, 
archaea, and fungi living on the plant surface (e.g., rhizo-
sphere and phyllosphere) as well as inside plants (endo-
sphere) [9–11]. Plants and their microbial inhabitants 
have coevolved over millions of years and are linked to 
plant fitness as a “holobiont” [12]. Recent studies suggest 
that host health, growth, nutrient acquisition, and plant 
microbiota assembly are largely impacted by complex 
interactions between plants, microbes, and environments 
[11–13]. However, the underlying ecological processes in 
regulating plant-microbiome-environment interactions 
are still poorly understood.

Studies on dioecious plants have reported sex-specific 
responses to arbuscular mycorrhizal fungi suggesting 
that female growth and reproduction benefit more from 
arbuscular mycorrhizal fungi when compared to males 
[14]. However, a higher colonization rate or hyphal bio-
mass of arbuscular mycorrhizal fungi in male plants have 
been suggested to be crucial for males for the mainte-
nance of a higher resistance or tolerance to different abi-
otic stresses [7, 15]. For example, a closer relationship 
between arbuscular mycorrhizal fungi and the root sys-
tem of P. cathayana males has been suggested to enhance 
the capacity of phosphorus forage compared to females 
[7]. A selective enrichment of a specific microbiome 
that contributes to stress resistance is driven by varia-
tion in plant metabolism and immune-related characters 
[16, 17]. However, sex-specific plant microbiomes have 
not been investigated, whereas differences in defense, 
growth, and reproduction between male and female 
plants have been well studied [6, 18–20].

The microbial community assembly of the rhizosphere 
is largely determined by different plant species or geno-
types through sensing and responding to root-derived 
signals [21]. A recent study revealed that Populus euphra-
tica males and females harbor sex-specific bacterial and 
fungal communities in the rhizosphere soil of natu-
ral forests [22]. It has been reported that a rapid loss of 
diversity from soil to roots and then to leaves and flowers 
indicate a strong selective pressure along the soil-plant 
continuum [10, 11, 23]. The microorganisms overcome or 
escape the host’s immune system and successfully colo-
nize plant compartments (endosphere), such as roots, 
stems, or leaves without causing any disease. The com-
munity assembly of endophytes largely depends on the 
plant species, genotype, and development stage because 
of differences in plants’ physiology and metabolism [11, 

19, 24]. Sexual differences in morphology, physiology, 
and metabolism between males and females are sup-
posed to lead to distinct plant endophytes. The metabo-
lism of different plant compartment niches generates 
chemically distinct environments and each host tissue 
provides a stable availability of metabolites for associated 
endophytes to maintain the biosynthesis of diverse com-
pounds [23, 25]. Changes in plant metabolism caused by 
varied environmental conditions are crucial factors that 
affect microbial communities within plants.

As an important dioecious plant, P. cathayana has been 
extensively studied for its responses to different environ-
mental conditions. It has been discovered that the sex-
ual differences are greatest in poor environments [5]. P. 
cathayana males have higher carbon fixation and trans-
portation from a carbon source (leaf ) to sinks, whereas 
P. cathayana females show higher secondary metabolic 
activities and glycolysis, but a lower expression of resist-
ance genes under soil nitrogen-limited conditions [8, 20, 
26]. In internal plant compartments, such as root and leaf 
tissues, a fine-tuning and adaptation of the microbiome 
is clearly evident [9], but the specific factors control-
ling the local microbial assembly and stability are still 
unclear. In the present study, the effects of internal traits 
on the microbial assembly and functions in P. cathayana 
males and females were explored. Three soil nitrogen lev-
els were used to cultivate plant materials, and sampled 
rhizosphere soils, roots, old leaves, and young leaves. 
We firstly hypothesized that niche-dependent bacterial 
and fungal communities occur along the soil-plant con-
tinuum. Then, sex would impose distinct impacts on the 
bacterial and fungal communities in each niche. As previ-
ously shown, P. tremula females prioritize nutrient acqui-
sition, and flavonoid and condensed tannin production, 
while males allocate more to the growth of aerial parts 
under limited nutrient conditions [18]. Therefore, the sex 
effect on the microbial assembly of endophytes was sup-
posed to be stronger when soil nitrogen level is limited. If 
the nitrogen level was recovered to a normal level, the sex 
effect would be expected to decrease.

Materials and methods
Experimental setup
Populus cathayana forests widely distribute in Qinghai 
province, China. The original cuttings of P. cathayana 
males and females were sampled from five populations 
as detailed in a previous study [7]. Five populations were 
separated by at least 50 km  for each other. All cuttings 
were then cultivated in a greenhouse at the Hangzhou 
Normal University, Zhejiang Province, China. The whole 
experiment was conducted in this greenhouse with the 
temperature ranging between 21 and 25 °C during the day 
and 15 and 18 °C at night, with 12–14 h photoperiod [7]. 
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Soil with a soil organic matter content of 4 g kg−1, total 
nitrogen content 1.5 g kg−1, and pH 7.1 was collected in 
the garden and homogenized. Then, the collected soil, 
sand and vermiculite in a 1:1:1 ratio were homogenized 
to set “nutrient-limited” soil. We sampled 30 male and 
30 female cuttings, and planted them in plastic pots (30 
cm diameter and 21 cm height), which were filled with 
nutrient-limited soil at the beginning of March, 2019. 
Each pot contained one cutting. All plants were irrigated 
once a week with 150 ml Long Ashton solution contain-
ing 2 mM NH4NO3 until the beginning of April when the 
cuttings started root formation [27] (see Supplementary 
methods S1).

In all, 24 male and 21 female cuttings successfully 
sprouted, of which 15 male and 15 female individuals 
with a similar height for further experiments were evenly 
chosen from the five original populations. Three nitrogen 
treatments through controlling the N content of the Long 
Ashton solution were designed. The control-nitrogen 
treatment, re-irrigated with control-nitrogen solution 
treatment, and limited-nitrogen treatment were named 
as N1, N2, and N3, respectively. Thus, the experimen-
tal setup with two sexes (males and females) and three 
N treatments (N1, N2, and N3) included six treatments 
in total. Each treatment contained five replicates. The 
control-nitrogen treatment was irrigated with a solution 
containing 2 mM NH4NO3 (considered as a normal N 
supply) twice a week till the end of the experiment. Simi-
larly, the limited-nitrogen treatment was controlled by 
excluding the N source from the solution when irrigated 
twice a week till end of the experiment. Two steps were 
used to construct the re-irrigated with control-nitrogen 
solution treatment. Firstly, 5 male and 5 female individu-
als were irrigated with 200 ml solution without N source 
twice a week until mid-July and then re-irrigated with the 
solution containing 2 mM NH4NO3 twice a week until 
end of the experiment.

Sample collection and soil traits
Rhizosphere soil, roots, and old and young leaves were 
collected at the beginning of September, 2019. Rhizos-
phere soil was defined as the soil tightly attached to plant 
roots. Roots of each plant were sampled. After the N 
treatment, 2 or 3 new emerging leaves of each plant were 
labelled and named them as old leaves since they began 
to be senescent by the end of the experiment. Recent 
fully expanded leaves of each plant present before sam-
pling were named as young leaves. Both old and young 
leaves were collected. Soil, roots, old leaves, and young 
leaves were referred as “microhabitats” in this study. All 
samples were first kept on ice and stored at −80 °C before 
extracting DNA in the laboratory. The soil chemical traits 

including pH, total nitrogen (TN), total phosphorus 
(TP), available phosphorus (AP), NH4

+, and NO3
−, were 

measured according to standard protocols [13]. Activi-
ties of β-1,4-glucosidase (BG) related to labile-C-cycling 
and β-1,4-N-acetylglucosaminidase (NAG) related with 
N-cycling were tested by Elisa kits (Shanghai, China). Soil 
microbial carbon and nitrogen biomass were determined 
by the chloroform fumigation extraction method [28].

DNA extraction and amplification
For the rhizosphere soil, DNA was extracted from 0.5 
g soil using the E.Z.N.A.® soil DNA Kit (Omega Bio-
tek, Norcross, GA, USA). The primers used for bacte-
rial 16S rRNA (V3-V4) gene amplifications were 338F 
(5′-ACT​CCT​ACG​GGA​GGC​AGC​AG-3′) and 806R (5′-
GGA​CTA​CHVGGG​TWT​CTAAT-3′) [29]. Amplifica-
tions of the internal transcribed spacer region ITS2 in 
fungi were conducted using the primers ITS3F (5′-GCA​
TCG​ATG​AAG​AAC​GCA​GC-3′) and ITS4R (5′-TCC​
TCC​GCT​TAT​TGA​TAT​GC3′) [30]. Before endophytic 
DNA extractions, leaves or roots were washed with ster-
ile H2O and then treated with 70% ethanol for 5 min. 
After that, the samples were immersed in 5.25% NaClO 
solution for 5 min, and in 70% ethanol for 30 s. Finally, 
the samples were washed with sterile H2O [31]. A two-
round amplification process was used to amplify the 16S 
rRNA amplicon of bacteria inhabiting roots and leaves. 
The first round of PCR was performed using the prim-
ers 799F (5′-AACMGGA​TTA​GAT​ACC​CKG-3′) and 
1392R (5′-ACG​GGC​GGT​GTG​TRC-3′) [31]. The sec-
ond round of PCR was conducted with the primers 
799F (5′-AACMGGA​TTA​GAT​ACC​CKG-3′) and 1193R 
(5′-ACG​TCA​TCC​CCA​CCT​TCC​-3′) targeting the V5–
V7 region [32]. The amplification of endophytic fungi 
was also performed using the ITS3F/ITS4R primers. All 
samples were sequenced on an Illumina MiSeq platform 
(Illumina, San Diego, USA) with a paired end sequencing 
(2 × 300). Low-quality read ends and primer sequences 
were trimmed. Paired end sequences were merged to a 
single sequence by FLASH version 1.2.11 [33]. Opera-
tional taxonomic units (OTUs) with 97% similarity cut-
off were clustered using UPARSE version 7.1 [34] after 
removing chimeric sequences and singletons. Repre-
sentative sequences were classified using RDP Classi-
fier version 11.5 against the SILVA reference database 
(v. 132) and UNITE (v. 8.0) to classify each OTU into 
bacteria and fungi, respectively. The raw data of bacte-
rial and fungal sequences are available at the National 
Center for Biotechnology Information under BioProject 
ID PRJNA797907.
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Physiological traits and transcriptome sequencing
Physiological traits of roots and young leaves, including 
pH, total phenols, tannin, NH4

+, NO3
−, and starch, were 

measured for four replicates per treatment. The remain-
ing leaves and roots after DNA extraction were separated 
into two parts. One part was dried at 75 °C for 72 h and 
ground into fine powder, for which measurements of pH 
and starch were conducted. Mixtures of dried samples 
and deionized water (volume ratio 1: 8) were shaken at 
250 rpm for 1 h and then centrifuged at 13,000 rpm for 
5 min to test pH [35]. Fine powder was extracted by 80% 
ethanol (v/v) at 80 °C for 30 min, and the supernatant was 
removed. The residuals were hydrolyzed by 9.2 M HClO4, 
and an anthrone reagent was used to measure starch [8]. 
Fresh samples (the second part) of roots and young leaves 
were ground into powder to determine NH4

+ and NO3
− 

[27]. Fresh roots or young leaves (0.5 g) were extracted 
using 95% ethanol for 2 h at 60 °C. A folin reagent and 
20% Na2CO3 (g/L) were added into the extract for 0.5 h at 
30 °C and then tested for total phenols at 760 nm.

To compare males and females, a transcriptome analy-
sis of young leaves was performed between control- and 
limited-nitrogen treatments (N1 and N3). Three rep-
licates per treatment were analyzed. Total RNA was 
extracted using Plant RNA Purification Reagent, and 
genomic DNA was removed using DNase I (TaKara). 
A detailed description of the RNA quality determina-
tion, library preparation, and Illumina Hiseq sequenc-
ing are available in Methods S2. The clean reads were 
separately aligned using the reference genome Popu-
lus_trichocarpa (http://​plants.​ensem​bl.​org/​Popul​us_​trich​
ocarpa/​Info/​Index). RSEM was used to quantify gene 
abundances (http://​dewey​lab.​biost​at.​wisc.​edu/​rsem/). 
The expression level of each transcript was calculated 
according to the transcript per million reads method. 
Heatmaps of the expression profiles were generated 
using the heatmap package in R. A differential expres-
sion analysis was performed to identify significantly dif-
ferently expressed genes (DEGs) using DESeq2 (P-adjust 
value < 0.05, |log2FC|>1) [11]. A functional-enrichment 
analysis (KEGG) was performed to identify which DEGs 
were significantly enriched at the Bonferroni-corrected 
P-value <0.05 compared with the whole-transcriptome 
background.

Statistical analysis
The effects of sex and N treatment on soil chemicals, 
plant physiological traits, and Shannon diversity were 
analyzed by a two-way ANOVA analysis. The beta diver-
sity of fungi and bacteria was assessed using nonmetric 
multidimensional scaling (NMDS) based on Bray-Cur-
tis distances. The significance of sex, N treatment, and 
their interaction effects on community dissimilarity was 

tested with PERMANOVA by using the “adonis” func-
tion in vegan package in R [36]. A hierarchical clustering 
analysis was performed by using the method “Ward.D2” 
with “hclust ()” function in R. The Venn diagram analy-
sis was used to define bacterial genera and fungal OTUs 
shared or not shared among rhizosphere soil, roots, old 
leaves, and young leaves and visualized in Cytoscape (v. 
3.5). Interactions and connections of physiological traits 
with the alpha diversity and dominant bacterial/fungal 
taxa were assessed by Mantel test with vegan package in 
R [37]. The co-occurrence networks were visualized in 
Gephi and performed by Conet in Cytoscape (v. 3.5) to 
show the network topological attributes of bacterial and 
fungal communities [11]. Only significant (P < 0.01) and 
robust Spearman’s correlations (r > 0.6 or r < 0.6) were 
kept in the networks. The linear discriminant analysis 
effect size (LEfSe) with logarithmic LDA> 3 (Wilcoxon 
P < 0.05) was applied to identify biomarker taxa of dif-
ferent niches to show the effects of sex. In each niche, 
the EdgeR’ was used to reveal different abundances of 
OTUs. OTUs present in at least 60% of samples and with 
a relative abundance ≥ 0.1% were defined as dominant 
taxa. The phylogenetic tree of roots and young leaves 
was annotated and visualized in iTOL software [11]. The 
dominant taxa, biomarker taxa (LEfSe), and hub nodes 
among networks were defined as keystone taxa.

Results
The differences of bacterial communities in the rhizo-
sphere soil, roots, and young leaves were significantly 
affected by soil N (Fig. 1). However, sex imposes stronger 
effects on bacterial communities than soil N levels with 
clear differences between the roots, old leaves, and young 
leaves of males and females. The beta diversity of the bac-
terial community of old leaves was significantly affected 
only by sex (Fig.  1c). Similarly, sex was the main factor 
in driving differences of fungal communities in roots, old 
leaves, and young leaves (Fig. 1f–h).

The hierarchical clustering analysis revealed three clus-
ters in bacterial communities: rhizosphere soil, roots, and 
leaves (old and young) were well separated at the genus 
level (Fig. 2a). The fungal communities of the rhizosphere 
soil, roots, and leaves (old and young) were well sepa-
rated, as also the fungal communities of male and female 
roots (Fig. 2b). The relative abundance of Acidobacteria 
and Chloroflexi declined in roots, old leaves, and young 
leaves relative to the rhizosphere soil (Fig.  2c). Unclas-
sified genera belonging to Ascomycota were enriched 
in roots, old leaves, and young leaves (Fig. 2c). The rela-
tive abundance of Actinobacteria and Geopora was sig-
nificantly higher in roots than in other parts in different 
treatments (Fig. S1). The alpha diversity of bacterial and 
fungal communities was mainly affected by the niche, the 
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rhizosphere soil showing the highest diversity (Fig.  2d). 
The alpha diversity of fungal communities was signifi-
cantly impacted by sex as well (Fig. 2d, Fig. S2b).

It was found that the four niches harbored 280 bacte-
rial genera and 22 fungal OTUs in common, the major-
ity of them belonging to Proteobacteria and Ascomycota 
(Fig. 3). The rhizosphere soil, roots, old leaves, and young 
leaves had 498, 63, 59, and 104 unique bacterial genera, 
and 257, 3, 1, and 25 unique fungal OTUs, respectively 
(Fig.  3). The numbers of bacterial genera belonging to 
Bacteroidetes and Firmicutes were much higher in old 
and young leaves than in roots and soil (Fig. 3a). The dif-
ferential abundance analysis indicated that more fungal 
OTUs were absent in the endophytes of females com-
pared to males (Fig. S3).

The LDA effect size of LEfSe clearly indicated the pres-
ence of bacterial and fungal biomarker taxa in different 
niches (Fig. 4). The most significant bacterial biomarker 
taxon in the rhizosphere soil of P. cathayana females 
was Actinobacteria. The most significant bacterial and 
fungal biomarker taxa in the root endosphere of females 
were Actinobacteria and the genus Geopora, respectively, 

while in the root endosphere of males they were Proteo-
bacteria and a genus belonging to Ascomycota, respec-
tively. Other significant bacterial and fungal biomarker 
taxa were found in the old leaf endosphere. Young leaves 
of P. cathayana males and females also harbored distinct 
bacterial and fungal biomarker taxa.

To further characterize the niche and sex effect on 
plant microbiomes, particularly on plant endophytes, 
the co-occurrence patterns of bacterial and fungal com-
munities were assessed along the soil-plant continuum. 
Bacterial communities of the rhizosphere soil and young 
leaves showed a higher network complexity than those 
of roots or old leaves with a higher average degree and 
clustering coefficient (Fig. S4a; Table S1). However, fun-
gal communities of young leaves showed the highest net-
work complexity with the highest average degree (40.25) 
and clustering coefficient (0.75) (Fig. S4b; Table S1). The 
bacterial taxonomic composition of “hub nodes” in the 
network differed between the rhizosphere soil and plant 
compartments (Fig.  5a). Positive edges and the average 
degree of bacterial networks were higher in the rhizos-
phere soil, roots, old leaves, and young leaves of females 
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when compared to males, while positive edges and the 
average degree of fungal communities in young leaves 
of P. cathayana females were much higher than those of 
other niches (Table 1). OTUs belonging to Bacteroidetes 
and Firmicutes in young leaves of P. cathayana males, 
and OTUs belonging to Proteobacteria and Firmicutes in 
young leaves of females were more connected with oth-
ers (Fig.  5b). OTUs belonging to Ascomycota in young 
female leaves were more connected with other OTUs in 
the network (Fig. 5b).

In microbial communities of the endosphere, the domi-
nant bacterial OTUs mainly belonged to Gammaproteo-
bacteria, Alphaproteobacteria, and Actinobacteria at the 
class level, while dominant fungal OTUs were affiliated 
with Ascomycota at the genus level (Fig.  6, Fig. S5). A 
total of 114 and 20 dominant OTUs of bacteria and fungi, 
respectively, were identified. P. cathayana males and 
females harbored 30 and 25 distinct dominant bacterial 
OTUs, while 5 and 4 unique and dominant fungal OTUs, 
respectively. Unique dominant bacterial OTU1204, 

OTU1621, and OTU 825 in the female root endosphere 
showed a higher relative abundance than other root 
endophytes (Fig.  6a). The shared OTU4235, OTU4835, 
and OTU2362 between males and females had higher 
relative abundances than other leaf (both old and young) 
endophytes. Dominant fungal OTU229 and OTU125 
with much higher relative abundances than other domi-
nant OTUs were shared among roots, old leaves, and 
young leaves in both males and females (Fig. S5).

Sex significantly affected soil total nitrogen, total 
phosphorus, NH4

+, NO3
−, microbial carbon, microbial 

nitrogen, and NAG (Table S2). Nitrogen and sex showed 
significant effects on plant growth (Table S3). Concen-
trations of phenols, tannins, NH4

+ and NO3
− of young 

leaves, concentrations of phenols, tannin, and starch, 
and the pH level of roots were significantly affected by 
sex (Fig.  7). The soil N treatment also showed signifi-
cant effects on tannins, pH, NH4

+ and NO3
− in young 

leaves, and on pH and of NO3
− in roots (Fig. 7). Young 

male and female leaves showed great differences in gene 
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expression, females being more sensitive to the N treat-
ment, as revealed by transcriptomic data (Fig. S6). A 
total of 37,008 genes were identified. The gene expression 
analysis revealed 272 genes that were significantly upreg-
ulated in males, and 275 genes that were significantly 
downregulated in females in the control treatment. The 
N-limited treatment caused much greater differences in 
gene expression between males and females (Fig. S6b). 
The KEGG pathway enrichment showed that more genes 
related to plant-pathogen interaction functions were sig-
nificantly different between males and females in control 
and N-limited conditions (Fig. S6c).

The pH value was negatively related with tannins in 
young leaves and roots (Fig. 8). Starch and pH of young 
leaves had significant effects on the abundance of Pro-
teobacteria, while tannins and pH of roots showed 
significant effects on the abundance of Chloroflexi, Act-
inobacteria, and Proteobacteria, and bacterial Shannon 
diversity (Fig. 8a, b). The abundance of unclassified gen-
era belonging to Ascomycota was significantly affected by 
starch, while the fungal Shannon diversity was affected 
by tannins in young leaves (Fig.  8c). The abundance of 
Geopora was affected by starch, while the fungal Shan-
non diversity was affected by the NH4

+ concentration of 
roots (Fig. 8d).
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Discussion
Our initial hypothesis was that sex is an important 
factor influencing the properties (including microbial 
communities) and functions of the rhizosphere soil. 
To adapt to varied environments, different plant spe-
cies or genotypes are able to recruit beneficial microbes 
and vary interactions among microbes in the rhizos-
phere soil through changing chemical conditions and 
by releasing root-derived compounds [13, 22, 38]. The 
contents of total nitrogen, total phosphorus, NH4

+, 
and NO3

− were lower in the rhizosphere soil of females 
compared to males, probably because of higher nutri-
ent demands of P. cathayana females for growth (Tables 
S2 and S3).

Different chemical traits of the rhizosphere soil have 
been reported as being important factors influenc-
ing bacterial and fungal communities and functions in 
P. euphratica males and females in natural forests [22]. 
Another important factor is the microbial substrate pref-
erences to different root exudates [38], while the qual-
ity and amount of photosynthesis-derived exudates in 
P. cathayana males and females are likely to be different 
because of differences in carbon fixation and allocation, 
nutrient uptake, and utilization, and connections with 
arbuscular mycorrhizal fungi [7, 8, 26]. In this study, sex 
greatly altered interactions among hub nodes of differ-
ent OTUs as indicated by the co-occurrence network, 
the biomarker taxa, and the microbial carbon biomass of 
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the rhizosphere soil (Table 1, S2; Figs. 4 and 5). Microbial 
enzyme activities dynamically respond to alterations in 
the nutrient and substrate availability and they represent 
the biological metabolism of the soil microbiome [39]. 
Sex significantly affected the NAG activity related to chi-
tin degradation (Table S2), which reflected variations in 
soil properties and microbial communities imposed by P. 
cathayana males and females.

Differences have been reported in poplars [9, 40, 41] 
and other species [10, 11, 23] in the plant microbiome 
among soil, root, and other microhabitats. This study 
also demonstrated a strong niche differentiation, such as 
a large number of unique taxa in the rhizosphere soil, a 
decreased alpha diversity, and varied abundance of major 
taxa along the soil-P. cathayana continuum. Extreme pH 
conditions impose stronger selective pressures for the 
survival and fitness of microbes, which suggests a sto-
chastic process in neutral conditions but a deterministic 
assembly in acidic or alkaline pH conditions [42]. This 

study revealed a clear decreasing pH gradient from neu-
tral (rhizosphere soil) to acidic conditions (leaf ) (Table 
S1, Fig. 7), which demonstrated an ecological filter during 
community assembly processes along the soil-root-leaf 
continuum. For example, the rapid decrease of Basidi-
omycota within plant compartments, particularly in 
young leaves, was likely to be related with the decreas-
ing pH because most Basidiomycota taxa perform better 
in higher pH conditions [43]. Fine-tuning and adaptation 
of the microbial assembly and stability, e.g., in roots and 
leaves, are clearly evident [9, 11, 23]. Besides different 
pH conditions, phenol and tannin levels of young leaves 
were higher than those of roots, which indicated that the 
microbes needed to have an ability to deal with defense 
chemicals. However, the sex impacts on the endophyte 
composition and abundance in each niche were not 
amplified by the great differences in the transcriptome 
and physiological traits between males and females 
under nitrogen-limited conditions (Fig. S1). Particularly, 
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the fungal community inhabiting the plant endosphere 
stayed stable under different nitrogen treatments, which 
demonstrated a stronger niche-depended selection 
instead of external environmental effects.

A successful colonization of bacteria and fungi in roots 
and leaves requires that these microbes have the capac-
ity to overcome the host’s immune system in different 
microhabitats [9–11]. Aerial plant parts impose much 
stronger selective pressures than belowground parts on 
the microbiome assembly [11, 44]. Indeed, the compo-
sition and structure of microbes residing in leaves (both 
old and young) were very different compared to those 
belowground, while young and old leaves had a simi-
lar microbe composition, relative abundance, and alpha 
and beta diversity (Figs.  2 and 6, S1, S5). Fungal taxa 
from the phylum Ascomycota enrich in live and senes-
cent leaves of trees [45]. For most microbes in this study, 
young leaves did not impose a stronger inhibitory influ-
ence on the colonization or growth of the endophytes 
than old leaves. It was evident that these bacterial and 

fungal microbes colonize leaves shortly after emergence 
and reach and keep a constant level before leaf abscis-
sion. However, some fungal taxa with a relatively low 
abundance (classified as “others” in this study) success-
fully colonized old leaves (Fig. S1b), probably as a conse-
quence of the declined action of protective mechanisms 
resulting in a rapid proliferation of opportunistic fungi 
during leaf senescence [45, 46].

One interesting finding was that the network hubs in 
young leaves were more connected with other taxa in 
the fungal community than those in old leaves (Table 1; 
Fig.  5). Keystone species belonging to Basidiomycota 
were more connected with other taxa in young leaves 
than in old leaves (Fig. 5). Positive edges in the fungal net-
work greatly declined from young to old leaves, implying 
substantially decreased competition among fungal spe-
cies [11, 47]. A loosely assembled fungal network reflects 
subtle changes in the host status; old leaves are suggested 
to decompose under saprophytic fungi from Ascomycota 
before abscission [45, 48].

Table 1  Different effects of P. cathayana males and females on bacterial and fungal co-occurrence network characteristics

Positive edge Negative edge Average degree Modularity Average clustering 
coefficient

Average 
path 
distance

Bacteria
  Soil

    Male 250 92 6.980 0.544 0.472 3.151

    Female 353 202 11.443 0.394 0.556 2.663

  Root

    Male 86 52 3.172 0.676 0.308 5.481

    Female 142 34 3.745 0.626 0.408 4.452

  Old leaf

    Male 93 27 2.759 0.677 0.315 6.380

    Female 105 25 2.955 0.711 0.410 4.619

  Young leaf

    Male 159 42 4.729 0.451 0.438 3.902

    Female 163 69 5.659 0.493 0.381 4.385

Fungi
  Soil

    Male 431 48 9.124 0.308 0.450 2.961

    Female 251 12 5.656 0.500 0.347 3.453

  Root

    Male 118 1 4.250 0.783 0.877 2.419

    Female 197 0 5.549 0.700 0.896 2.498

  Old leaf

    Male 48 1 3.379 0.622 1.000 1.000

    Female 15 5 1.905 0.765 0.902 1.259

  Young leaf

    Male 92 2 6.714 0.299 0.900 1.021

    Female 1246 6 27.516 0.339 0.823 2.205
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Our results further confirmed that the selective pres-
sure imposed by sex on endophytes in different plant 
parts is much stronger than that on microbial commu-
nities of the rhizosphere soil. The community structure, 
biomarker/core taxa, and interactions among bacterial 

and fungal taxa in roots, old leaves, and young leaves 
were different between P. cathayana males and females. 
Key microbial taxa typically enriched in different parts 
of P. cathayana males and females, such as fast-growing 
Alphaproteobacteria and Gammaproteobacteria (Fig. 6), 

Fig. 6  Phylogenetic tree, taxonomic composition, and distribution patterns of dominant bacterial taxa living in roots, old leaves, and young leaves. 
a The identification of dominant bacterial taxa in P. cathayana females and males, respectively. b The distribution pattern of dominant bacterial taxa 
in P. cathayana females. c The number of dominant bacterial taxa, the shared, and specific bacterial OTUs in P. cathayana females and males. d The 
distribution pattern of dominant bacterial taxa in P. cathayana males
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reflecting adaptation of these plant-associated microbes 
to interior environments of plants by acquiring carbohy-
drates and nutrients from the host [25]. For example, the 
Gammaproteobacteria species are capable of colonizing 
and then dominating diverse niches, including rhizos-
phere, and root and leaf endosphere, with crucial roles in 
regulating host fitness, pathogen suppression, and toler-
ance to varied stresses [49, 50]. However, different rela-
tive abundances of these taxa and distinct taxa in each 
plant compartment indicated sex specificity in the struc-
ture and function of entophytic communities (Fig.  6). 
Streptomycetes and Geopora were biomarker taxa and 
enriched in the female root endosphere (Fig. 4). Strepto-
mycetes species colonizing root systems are considered 
beneficial due to their capacity to promote plant growth 
and induce defense responses against plant pathogens 
[51, 52]. Geopora had a higher relative abundance in the 
root endosphere than in the rhizosphere soil (Fig. 2), and 
the enrichment was greater in female roots (Fig. S1b).

Based on the limited knowledge on how male and 
female plants, especially in Populus species, resist biotic 
stresses, the enriched Streptomycetes species have the 

potential ability to enhance pathogen resistance in 
females. The species of the genus Geopora are important 
mycobionts of ectomycorrhizal fungi [53, 54]. Female 
roots probably establish a closer mutualistic relationship 
with Geopora species than male roots, which contributes 
to meeting the higher nitrogen demand of P. cathayana 
females during growth [8]. Alternaria species are mainly 
saprophytic fungi [55]. In this study, they were identified 
as biomarker taxa by LEfSe and also as dominant taxa in 
old leaves of P. cathayana females, indicating sex-spe-
cific differences in recruiting microbes related with the 
decomposition process before leaf abscission.

This study further found distinct bacterial and fun-
gal biomarker and dominant taxa in young leaves of P. 
cathayana males and females (Fig.  4, S5). Interestingly, 
the fungal co-occurrence network was much more com-
plex and the alpha diversity of young female leaves was 
significantly higher compared to male leaves (Fig. 5b, S2). 
The more connected network among OTUs from Asco-
mycota, Basidiomycota, Zoopagomycota, and other taxa 
suggested a closer relationship between female leaves and 
its associated microbes, which implied that the fitness of 
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the female host was more dependent on the fungal com-
munity compared to males. Hub species in microbial net-
works are recognized as mediators between the host and 
its associated microbiome. Through network hubs, a host 
can selectively influence the assembly of their associated 
microbiome by regulating microbe-microbe interactions 
[12]. Variations in the constituting microbial taxa and 
in the number of hub microorganisms have a significant 
influence on the assembly of microbial communities, and 
this effect is suggested to be independent from external 
environmental factors [56].

Furthermore, the N levels in this study clearly caused 
sexually different gene expressions in various functions 
by transcriptomic data (Fig. S6). Previous studies also 
reported greatly differences in gene expressions and 
physiological traits at similar N gradient [20, 26, 27]. In 
the present study, substantial differences between males 
and females in gene expression related to plant-pathogen 
interactions were found (Fig. S6). However, these differ-
ences did not lead to great changes in the composition 
and structure of leaf endophyte (Figs. S1 and S2). The 
composition and abundance of endophytic communi-
ties in the re-irrigated nitrogen treatment were similar to 
those of other two N treatments. Instead, there was con-
vincing evidence that a stronger control by a host rather 
than by the external N dose shapes specific endophytic 
communities, probably due to different traits in males 
and females. Plant-associated microbes differ in their 
ability to successfully colonize different plant parts due 
to their differences in overcoming cell wall, in resisting 
defense-related chemicals and in carbohydrate metabolic 
functions of the host [25, 57, 58]. Leaves of P. cathayana 
males have a higher mesophyll palisade tissue thickness 
but a lower spongy cell density [59], while males have a 
smaller root system compared to females [7]. These dif-
ferences in the structure are probably important forces 
in selecting endophytes inhabiting leaves or roots in P. 
cathayana males and females.

Physiological traits of roots and young leaves were used 
to reflect the environment of the plant endosphere, and 
most of these traits were significantly affected by sex 
(Fig.  7). Leaf carbon is suggested being the main driv-
ing force for changes in the diversity, richness, and com-
position of foliar fungal endophytes [60], while many 
studies have emphasized that secondary metabolites of 
plants, particularly those related to plant defense traits, 
influence the plant microbiome [46]. However, after 
exploring twelve P. trichocarpa genotypes, which pro-
duced different amounts of salicylic acid-related second-
ary metabolites, Veach et  al. [58] suggested that plant 
defense strategies partially drive colonization and the 
assembly of taxon-specific microorganisms. In addition, 
increased primary metabolites facilitate the colonization 

of suitable microbes within roots [61]. Our results were 
unable to explain the specific biological mechanisms that 
control a host plant’s microbiome. However, this study 
demonstrated that the microbial assembly was affected 
or driven by diverse conditions within plant tissues, such 
as pH, carbon supply (starch), nitrogen status (NH4

+), or 
defense traits (total phenols and tannins) (Fig.  8). Pre-
vious empirical evidence has showed that plant hosts 
exert strong effects on plant microbiomes by determin-
istic selection during plant growth and development [11]. 
We found that P. cathayana males and females have sex-
specific selection pressures or specialized endosphere 
habitats that microbes select to form distinct microbial 
compositions.

Conclusions
In this study, bacterial and fungal community assem-
blies across a plant-soil continuum were mainly influ-
enced by niches, which suggested that ecological filters, 
for example, a decreasing pH gradient from the rhizos-
phere soil to leaves, affect the community assembly pro-
cesses along the soil-root-leaf continuum. Endophytic 
fungal communities showed a higher stability than bac-
terial communities in each niche in response to different 
soil N treatments, which demonstrated the presence of a 
powerful control of a host in selecting fungi. Our results 
suggested potentially different functions in N-cycling, 
nutrient acquisition, and pathogen resistance due to 
divergent microbial communities in the rhizosphere soil, 
roots, and leaves. All results provided important new 
knowledge for understanding the effects of sexual dimor-
phism in microbial assemblies and plant-microbiome 
interactions.
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female).  Figure S4. Different niche effects on the networks of bacterial 
(a) and fungal (b) communities. Figure S5. Phylogenetic tree, taxonomic 
composition, and distribution patterns of dominant fungal taxa living 
in roots, old leaves and young leaves. (a) Dominant fungal taxa in P. 
cathayana females and males, respectively. (b) The distribution pattern of 
dominant fungal taxa in P. cathayana females. (c) The number of dominant 
fungal taxa, the shared and specific bacterial OTUs in P. cathayana females 
and males. (d) The distribution pattern of dominant fungal taxa in P. 
cathayana males. Figure S6. Heatmaps of the expression profiles (a), dif-
ferential expression analysis (DEGs) (b) and functional-enrichment analysis 
(KEGG) (c). MC, young male leaves in control-nitrogen treatment; MN, 
young male leaves in limited-nitrogen treatment; FC, young female leaves 
in control-nitrogen treatment; FN, young female leaves in limited-nitrogen 
treatment.
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