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Abstract

Recent technological advances mean that samples from animal experiments may be analysed more cheaply, more
easily and with a much greater return of data than previously. Research groups are frequently faced with a choice
of continuing to use established technology in which they may have made a significant investment of time and
resources, and have significant amounts of reference data, or switching to new technology where reference data
may be limited. Apart from cost, the choice needs to be based on a comparison between the increase in data
available from future experiments by switching and the value of comparison with reference data from historical
experiments analysed with earlier technology. One approach to this problem is to ensure that sufficient quantity
and variety of samples are taken from each experiment and appropriately stored to allow re-establishment of a
sufficiently large reference set and to avoid the need to repeat animal experiments. The establishment of ‘biobanks’
of experimental material will require funding for infrastructure, consistent storage of metadata and, importantly,
horizon-scanning to ensure that samples are taken appropriately for techniques which will become accessible in
future. Such biobanks are a recognised resource in human medicine, where the value of samples increases as more
analysis is carried out and added to the metadata.

Keywords: Biobanking, Experimental design, Horizon-scanning, Microbiome, Replacement, Reduction, Refinement,
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The pace of technological change
There has been considerable interest in the idea that the
recent exponential growth in scientific publications and
journals can be interpreted as a consequence of the drive
for individual scientists to publish more, with the impli-
cation that there has been a decrease in methodological
and analytical robustness of the research described [1,
2]. However, there are also, clearly, many other drivers
for the increase, and it seems likely that the exponential
rate of technological development is also a major con-
tributor [3]. The rate of transfer of these technologies
into routine research means that previously unanswer-
able scientific questions are likely to become increasingly
accessible to interrogation. While providing enormous
opportunities, this technological development also raises
challenges. Two specific issues are the question of when
to switch from an established methodology, where serial

data sets from experiments are at least comparable, to
the next generation techniques where reference values
are absent; and, secondly, that it becomes likely that ani-
mal experiments may need to be repeated every few
years in order to analyse the same outcomes but using
the new technologies, with implications for the drive for
replacement, refinement and reduction of the animals
use in experiments (the 3Rs) [4]. Here, we will examine
the impact of technological advances on, specifically, re-
search on animal health and disease, and the implica-
tions for the way in which we should be developing our
hypotheses, experimental designs, sample collection and
analysis. While the considerations are likely to be
broadly applicable, we will focus on the recent interest
in establishing links between host-microbial ecosystems
(the microbiome) and immune and metabolic systems.
For the purposes of this discussion, technology will be

defined as the processes separating the development of a
hypothesis from the acceptance, rejection or modifica-
tion of that hypothesis. That is, technology will be taken
to include the process of designing the experiment,
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carrying it out, collecting samples, extracting data from
the samples and carrying out appropriate manipulation
of the data to test the hypothesis or to develop predict-
ive algorithms. Technological advances may be separated
into two types: those which represent incremental ad-
vances in single steps within an overall technique (for
example, the move from mercury to digital thermome-
ters, or the use of bead-beaters in cell lysis for DNA iso-
lation) [5]; and those which create a step-change in the
process (the move from thermometers to remote sensing
such as infra-red thermography or surface/internal
thermistors, or from microarray to 16S ribosomal RNA
(rRNA) gene sequencing for characterising the micro-
biome, or from Edman degradation to mass spectrom-
etry for peptide sequencing) [6–8].

What determines the move to new technology?
Laboratories and institutes frequently invest considerable
effort in staff time or capital costs in implementing and
validating particular technologies, with the result that
there is usually significant resistance to switching to a new
technology. Many factors will affect the decision to switch,
but the main drivers are probably costs and the ability to
extract novel or greater amounts of information.

Costs of new technologies
In many cases cost is one of the major determining fac-
tors. This can affect decisions in different ways. Initially,
cost is usually a negative driver, where early adoption of
technology is usually associated with extremely high costs
of new equipment and often low reliability and expected
rapid obsolescence. Later in the cycle of the technology,
the cost of the new equipment often drops below that of
the previous generation, affecting decisions to switch posi-
tively. In the main, the current structure of research fund-
ing requires either that institutes commit capital funding
for the purchase; or that PIs obtain external capital fund-
ing for new equipment; or that funding for consumables
covers the costs of subcontracting the processing of sam-
ples to a service. In many cases, funding streams are not
adequate to cover the costs of the necessary equipment
within research institutes and strategic decisions are made
to subcontract. However, service subcontractors will, of
course, include contributions towards necessary future
equipment upgrades within their costs.
The choice of strategy (capital purchase of new equip-

ment or reliance on service providers) depends very
much on the costs of the equipment, and increasing up-
take by research communities inevitably results in a de-
crease in price, such that strategic decisions may need to
be re-considered with time. One of the first consider-
ations, therefore, is the position in the development
cycle: is the technology cutting edge and expensive or
routine and cheap?

Historical data on costs of processing samples are not
readily available for most technologies. However, data on
costs of sequencing have been maintained by the National
Institutes for Health (NIH) for several years now [9] and
show consistent, dramatic decreases, due in part to incre-
mental improvements and economies of scale as more
users adopt sequencing technology, and also as a conse-
quence of step changes in sequencing technology (Fig. 1).
The data on absolute and relative cost suggest such step
changes in 2003, 2008 and 2015, although it should be
noted that these are likely to be a consequence of a com-
bination of economic and technical factors. Notably, costs
have not consistently decreased over the last few years,
and it will be interesting to see whether the trend does
continue at the same pace, or whether costs of sequencing
are approaching an asymptote.

Increasing delivery of data from experiments
The primary driver of the uptake of new technologies
should be the ability of the new technique to deliver either
a greater volume of data or more precise or reliable data.
While extracting the maximum amount of data from an
experiment should always be desirable, it carries several
drawbacks. Firstly, the computing power necessary to ana-
lyse the increased volume of data will carry its own finan-
cial costs. Simple algorithms (the so-called Moore’s Law)
suggest that computer power has doubled approximately
every 2 years, but estimates are that this may slow down
in the near future unless step-change technologies like
quantum computing become widely available [10, 11]. To-
gether with the phenomenon of software ‘bloat’, where an
increasing amount of the available computer power is
used in translating between layers of software or hardware
compatibility and is unavailable to the user, this may even
result in decreasing returns in new hypotheses or ideas
from increasing amounts of data.
Secondly, there are issues over the availability of suit-

ably trained staff to deal with the increased volume of
data. As in the 1990s when trained molecular biologists
were difficult to find, there are very few scientists now
with appropriate experience in data analytics as well as
sufficient background in agricultural science. As with
molecular biologists, it is likely to be a decade or more
before either such trained individuals become available
or the interfaces to data analytics software become ac-
cessible to existing scientists.

The problems of technological change for animal
experiments
The need to repeat experiments as technologies for
sample analysis change
For many reasons, uptake of new technologies creates a
number of obvious problems for animal experiments,
particularly those involving large livestock species.
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Essentially, once an experiment is finished, there is no way
to go back and re-take samples. If a new technology re-
quires samples to be taken differently such as, for ex-
ample, intestinal luminal samples into broth for
culture-based techniques for analysis of microbiomes or
snap frozen for DNA-based techniques, previous experi-
mental designs may need to be repeated. Where experi-
ments involved the use of animals, this is likely to carry a
significant financial and ethical cost. The costs associated
with production of large agricultural species suitable for
animal experiments, and of carrying out experiments in-
volving manipulation of groups of those animals, is ex-
tremely unlikely to decrease. While financial and political
instability do contribute to livestock prices, the current

trend in those countries where agricultural research is
well-funded is, quite rightly, towards increasingly
welfare-friendly production with associated increases in
costs. This, plus the increasing costs of buildings and
labour mean that prices for pigs, for example, have in-
creased overall over the last 15 years (Fig. 2). With in-
creasing pressure on the growth of agriculture also arising
from concerns over impacts on climate [12], this trend is
likely to continue.

Decreasing backward compatibility of data from analysis
of experimental samples
It is also increasingly apparent that step changes in
methodologies are associated with at least some level of
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Fig. 1 Costs of DNA sequencing over time. Orange line, costs of DNA sequencing, redrawn from data obtained from Wetterstrand [9]. Circles,
quarterly fold change in costs (mean 0.85, SD 0.25): red circles indicate values greater than 2 standard deviations from the mean (log data)

Fig. 2 Costs of pig production in the UK (UK pence per kg). DAPP, deadweight average price; APP, average pig price. Source: MLC/AHDB
pork (https://pork.ahdb.org.uk/prices-stats/prices/pig-prices-eu-spec/)

Bailey et al. Journal of Animal Science and Biotechnology           (2019) 10:49 Page 3 of 11

https://pork.ahdb.org.uk/prices-stats/prices/pig-prices-eu-spec/


obsolescence of data derived from previous experiments.
A striking example of this is the change from assessing
intestinal microbiomes using culture-based approaches
during the 1990s to DNA-based approaches in the
2000s. Figure 3 shows the results of searches for
microbiome-related publications which specifically men-
tion either culture, denaturing gradient electrophoresis
(DGGE), microarray, 16S rRNA sequencing or metage-
nomics between 1995 and 2017. Interestingly, the use of
16S rRNA sequencing was being reported before 2000
and its uptake has continued to rise consistently since
then. Amplification of 16S rRNA genes was the basis for
the widely used technique of DGGE, which began to be
reported between 2000 and 2010 but has been in decline
since then. In contrast, microarray-based approaches to
microbiome analysis began to be reported in significant
numbers from about 2005: while these approaches could
also be based on 16S rRNA sequences, there is no abso-
lute requirement for this and more recent arrays use op-
erational taxonomic unit (OTU) specific sequences from
whatever part of the genome provides the greatest speci-
ficity under the working conditions of the array. Despite
this, and despite the higher dynamic range, reported
usage of microarrays also seems to be declining. Finally,
metagenomics-based publications have also increased
consistently from 2005. Given that both 16S rRNA and
metagenomics-based approaches seem to be consistently
increasing and to be included in similar proportions of
microbiome papers, it will be interesting to see whether
one or other becomes dominant over the next 5–10
years. While it might seem that the obvious progression
would be for metagenomics to supersede 16S sequen-
cing, this may not necessarily be the case immediately,
since the increasing availability of microbial whole gen-
ome sequences provides the opportunity for inferring

metagenomes from 16S rRNA sequences, using tools
such as PiCrust [13, 14]. However, in the longer term, as
sequencing power and the ability to resolve closely re-
lated whole genomes increases, it may well ultimately
become easier to infer full metagenomes to much
greater resolution from partial metagenomes than from
16S rRNA sequences.
The succession of techniques (culture to 16S-based

to metagenome) raises questions as to the extent to
which results obtained from experiments 5, 10 or 20
years ago may be interpreted against current experi-
ments: should we reject data based on techniques
which have now been superseded? While it may be
argued that there is no a priori reason to reject con-
clusions based on culturing known groups of organ-
isms from intestinal or faecal samples from
experimental animals, we are now aware that the
variation observed in these earlier experiments repre-
sents only the tip of the iceberg, and that significant
differences between experimental groups or animals
could have been present in the absence of culture dif-
ferences [15]. For these reasons, results from micro-
biome experiments carried out prior to 2000 are not
easily comparable to those after 2005. Interestingly,
despite this, continuing citation rates for papers prior
to 2000 are still not declining markedly and are com-
parable to those between 2005 and 2010 (Fig. 4), indi-
cating that the scientific community still values the
conclusions reached.
The succession of techniques described has created

problems for groups engaged in microbiome research.
Many laboratories have invested resources in establish-
ing laboratory and bioinformatics pipelines which have
rapidly become superseded by new developments, and
need to consider the issue of whether to change.

Fig. 3 Publications on microbiome or microflora mentioning culture, DGGE, microarray, 16S rRNA sequencing or metagenomics. Source: Web of
Knowledge (Clarivate Analytics), December 2018
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However, a further key consideration is that the accumu-
lation over time of a large archive of samples analysed in
exactly the same way provides an invaluable reference
against which new samples or new experiments can be
compared. Under these circumstances, even changing a
very small component of the pipeline such as the DNA
isolation kit, may make subsequent data difficult to com-
pare with existing reference data [16, 17]. Adopting a
completely new generation of technology mostly means
that newly analysed samples must be assessed with min-
imal reference to previous results.
Under these circumstances, there may be considerable

value in persisting in the use of a well-established pipe-
line rather than switching to new technology. Ultimately,
the decision to make the switch depends on the amount
of data or inference which can be derived from individ-
ual samples. We could consider the value of the sample
to derive from three components: the data obtained by
processing the single sample (which increases from
DGGE through microarray and 16S rRNA to metage-
nomics); the inferences which can be made by compar-
ing internally within a single, controlled experiment (e.g.
the effect of a single probiotic under a defined set of cir-
cumstances); and the inferences which can be made by
comparing an experiment with a pre-existing set of
other experiments analysed in the same way (e.g. the ro-
bustness of ‘enterotypes’ in pigs across a large set of
samples collected over time) [13]. The decision to stay
with existing or switch to new technologies depends in
part on the relative value of these three components. For
simplicity, the problem may be considered as a simple
decision square, where the value of the increased data
from a new technology may be high or low, and the
value of backward comparisons may also be high or low
(Fig. 5). Where the value of both is low (that is, where

the new technique currently offers very little increased
data return, but there is relatively little investment in the
results of previous techniques (Fig. 5 box 1), the decision
should be based on horizon-scanning as to the future
developments in both technologies. Once the new tech-
nology provides significantly greater data return, the de-
cision is a matter of cost (Fig. 5 box 2). On the other
hand, where investment in previous technology has been
high, the initial response (Fig. 5 box 3) might be to begin
archiving sample material for re-analysis such that, when
data return from the new technology increases, it will be
possible to re-analyse archived samples for backward
comparisons (Fig. 5 box 4). A critical conclusion, then is
that horizon-scanning and sample archives or biobanks
are important for maintaining forward and backward
compatibility, and these will be considered later.

Hypothesis-driven and bias-free experimental design
In the majority of cases, experiments are designed to an-
swer specific hypotheses or questions, even when the
outcomes measured are highly dimensional, as in the
case of intestinal microbiomes or host transcriptomes.
Appropriate experimental design requires the necessary
controls (positive, negative or both) and numbers of ex-
perimental units (cells, animals or groups) to allow the
results to have a high probability of demonstrating that
the hypothesis is false. Agricultural science has a long
history of rigorous experimental design, power calcula-
tion and statistical evaluation [18]. However, the devel-
opment of the new omics technologies is making
statisticians increasingly aware of the potential for both
measured and unmeasured variables to confound our re-
sults and to create unexpected differences between
replicates.

Fig. 4 Annual citation rates for papers on microbiomes published between 1995 and 2000 (blue line), or between 2005 and 2010 (orange line).
Source: Web of Knowledge (Clarivate Analytics), December 2018
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Essentially, the unwritten assumption involved in test-
ing hypotheses with specific experimental designs is that
an analytical plan defining the statistical approach to be
used should also be identified prior to data gathering. In
many cases, the experimental design defines an appro-
priate statistical analysis. If statistical approaches are not
pre-defined, then it becomes tempting to employ pro-
gressively complex data-transformation, data subsetting
or analytical approaches, in the hope that one or more
will identify an effect. This may consist of conducting ei-
ther multiple comparisons using the same statistical test
or employing a multitude of different statistical tests. In
the first instance, it is likely that multiple comparisons
will predispose to Type I errors, unless compensated for
[19]. If experiments are then repeated, results which
were apparently significant in the first replicate may not
be observed in the second or subsequent replicates, lead-
ing to the apparent replicate effects seen in many agri-
cultural experiments and to conclusions of poor
reproducibility. In the case of multiple analytical ap-
proaches, it is entirely possible to apply different trans-
formations or tests in a logical, “step-wise” manner for
robust inference. However, if multiple different statistical
approaches are used which actually address the same
question, then conclusions may be reinforced by appar-
ent concordance created because variables are not
independent.
Both of these approaches – multiple comparisons and

multiple analytical approaches - are entirely legitimate

for data exploration and for generating hypotheses for
further testing, but they cannot safely be regarded as
tests of a pre-existing hypothesis. For this reason, much
of the kind of exploratory data analytics being developed
eschews the probability values which animal scientists
are familiar with [20–22]. One solution to this is to de-
sign experiments and register not just the experimental
design but also the analytical approach before the ex-
periment is carried out [23]. Approaches of this sort,
pioneered by the Alltrials initiative (http://www.alltrials.
net/) and in development for veterinary clinical trials
(https://vetalltrials.org/) help to clearly separate the ana-
lysis used to test the original hypothesis from that used
to explore for possible further hypotheses. A second so-
lution is to design experiments with sufficient redun-
dancy in statistical power that the results can be
separated into a training set, on which a range of analyt-
ical approaches can be tried and hypotheses developed,
and a testing set on which the final options can be
assessed. This latter approach has been most used in on-
cology studies where the results of many assays are used
to detect tumours or predict outcomes [24]. Ideally, both
of these require similar independent repositories: the
first for pre-registering the experimental design and ana-
lytical approach; the second, for securing the testing
dataset completely isolated from the statistician working
with the training dataset. However, the latter approach
will need experiments to be designed with sufficient
numbers of replicates to allow redundancy in statistical
power, increasing both the financial cost and the ethical
considerations.

Biobanking experimental samples for analysis of
host-microbiome interactions
As the rate of development of technology accelerates, it
will be important that the introduction of new method-
ologies does not mean that experiments need to be re-
peated unless absolutely necessary. Where experiments
are designed to test a single hypothesis, it may be pos-
sible to take a single sample, carry out a single labora-
tory test and analyse the outcomes. Simplicity, staff
availability and cost of the sample storage and analysis
may make this option preferable. However, if this design
is extended such that multiple laboratory analyses, or a
single omics approach such as metabolomics, are carried
out on the sample, then the data analysis is also likely to
extend into the data exploration approaches outlined
above, such that the experiment actually identifies a
series of further hypotheses which then need to be
tested. Under these circumstances, it begins to be im-
portant to take more samples from the initial experi-
ment than had been originally envisaged. For example,
the changes observed in a colonic microbiome after nu-
tritional intervention might indicate effects upstream of

Fig. 5 Decision square showing possible routes when considering
changing to new techniques. The Y-axis represents the value to the
understanding of experimental effects or to the ability to generate
or test hypotheses. The X-axis represents the value of prior
investment in existing technology, in particular the investment in
samples from previous experiments
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the large intestine, in which case samples from the ileum
or jejunum might be needed.
This last point is likely to become increasingly import-

ant and is something that could, potentially, be ad-
dressed now. As new technologies are developed and the
costs of processing samples through existing technolo-
gies decreases, the costs of animal experiments will con-
tinue to rise. Under these circumstances, it would seem
that taking many more samples than are immediately
necessary provides a way of future-proofing our experi-
ments, providing these samples are taken appropriately
and stored with appropriate and adequate metadata. Es-
sentially, this is an argument for routine biobanking of
large numbers of samples and associated metadata from
animal experiments, in such a way as to provide easy ac-
cess to subsets of samples appropriate for testing spe-
cific, novel hypotheses. Such novel hypotheses could
derive from prior analyses of subsets of the sample bio-
bank or from the availability of new technologies. Thus,
for example, where laboratories delayed the adoption of
16S rRNA gene sequencing for microbiome analysis in
favour of microarray because a significant part of the
value of each sample or experiment derived from com-
parison with a pre-existing dataset, the availability of
biobanked faecal or intestinal samples would enable the
re-creation of the pre-existing database when the cost of
the new technology decreases to the point where
re-analysing the samples becomes feasible.
Biobanks of appropriately taken, appropriately stored

samples plus appropriate metadata from experiments
across the world have the potential to reduce animal use
and to make valuable samples immediately available for
analysis when new technologies become cost-effective.
Given that the costs of animal use are likely to rise and
the costs of analysis decline, this would seem to be an effi-
cient use of resources. However, establishing usable bio-
banks will require a marked change in the approach to
our experiments [25, 26]. Firstly, experiments will need to
be designed not just around current hypotheses but
around future ones. Since it will be unusual to be able to
identify future hypotheses, the more likely approach will
be to take as many samples as possible, whether or not
they have been identified as important within the specific
hypotheses behind the experiment. Secondly, multiple
replicates of specific samples will need to be taken, in
order to allow subsets of samples to be allocated to more
than one technique while still retaining replicate samples
for future analysis. Thirdly, sufficient long-term storage
needs to be available to maintain sample biobanks for pro-
longed periods under appropriate conditions. Fourthly, ex-
periment, animal and sample metadata need to be
maintained in a form which is easily accessible and trans-
ferable to analytical software. Finally, we will need pro-
cesses for making such sample biobanks widely available.

Planning biobanks: horizon scanning
Efficient design of experiments which can test current
hypotheses but also generate bias-free data from existing
omics technologies, as well as appropriate samples to
test future hypotheses and supply future technologies,
will require a high level of ‘horizon-scanning’ by animal
scientists. Since new technologies are usually extremely
costly when first developed and become progressively
cheaper over time (Fig. 1), there is usually a relatively
long lead time between a particular technique becoming
visible in the scientific literature and becoming suffi-
ciently well established, reproducible and cheap to con-
sider on large biobanks of samples.
One specific area in which horizon-scanning is import-

ant is the analysis of the role of microbiomes and their
role in human and animal health and disease. The pro-
gress described above, from identifying a small number
of organisms by conventional culture to larger numbers
of organisms by DNA-based approaches, still only
returns a list of the resident microbiota. It is increasingly
apparent that these organisms need to be considered as
a series of interacting ecosystems within the host. Un-
derstanding the way in which these ecosystems respond
to the environment (diet, pro/prebiotics, host immunity,
etc.) and subsequently manipulate the host immune and
metabolic systems will require extensive use of metage-
nomic, transcriptomic, proteomic and metabolomic data.
Since microbiomes occupy spatially distinct compart-
ments within the host (lumen, mucosa; small and large
intestine, caecum and colon), techniques capable of ap-
plying these omics technologies at high resolution will
also be needed. Researchers will need to be aware of
what technologies are likely to become realistically avail-
able over the next few years as they design experiments.
It is already possible to estimate the rate of uptake of

different technologies by carrying out literature searches
using appropriate terms (Fig. 6). There are methodo-
logical limitations associated with this, since it is reliant
more on the use of particular terms by authors than on
the actual use of the technology, but searching for terms
associated with proteomics, transcriptomics, metabolo-
mics and single cell transcriptomics suggests that the
interest in their use began in 1996, 1999, 2000 and 2013,
respectively and grew approximately 3-fold every year to
begin with. The apparent slowing of uptake is likely to
be a consequence either of techniques becoming fully
adopted or of specific terms no longer being used in
publications once they become widely adopted. Proteo-
mics, transcriptomics and metabolomics on tissue or
biofluid samples are now relatively mature techniques
with clear requirements for sample preparation and stor-
age, and appropriate samples would be relatively easy to
take routinely from all experiments. In contrast, single
cell transcriptomics is still in its infancy, but the pattern
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of growth of publications suggests that it will rapidly be-
come as important as the previous three. It may be that
routine sampling into biobanks should include cell sus-
pensions from enzymatically disrupted tissues stored in
liquid nitrogen for future sorting and analysis. In con-
trast, references to epigenetics or matrix assisted laser
desorption ionisation (MALDI) imaging suggest con-
tinuous but slower growth in interest, possibly due to
differences in the way the costs of the technologies have
changed. However, storage requirements for these tech-
niques are also well established and appropriate samples
could be incorporated into sample retrieval protocols.
Future technologies which are likely to become avail-

able at a cost which enables their routine use on new
and biobanked samples include:

� MALDI imaging provides unparalleled access to
peptides and small organics in tissues at current
resolutions of around 20 μm, and can be used to
build up 2- and 3-dimensional maps of function
within tissues [27, 28]. The cost of processing tissues
is currently very high, which has probably slowed its
uptake (Fig. 4), but flash-frozen tissues or samples
taken for routine cryosectioning are entirely appro-
priate for future analysis

� Lipidomics and glycomics, particularly for
nutritional studies and for analyses of microbiomes,
are likely to become more widely used [29].
Currently, samples preserved conventionally (flash
freezing) are also appropriate for these techniques

� Techniques for culturing currently unculturable
eukaryotes are under development, largely based on
identifying missing metabolic pathways from whole

genome sequencing [30]. Once these become
available, it will be possible to examine the function
of specific organisms within complex ecosystems
(rather than just their relative abundance). While
this may be possible from flash frozen samples, it
may also be that specific transport media are
required, which may make these techniques
unavailable on current samples.

� Single cell eukaryotic transcriptomics and, more
distantly, prokaryotic transcriptomics is now
contributing significantly to understanding tissue
biology by demonstrating the variation between cells
rather than the average cell [31, 32]. Significant
advances in retaining viability of cryopreserved cells
mean that it may be possible to isolate and store
cells from experimental tissues, and carry out single-
cell transcriptomics at a later date. In contrast, sin-
gle cell transcriptomics of bacterial cells is still
technologically challenging and may or may not be
possible on currently archived samples.

� Digital polymerase chain reaction (PCR) and a range
of other approaches to targeted analysis of gene
expression.

� Analysis of single nucleotide polymorphisms (SNP)
or whole genomes of all experimental animals at the
end of the experiment to provide an explanatory
variable.

However, there are, inevitably, a set of techniques which
are likely to become available in the future which are be-
yond the ability of horizon-scanning to prepare for. Many
of these are techniques associated with generating samples
or data from live animals. Examples include:

Fig. 6 Numbers of publications where the title, abstract or keywords include terms associated with transcriptomics, epigenetics, proteomics,
MALDI imaging, metabolomics or single cell transcriptomics. Source: Web of Knowledge (Clarivate Analytics), December 2018
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� Site-specific sampling of intestinal microbiomes
using modified, orally-administered capsules such as
those initially designed for targeted drug delivery or
wireless endoscopy [33]. Such devices might incorp-
orate a controlled release of a protein or nucleic acid
stabiliser once the sample has been taken

� Rapid analysis of single nucleotide polymorphisms
or whole genomes of all experimental animals in
order to control for genetic variation during
randomisation at the start of the experiment. Thus,
for example, experiments frequently randomise
genders into groups to control for known effects.
Rapid SNP typing would allow randomisation of sire
(for example, where pooled batches of semen have
been used for insemination) and of other loci with
known or probable effects.

� Gene editing of animals to create new tools (for
example, cell-lineage-specific fluorescence in vivo) or
to establish causal relationships (for example, knock-
outs or knockdowns of viral receptor proteins) [34].
The widespread adoption of competitive, regularly
interspaced short palindromic repeats (CRISPR/
Cas9) technologies is likely to make this type of ap-
proach much more widely usable in future. Recent
developments have enabled editing of multiple genes
in a single process, simplifying the previous ap-
proach of crossing and backcrossing strains [35]

� Serial imaging of experimental animals using, for
example, high energy magnetic resonance imaging
(MRI) or multiple-photon microscopy to identify
changes in internal organ structure or body compos-
ition [36]. While the current resolution of such de-
vices requires some form of restraint (sedation or
anaesthesia) increased power may make serial im-
aging of conscious animals possible.

As these techniques, and those which are genuinely un-
foreseen, come into routine use, we can expect them to be
genuinely disruptive, necessitating repeated experiments.
However, these developments are likely to be much fur-
ther off, and should not prevent us from dealing with the
more immediate methodologies which are relatively easy
to prepare for.

Governance
Although the potential benefits of biobanks of samples
from animal experiments are apparent, establishing pro-
cesses for governance of samples and data may present
continued problems. Again, this area has been widely ex-
plored in human medicine [26, 37, 38]. Specifically, there
is a need to establish scientific review boards capable of
assessing requests for access to biobanked material. Such
review boards will need to be able not only to assess the
specific value of each request considered in isolation (is

it asking an appropriate question? is the proposed meth-
odology suitable?), but also against the wider scientific
value of the samples (would it be better to wait for a bet-
ter technology? would it be better if the samples were
combined with those from another experiment, perhaps
from another institution?). Such review panels have
been appropriate for large cohort studies in human
medicine, where the size of the biobank makes an in-
dividual panel appropriate, but the kind of controlled
intervention study more common in animal science
will make individual panels difficult to establish, pla-
cing the responsibility on the institutes rather than
the individual.
Both charity and government funders are taking the

view that the outcomes and results of publicly-funded
research should be publicly available, rather than ‘owned’
by individual researchers or institutes. The animal sci-
ence community is likely to come under pressure to re-
solve these issues as part of this increasing trend
towards open science. However, institutes will find it dif-
ficult to fund such resources internally [39], and external
funders also need to be aware of the costs of the main-
tenance and governance of biobanks. This requires in-
vestment, which is the primary reason why such
biobanks are still relatively infrequent in animal science.
In human medicine, long-term cohort studies have be-
come an important resource for novel research using
technologies which were completely unavailable when
the studies were initially funded [37, 40]. Funders of
medical research are now aware of the value of such bio-
banks, and we need reviewers and funders of animal sci-
ence to adopt the same view.
An important consideration for funders should be the

effect of biobanking on the value of individual samples.
Thus, one could consider that the value of a sample bio-
bank on which no sample processing to data has been car-
ried out is entirely potential. Once a specific technological
approach has been used on a subset (for example micro-
bial metagenomics of caecal and colonic contents), those
data and the inferences from it should become available as
metadata. The value of the remaining samples then in-
creases, since subsequent analysis of mucosal or hepatic
transcriptome, for example, can be linked back to the
large intestinal microbiome. As more analyses are carried
out, the samples and the data from them become increas-
ingly valuable, providing that they are made freely avail-
able as part of the metadata. Again, this has been
recognised in human clinical trials, where sharing of data
may be required for registration of the experimental de-
sign [41].

Replacement, reduction and refinement (the 3Rs)
As discussed, ethical considerations and the increasing
costs of animal production will result in pressure on the
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use of animals in research, even where experiments are
designed to answer questions around livestock agricul-
ture. We can expect increasingly detailed examination
by funding agencies of power calculations, and increas-
ing expectation that experimental designs take the 3Rs
into consideration [42]. This is likely to result in pres-
sure in all of the areas discussed above. Firstly, it seems
likely that it will become difficult to justify repeating ex-
periments solely to acquire new samples. Under these
circumstances, the establishment of biobanks will clearly
contribute to the aims of the 3Rs and should be seen as
ethically desirable.
Secondly, experimental designs will need to take con-

siderably more account of full or stratified randomisa-
tion algorithms [43]. Clearly, where an experiment is
designed with two intervention arms (e.g. postweaning
probiotic feeding and control), one approach would be
simply to randomise piglets at weaning into two groups.
However, if we have prior evidence for maternal or gen-
der effects on microbiome, it may be more appropriate
to stratify our randomisation to ensure full litter and
gender balance between the two groups rather than to
assume that full randomisation will achieve this. In
addition, stratification allows variation due to gender
and litter to be partitioned by adding them as fixed fac-
tors in the final analysis, whereas in the fully randomised
design, variation due to these factors appears in the error
term, reducing the power of the experiment. Similarly,
for microbiome or infectious disease experiments, ani-
mals penned together are likely to share microorganisms
such that animals in a pen are no longer independent
and pen becomes the experimental unit rather than ani-
mal [44]. Both of these will affect experiment size and
consequent costs.
Finally, it will be increasingly important to estimate

the power of experiments as accurately as possible in
order to use appropriate numbers of animals. Current
approaches to power analysis are limited to relatively
simple experimental designs and are not good with esti-
mating numbers necessary to identify observations. In
general, effective power calculations under these condi-
tions rely on the use of simulated data, but these algo-
rithms need to be extended to make estimating effect
sizes more intuitive, particularly where multiple factors
have been used to stratify animals as above [45, 46].

Conclusions
The overall costs of animal experiments are unlikely to
fall significantly in future. Pressure to replace, reduce
and refine the use of animals in experiments will make it
more difficult to repeat experiments which have already
been carried out, simply in order to access samples for
new technological advances. In contrast, the costs of
processing samples through existing pipelines are likely

to continue to decrease and new technologies are likely
to become affordable. As animal scientists, we have a re-
sponsibility to design our experiments to be as future
proof as possible by collecting far more samples than we
require to test our initial hypotheses and storing them in
biobanks in such a way that they can be used for testing
novel or linked hypotheses in future. This will require a
considerable shift in attitudes to experiments: we will
need a culture of horizon-scanning for technologies
likely to be usable in the near future. We will need clear,
consistent archiving of samples and metadata. Most im-
portantly, we need to understand the value of samples
taken from our animal experiments, and the extent to
which that value increases as they are analysed.
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