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Background
With recent enhancement of information technology, the high frequency financial data 
are more accessible to academician and investors. The availability of high frequency 
data in financial time series has great contribution to the accuracy of volatility estima-
tions especially in the applications of finance (Cervelló-Royo et al. 2015; Dionne et al. 
2015; Liu and Tse 2015; Louzis et  al. 2014). One of the important literatures is writ-
ten by Andersen and Bollerslev (1998) who have introduced the high frequency real-
ized volatility (RV) by cumulating the sum of products of squared returns within a day. 
However, the RV estimation becomes inconsistent (Barndorff-Nielsen and Shephard 
2004) for integrated volatility under the presence of abrupt jumps (structural breaks). 
There is ample empirical evidence on this phenomenon in financial markets (Duonga 
and Swanson 2015; Ewing and Malik 2016; Barunika et al. 2016; Dendramis et al. 2015). 
The structural break may cause by voluminous drastic feedbacks from market partici-
pants due to new inflow market information. The sudden shifts mostly related to large 
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positive/negative market return shocks which include the leverage effect (Charles and 
Darne 2014), risk premium (Dendramis et  al. 2014) and even financial crisis (Klose 
2014). Ignoring the presence of structural breaks may cause serious misleading statisti-
cal results such as incorrect descriptive statistics, erroneous hypothesis inferences, unre-
liable forecasts, just to mention a few.

There are two approaches to deal with the structural break in financial time series. 
First, is to use robust-jump volatility estimators and secondly is to embrace the structural 
break feature in the econometric models. Firstly, one may select volatility estimators 
which are robust to abrupt jumps. Barndorff-Nielsen and Shephard (2004) introduced 
the multipower variation (MPV) volatility with the cumulative sum of products of most 
adjacent absolute returns. The MPV is robust to jumps because the product of consecu-
tive returns has a smaller impact of jump after the averaging processes. However, the 
MPV is still sensitive and bias to the presence of very small returns. Recently, Andersen 
et  al. (2012) have introduced two jump-robust estimators using the nearest neighbor 
truncation (NNT) approach to battle this issue. The first volatility estimator, minimum 
realized volatility (minRV) is constructed by scaling the square of the minimum of two 
consecutive absolute returns. With the presence of jump during an interval, the minRV 
will eliminate it and compute based on the adjacent diffusive returns. Again, minRV 
is also sensitive to very small returns and leads to efficiency issue. Consequently, to 
improve the robustness to jump, the median realized volatility (medRV) uses the median 
operator to square the median of three consecutive absolute returns. In other words, the 
minimum and median operators intended to eliminate the extreme noise of volatility. In 
short, one may use the high frequency MPV and NNT estimators to deal with structural 
break in the volatility representative. For the second remedy, one may use the econo-
metric models that directly deal with structural breaks. These include jump stochastic 
volatility model (Dendramis et al. 2015), HAR-jump (Andersen et al. 2007), HAR-regime 
smooth transition (McAleer and Medeiros 2008) and Markov-switching ARFIMAX 
(Martens et al. 2009).

In this study, we include both the aforementioned methods in the standard heteroge-
neous autoregressive (HAR) proposed by Corsi et  al. (2008). This model assumes that 
the financial markets consist of heterogeneous market participants with short (noise 
traders and speculators), medium (portfolio managers and hedge fund managers) and 
long (long term portfolio managers and pension fund managers) trading horizon invest-
ments. It is in accordance with the concept of heterogeneous market hypothesis (HMH) 
recommended by Muller et al. (1993) and Dacorogna et al. (2001) where the informa-
tionally market efficiency is explained under the assumption of heterogeneous market 
participants. One of the interesting statistical properties of HAR is the long memory vol-
atility which created by the cascades of different investment horizon activities. Another 
interesting phenomenon of finance which can be explained by the HMH is on how the 
market liquidity is formed. Under the HAR framework, the time-varying market liquid-
ity can be captured according to the dominant investment horizons. The trading among 
heterogeneity market participants with different views on the same security’s value is the 
key to form a liquid market. In normal market conditions, the short investment horizons 
investors focus on technical analysis whereas long investment horizons investors judge 
from the fundamental information for a same security. For instance, a negative inflowing 
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news may be an indicator of selling for short horizon investors, but might be a buying 
opportunity for long horizon investor, and vice versa. If there are sufficient buying and 
selling among these investors, the financial market can be considered under an equi-
librium or stable condition. However during economic crisis (e.g. Subprime mortgage 
crisis), the structure of equilibrium is disturbed where long horizon investors are either 
quit or become short horizon investors. Great selling activities by short horizon inves-
tors (due to exogenous event) has caused drastic drop in prices. These unusual plunges 
have negative impact for the economy prospects and long horizon investors has doubt 
the validity of their view of the economic fundamentals. Consequently, they might quit 
or to join on overwhelmingly short horizon market dynamics. In short, the long memory 
property in HAR is diminished when a financial turmoil hits the market. In addition, the 
partial removal of long horizon investors has also caused the market become less liquid 
as the structure of heterogeneity is no longer exist.

In this study, we propose to combine both the robust-jump volatility estimator and 
structural break heterogeneous autoregressive (HAR) models to battle the structural 
break in stock market volatility modelling. The selected volatility estimators are based on 
the nearest neighbor truncation (NNT) approach namely the median (medRV) and min-
imum (minRV) realized volatility. For structural break HAR model, we firstly identify the 
multi-break points using the Bai and Perron (2003) approach and then embrace them 
in the standard HAR using dummy variables. In addition, the HAR model is equipped 
with other stylized fact features such as volatility clustering and fat-tailed property. It 
is worth noting that the proposed method in this study is somewhat different from the 
well-known approaches by Andersen et al. (2007), Corsi and Renò (2012) and Patton and 
Sheppard (2011) where the HAR volatility components are decomposed into continu-
ous sample path variation and discontinuous break variation. As a comparison with the 
standard realized volatility, the modified HAR model provides better in-sample as well 
as out-of-sample forecast evaluations. This study aims to add the empirical literature of 
high frequency volatility analysis by using modified HAR models and robust-jump vola-
tility estimators. The remaining of this study is organized as follows: “Methods” section 
provides the description of modified HAR model specification, estimation, diagnostic 
and forecast evaluations; “Result and discussion” section discusses the empirical data 
and results and finally, “Summary and conclusion” section concludes the findings of this 
study.

Methods
High frequency volatility formulations

Integrated volatility estimation based on high frequency data is commonly used to 
measure the latent volatility. Let’s consider a stochastic volatility process for logarith-
mic prices of an asset, dp(t) =  μ(t)dt +  σ(t)dW(t), where µ(t), σ(t) and W(t) are the 
drift, volatility and standard Brownian motion respectively. The μ(t) and σ(t) may be 
time-varying but are assumed to be independent of dW(t). The changes of logarithmic 
price is defined as the continuously compounded intraday returns of day t with sampling 
frequency N as rt,j = 100

(
ln Pt,j − ln Pt,j−1

)
, a with j =  1, …, N −  1. In another form, 

pt = p0 +
∫ t
0
µ(t)dt +

∫ t
0
σ(t)dW (t). The quadratic variation process for a sequence 

of partitions when N approaches infinity is equivalent to the integrated variance 
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limN→∞
∑N

i=1

(
Pti − Pti−1

)2 =
∫ t
0
σ 2(t)dt. Under this condition, the integrated variance 

can be consistently estimated by the Realized Volatility (Andersen and Bollerslev 1998), 
RV = ∑  N

j=1rt,j
2. For jump-robust estimators, Andersen et al. (2012) proposed minimum 

(minRV) and median (medRV) operators using the nearest neighbour truncation (NTT) 
approach to estimate the integrated volatility:

For i.i.d block of returns, the scaling factors ensure that each of the estimators provides 
an unbiased estimate of the underlying latent volatility. Since the block size is consider-
ably small (minRV with blocks of two returns and MedRV with blocks of three returns), 
therefore they are still asymptotically valid. However, if the block size increases to a 
wider interval, the iid assumption become harder to maintain. The minimum realized 
volatility (minRV) eliminates a jump for a given block of two consecutive returns and 
compute based on the adjacent diffusive returns whereas the median realized volatility 
(medRV) uses the median operator to square the median of three consecutive absolute 
returns. Under the presence jump, these endogenous adaptive truncation volatility esti-
mators have better theoretical efficiency properties and better finite-sample robustness 
than RV. In this specific study, the standard 5-min interval data are used to avoid micro-
structure noise issue. The impact of market microstructure noise can be further ana-
lyzed using the higher frequency data such as 1- or 2-min interval.

The heavy‑tailed HAR–GARCH model with structural break

In order to identify the breakpoints in the long-run level of volatility representations, 
we have selected the Bai–Perron sequential procedures (Bai and Perron 2003) in the full 
empirical sample. Assume that there are m-breaks with respective location kj, where 
j = 1, 2, . . . ,m, the detection is based on the ordinary least squared standard HAR 
model:

where ǫt is the error. The detection procedure begins with the full sample under the 
parameter consistency test. When the test rejects the null hypothesis of consistency, 
the first breakpoint is determined and the full sample is divided into two samples. After 

(1)minRVt,N =
π

π − 2

(
N

N − 1

) N−1∑

j=1

[
min

(∣∣rt,j
∣∣,
∣∣rt,j+1

∣∣)]2

(2)medRVt,N =
π

6− 4
√
3+ π

(
N

N − 2

)N−1∑

j=2

[
med

(∣∣rt,j−1

∣∣,
∣∣rt,j

∣∣,
∣∣rt,j+1

∣∣)]2

(3)

ln(RVd
t ) = µ0 + µ1ln

(
RV

d
t−1

)
+ µ2ln

(
RV

d
t−2

)
+ µ3ln

(
RV

w
t−1

)

+ µ4ln
(
RV

m
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)
+ ǫt

ln
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that repeat the consistency test in each of the sub-samples as a test of the alternative 
of m +  1 =  2 versus the null hypothesis of m =  1 breaks. Terminate the procedures 
until all of the sub-samples do not reject the null hypothesis. When the number (m) 
and location (kj) of breaks have been identified, a dummy variable will included in both 
the intercept (level) and slope (heterogeneous components). The additional impact of 
the breaks can be measured by the estimated μ with its respective component. In this 
specific study, we begin with the maximum number of breakpoints as five. However, we 
only found one breakpoint (refer to Table 2) with significant impact to the volatility level 
and slope parameters in this study. After the sequential breakpoints have been identified, 
the heavy-tailed HAR–GARCH(1,1) model under the structural break can be written as:

(4)

ln(RVd
t ) = θC1 + θbreak ,C2 ∗ DUMk + θd1,dayln(RV

day
t−1)+ θd2,dayln(RV

day
t−2)

+
1

5
θw1,week




5�

j=1

lnRV
day
t−j



+
1

22
θm1,month



ln

22�

j=1

RV
day
t−j



+ θbreak−d1,dayln(RV
day
t−1)

∗ DUMk + θbreak−d2,dayln(RV
day
t−2) ∗ DUMk +

1

5
θbreak−w1,week




5�

j=1

lnRV
day
t−j



 ∗ DUMk

+
1

22
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

ln

22�
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day
t−j



 ∗ DUMk + ai,t

(5)

ln(minRV d
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day
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with the GARCH specifications:

where i = 1, 2, 3 denotes the volatility representation for RV, minRV and medRV. The 
dummy variable is defined as DUMk =  1 if the observation falls on breakpoint k and 
onwards whereas 0 otherwise. Based on the HAR specification, the current volatility is 
cascaded by previous daily, weekly and monthly volatilities and the GARCH component, 
σi,t

2 can be interpreted as the volatility of RV (Corsi et al. 2008). Due to the non-normality 
issue commonly observed in financial time series, we assume that the error at follows a 
generalized error distribution (Nelson 1991) under the maximum likelihood estimation 
with the density function for both the models as follows:

where Γ[·] is the gamma function and � =
(
2−2/vŴ[v−1]

Ŵ[3v−1]

)0.5
 with v < 2 for heavier tail as 

compared to normal distribution v = 2. Using the Ox-G@RCH, the estimations are con-
ducted using the maximum likelihood by the Broyden, Fletcher, Goldfarb and Shanno 
(BFGS) unconstrained optimization method. Overall, the vector parameters to be esti-
mated for HAR are �̂(θ ,α, v) where θ =

(
θ0, θ1, θ2, θd , θw , θm, θjump

)
 and α = (α0,α1,β1) 

respectively.
For model diagnostic, the Ljung–Box serial correlations are used to examine the 

standardized and squared standardized residuals under the null hypothesis of uncorre-
lated series. Next, the model selections are based on the Akaike information criterion (
AIC = −2LT

T + 2 k
T

)
, Schwarz information criterion 

(
SIC = −2LT

T + 2
ln (k)
T

)
 and Han-

nan–Quinn information criterion 
(
IC = −2LT

T + 2
kln (ln (k))

T

)
 which are evaluated from 

the adjusted (penalty function due to additional number estimated parameters) average 
log likelihood function (LT). After the in-sample forecast evaluation, the out-of-sample 
forecast evaluations is based on I-1-day ahead forecast where h = 1, 2, . . . ,H with H 
fixed to 230. In order to evaluate the best out-of-sample forecast, we have selected root 
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage 
error (MAPE) and Theil inequality coefficient (TIC) to indicate the power of predictabil-
ity. In this study, we follow the robustness definition by Patton (2011) where the model 
ranking should be consistent no matter what types of proxies are being used as actual 
values in the forecast evaluations. In order to obtain a fair and objective forecast evalu-
ation, we alternately use the RV, minRV and medRV as the proxy of actual volatility in 
all the three measurements. A simple scoring scheme is used to accumulate their scores 
and then rank them accordingly.

Result and discussion
For empirical study, we have selected the DAX index using the Bloomberg data-
base started from 1st February 2008 until 27th February 2015 with a total of 1799 
observations. For high frequency data, we have selected the 5-min data to reduce the 

(7)
ai,t = σi,tεi,t , εi,t ∼ GED

σ 2
i,t = αi,0 + αi,1a

2
i,t−1 + βi,σ

2
i,t−1

(8)f (z; v) =
ve

(
− 1

2

∣∣ zt
�

∣∣v
)

�2

(
1+v
v

)

Ŵ

(
1
v

) .
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microstructure effect. The daily realized volatility accumulated 105 5-min data with 
approximately 190,000 5-min data for 1799 trading days. This includes the out-of-sample 
forecast evaluations data from 3rd February 2014 to 27th February 2015. It is noted that 
we have included the subprime mortgage crisis period started from early year of 2008 to 
ensure that the empirical data is highly volatile with possible jumps in the series.

Table 1 and Fig. 1 show that all the series are statistically deviated from normal dis-
tribution. Therefore, a non-Gaussian distributed innovation should be considered in 
the model specification. For break point identification, initially we pre-specified five (5) 
breakpoints. After the detections, only two of the coefficients of dummy variables are 
significantly different from zero in the HAR models. Table  2 indicates the sequential 
F-statistics and their respective locations for each volatility representations.

Estimation results

Tables  3, 4 and 5 report the estimation results for standard HAR–GARCH(1,1)-
Normal, structural break HAR–GARCH(1,1)-Normal and structural break 

Table 1 Descriptive statistics for various logarithmic RVs

Jarque−Bera statistic = T

6

(
skewness+ Kurtosis−32

4

)

* 5 % level of significance

Statistic LOG(RV) LOG(minRV) LOG(medRV)

Mean −8.980892 −9.420352 −9.403562

Median −9.037955 −9.493426 −9.467515

SD 1.005797 0.990786 0.980879

Skewness 0.494192 0.507808 0.512527

Kurtosis 3.724067 3.712591 3.692619

Jarque–Bera 112.5255* 115.3804* 114.7205*

-14

-12

-10

-8

-6

-4

-14 -12 -10 -8 -6 -4
Quantiles of LOGRV

Q
ua

nt
ile

s 
of

 N
or

m
al

LOGRV

-14

-12

-10

-8

-6

-4

-14 -12 -10 -8 -6 -4
Quantiles of LOGMIN

Q
ua

nt
ile

s 
of

 N
or

m
al

LOGMIN

-14

-12

-10

-8

-6

-4

-14 -12 -10 -8 -6 -4
Quantiles of LOGMED

Q
ua

nt
ile

s 
of

 N
or

m
al

LOGMED

Fig. 1 Quantile–quantile plots for various RVs versus normal distribution

Table 2 Multi-breakpoint detections

Critical values (Bai and Perron 2003) for k1 is 18.23 for RV and 16.19 for minRV and medRV at 0.05 level

Breakpoint LogRV LogminRV and logmedRV

F‑statistic Date F‑statistic Date

k1 21.64299 13/June/2012 22.32691 3/Aug/2012
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HAR–GARCH(1,1)-GED for RV, minRV and medRV respectively. These various mod-
els allow us to verify the advantages of including the structural break in the HAR and 
GARCH specifications. As indicated in Table 5, all the tail indexes for generalized error 
distribution (GED) are less than 2 which suggested that the innovations of volatility are 
fat-tailed.

For HAR specification, the results shows that the heterogeneous autoregressive com-
ponents (θday, θweek and θmonth) for daily, weekly and monthly volatilities are all sig-
nificantly different from zero at 5  % level of significance. Thus, this findings support 
heterogeneous market hypothesis (HMH) where the markets are constructed by hetero-
geneous market participants with different time horizon of investments. The past weekly 
volatility contributes strongest impact to the current daily volatility, follows by daily 
and monthly. For the structural break impact, all the models indicated significant level-
break effect at 5 % level for the long run volatility. For instance, the long-run volatility 
(θC1 = −  0.593806) for the structural break HAR–GARCH(1,1)-GED model (Table 5) 
obtained an additional impact (θjump,C1  =  −1.219960) under the presence of break. 
Besides the long-run volatility level, we also assume that the break is going to influence 
the heterogeneous components as well. In Tables 4 and 5, the empirical results show that 
only the minRV and medRV models for lag one daily heterogeneous components are 
affected by the presence of structural break. These empirical outcomes are acceptable 

Table 3 Estimation for standard HAR–GARCH(1,1)-NORMAL

*, ** indicate 5 and 10 % level of significance respectively

Estimation LogRV LogminRV LogmedRV

θC1 −0.535111*
(0.154328)

−0.463228*
(0.142400)

−0.463000*
(0.141844)

Heterogeneous component: θd1,day 0.217124*
(0.033015)

0.354625*
(0.032161)

0.378463*
(0.031435)

 θd2,day 0.128490*
(0.033799)

0.088655*
(0.036500)

0.059026
(0.035999)

 θw1,week 0.382793*
(0.066941)

0.303845*
(0.063905)

0.327452*
(0.061893)

 θm1,month 0.211781*
(0.043782)

0.204804*
(0.040240)

0.186657*
(0.039168)

GARCH component

 α0 0.010513*
(0.003401)

0.037335*
(0.013389)

0.010907*
(0.004508)

 ARCH effect, α1 0.044551*
(0.009438)

0.075417*
(0.017158)

0.047100*
(0.010372)

 GARCH effect, β1 0.923950*
(0.015984)

0.782428*
(0.062491)

0.908679*
(0.025107)

Selection

 AIC 1.679927 1.484523 1.407996

 SIC 1.707946 1.512527 1.436000

 HIC 1.690358 1.494948 1.418421

Diagnose

 Q(10) for standardized at 8.5638 7.3310 10.773

 Q(10) for standardized at
2 7.183274 4.991463 5.390689
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since the financial markets often react (selling or buying activities) by the highly specu-
lated market information (e.g. financial crisis, monetary policy changes, etc.) within a 
day. However, the market news after a week or a month normally have smaller impact to 
the market movements.

As a comparison, the structural break HAR–GARCH-GED model outperformed the 
rest of the models based on the three information criterion with the lowest results. 
Among the two NTT estimators, medRV performs better than its counterpart, the 
minRV. For diagnostic part, all the models failed to reject the Ljung–Box serial correla-
tions for standardized innovations. As a summary, the HAR–GARCH(1,1)-GED is the 
most preferable model compared to others in the estimation. However, there is no guar-
antee this result will persist in the out-of-sample forecast evaluations due to other fac-
tors (Hong et al. 2004).

Table 4 Estimation for heavy-tailed jump-robust HAR–GARCH(1,1)-NORMAL

*, ** indicate 5 and 10 % level of significance respectively

Estimation LogRV LogminRV LogmedRV

θC1 −0.573789*
(0.197060)

−0.572602*
(0.175907)

−0.621407*
(0.176719)

Heterogeneous component: θd1,day 0.238119*
(0.040082)

0.397943*
(0.037278)

0.434135*
(0.037851)

 θd2,day 0.149237*
(0.041986)

0.075528**
(0.042429)

 θw1,week 0.392877*
(0.078684)

0.302916*
(0.071121)

0.347932*
(0.055810)

 θm1,month 0.153743*
(0.047953)

0.161430*
(0.043576)

0.149333*
(0.042079)

Break effect for

 θbreak, C1 −1.488235*
(0.536629)

−1.249370**
(0.642890)

−1.175957*
(0.606153)

 θbreak−d1,day −0.087813
(0.068330)

−0.189498*
(0.070081)

−0.195154**
(0.066462)

 θbreak−d2,day −0.077450
(0.070632)

0.035078
(0.082032)

 θbreak−w1,week −0.151890
(0.147371)

−0.018500
(0.164841)

0.053065
(0.119166)

 θbreak−m1,month 0.170241
(0.111817)

0.058175
(0.119320)

0.035186
(0.109871)

GARCH component:

 α0 0.010233*
(0.003360)

0.020017*
(0.008815)

0.010039*
(0.004323)

 ARCH effect, α1 0.040633*
(0.009244)

0.048335*
(0.013916)

0.043843*
(0.010526)

 GARCH effect, β1 0.928107*
(0.015973)

0.874404*
(0.043618)

0.915048*
(0.024605)

Selection

 AIC 1.674161 1.478626 1.404343

 SIC 1.719692 1.524157 1.442849

 HIC 1.691111 1.495576 1.418677

Diagnostic

 Q(10) for standardized at 7.9452 7.4558 14.238

 Q(10) for standardized at
2 7.5748 6.2532 4.5178



Page 10 of 13Chin et al. SpringerPlus  (2016) 5:1883 

Forecast evaluations

The out-of-sample consists of 230 one-ahead forecasts with the latent volatility is repre-
sented alternately by logRV, logminRV and logmedRV. This is to avoid the biasness issue 
of using only one actual volatility representations. Using the dynamic forecast approach, 
the estimated parameters will be used for the next one-day-ahead forecast. Table 6 and 
Fig.  2 reported the forecast evaluations for RMSE, MAE, MAPE and TIC for all the 
models.

In general, the forecast evaluations can be examined in two aspects. First the type of 
actual volatility used in the forecast evaluations and second, the type of models based on 
the volatility representations, RV, minRV and medRV. For the first scenario, the forecast 
performances are in favor on the type of actual volatility used. For instance, when the 
logRV is used as the actual volatility, all the three models under logRV representation 

Table 5 Estimation for heavy-tailed jump-robust HAR–GARCH(1,1)-GED

*, ** indicate 5 and 10 % level of significance respectively

Estimation LogRV LogminRV LogmedRV

θC1 −0.680556*
(0.182853)

−0.593806*
(0.169789)

−0.644560*
(0.167535)

Heterogeneous component: θd1,day 0.243567*
(0.037212)

0.389279*
(0.035970)

0.430507*
(0.036053)

 θd2,day 0.146830*
(0.039307)

0.070872**
(0.040519)

 θw1,week 0.381336*
(0.074549)

0.310885*
(0.068611)

0.347257*
(0.053792)

 θm1,month 0.150149*
(0.045796)

0.164232*
(0.042325)

0.150838*
(0.040687)

Break effect for

 θbreak,C1 −1.228954*
(0.565831)

−1.219960**
(0.646179)

−1.109135**
(0.606410)

 θbreak−d1,day −0.068277
(0.066060)

−0.168897*
(0.070700)

−0.182183*
(0.067408)

 θbreak−d2,day −0.059649
(0.068689)

0.065739
(0.079042)

 θbreak−w1,week −0.129702
(0.143583)

−0.059511
(0.157710)

0.061224
(0.116876)

 θbreak−m1,month 0.142415
(0.109048)

0.051767
(0.117073)

0.022046
(0.108647)

GARCH component

 α0 0.010233*
(0.004372)

0.019657**
(0.010186)

0.010080**
(0.005338)

 ARCH effect, α1 0.038397*
(0.011729)

0.049301*
(0.016547)

0.043678*
(0.013165)

 GARCH effect, β1 0.930122*
(0.020874)

0.874745*
(0.050479)

0.914798*
(0.030635)

 Tail index, λ 1.517782*
(0.079217)

1.654018*
(0.082734)

1.604856*
(0.082409)

Selection

 AIC 1.656853 1.470345 1.392122

 SIC 1.705886 1.519378 1.434128

 HIC 1.675107 1.488599 1.407759

Diagnose

 Q(10) for standardized at 8.2971 7.7389 14.462

 Q(10) for standardized at
2 8.1479 6.4542 4.6093
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Table 6 Forecast evaluations

The best perform measurements are indicated by *

RMSE MAE MAPE TIC

Actual: logRV

 HAR(RV)-normal 0.651281* 0.524890 5.562033 0.034283*

 Break-HAR(RV)-normal 0.652070 0.521887* 5.509533 0.034394

  Break-HAR(RV)-GED 0.653979 0.522205 5.505789* 0.034520

 HAR(minRV)-normal 0.764127 0.603088 6.624436 0.039294

 Break-HAR(minRV)-normal 0.731901 0.578977 6.343932 0.037724

 Break-HAR(minRV)-GED 0.729189 0.574511 6.292221 0.037625

 HAR(medRV)-normal 0.746771 0.589072 6.460210 0.038443

  Break-HAR(medRV)-normal 0.718214 0.565700 6.187558 0.037089

 Break-HAR(medRV)-GED 0.714892 0.563258 6.158450 0.036932

Actual: logminRV

 HAR(RV)-normal 0.789156 0.644290 6.339814 0.040637

 Jump-HAR(RV)-normal 0.809646 0.662120 6.504324 0.041774

  Break-HAR(RV)-GED 0.818384 0.670025 6.576982 0.042256

 HAR(minRV)-normal 0.638405 0.506469 5.150216 0.032131

  Break-HAR(minRV)-normal 0.630824 0.492197* 4.980560* 0.031821

  Break-HAR(minRV)-GED 0.640285 0.508674 5.139286 0.032333

 HAR(medRV)-normal 0.630286* 0.503166 5.103593 0.031756*

  Break-HAR(medRV)-normal 0.637293 0.508452 5.128620 0.032208

  Break-HAR(medRV)-GED 0.638447 0.509171 5.132373 0.032278

Actual: logmedRV

 HAR(RV)-normal 0.765429 0.623274 6.144211 0.039449

 Break-HAR(RV)-normal 0.786059 0.641008 6.307899 0.040592

 Break-HAR(RV)-GED 0.794619 0.648410 6.375548 0.041064

 HAR(minRV)-normal 0.619110 0.494591 5.047823 0.031186

 Break-HAR(minRV)-normal 0.609756* 0.485405* 4.929134* 0.030784*

 Break-HAR(minRV)-GED 0.619592 0.496536 5.033198 0.031315

 HAR(medRV)-normal 0.611312 0.488187 4.968397 0.030826

  Break-HAR(medRV)-normal 0.616746 0.493640 4.994146 0.031196

  Break-HAR(medRV)-GED 0.617718 0.494580 5.000038 0.031256

Fig. 2 Dynamic forecast comparison for nine models
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perform the best with mixture of normal and GED models. On the other hand, log-
minRV and logmedRV perform almost the same with the largest percentage error 17 % 
as compared to the best logRV models. When the actual forecasts shift to logminRV and 
logmedRV, the logminRV models show the best forecast evaluations, follow by logme-
dRV models and lastly the logRV models. It is worth to note that the logmedRV models 
only indicate 1–2 % of error as compared to logminRV whereas the logRV models show 
approximately 35  % error from the same actual forecasts using logminRV. The larger 
deviation of model logRV as compared to the other two NTT models may contribute 
from the nature of the noisiness which does not smoothen by the minimum and median 
operators. For the second scenario, the Jump-HAR(minRV) models with the normality 
assumption seem to perform better as compared to the GED assumption. However, it is 
worth noting that the performances for logminRV and logmedRV are very close with the 
deviation of 1–2 % of deviation from the best perform model.

Summary and conclusion
This study combines two approaches to deal with structural breaks in the high frequency 
volatility modelling. Firstly, the structural break component is included in the HAR 
model and then secondly, using the jump-robust nearest neighbor truncation volatility 
estimators. Using these approaches, the proposed modified HAR model in general per-
forms better than its standard form in both the in-sample and out-of-sample forecast 
evaluations. It is also worth noting that the forecast performances are also influence by 
the selected actual volatility in the forecast evaluations. In summary, this study provides 
valuable information to risk management and investment portfolio analysis where some 
of the finance applications such as value-at-risk can be determined directly from the vol-
atility forecast results.
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