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ventilation as a rescue therapy for severe acute 
respiratory distress syndrome
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Abstract 

Purpose:  Low tidal volume ventilation improves the outcomes of acute respiratory distress syndrome (ARDS). How-
ever, no studies have investigated the use of a rescue therapy involving mechanical ventilation when low tidal volume 
ventilation cannot maintain homeostasis. Inverse ratio ventilation (IRV) is one candidate for such rescue therapy, but 
the roles and effects of IRV as a rescue therapy remain unknown.

Methods:  We undertook a retrospective review of the medical records of patients with ARDS who received IRV in our 
hospital from January 2007 to May 2014. Gas exchange, ventilation, and outcome data were collected and analyzed.

Results:  Pressure-controlled IRV was used for 13 patients during the study period. Volume-controlled IRV was 
not used. IRV was initiated on 4.4 ventilation days when gas exchange could not be maintained. IRV significantly 
improved the PaO2/FiO2 from 76 ± 27 to 208 ± 91 mmHg without circulatory impairment. The mean duration of IRV 
was 10.5 days, and all survivors were weaned from mechanical ventilation and discharged. The 90-day mortality rate 
was 38.5 %. Univariate analysis showed that the duration of IRV was associated with the 90-day mortality rate. No 
patients were diagnosed with pneumothorax.

Conclusions:  Pressure-controlled IRV provided acceptable gas exchange without apparent complications and 
served as a successful bridge to conventional treatment when used as a rescue therapy for moderate to severe ARDS.

Keywords:  Acute respiratory distress syndrome, Inverse ratio ventilation, Pressure controlled ventilation,  
Ventilator-associated lung injury, Positive end-expiratory pressure
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Background
In patients with acute respiratory distress syndrome 
(ARDS), mechanical ventilation plays a pivotal role in 
triggering or exacerbating inflammatory responses in the 
lungs, spreading localized pulmonary inflammation to 
the systemic circulation and causing multiple organ dys-
function syndrome (Slutsky and Tremblay 1998). Preven-
tion of ventilator-induced lung injury (VILI) is a mainstay 
of the treatment of ARDS. Low tidal volume ventilation 
(LTV), which is characterized by limiting both the tidal 
volume and plateau pressure (Pplat) in combination with 
positive end-expiratory pressure (PEEP), has been used 

to minimize alveolar overstretch and repetitive alveo-
lar collapse and reopening, both of which provoke VILI 
(The acute respiratory distress syndrome network 2000; 
Amato et al. 1998). A previous study reported that mor-
tality parallels Pplat (Hager et al. 2005), and the safe Pplat 
threshold is considered to be 30 cmH2O.

In some severe cases of ARDS, however, LTV is unable 
to provide adequate gas exchange (Slutsky and Ranieri 
2013). This is partly because limiting the Pplat restricts the 
amount of PEEP that can be used; additionally, an adequate 
tidal volume cannot be achieved in the presence of an 
elevated pleural pressure. Because the mean airway pres-
sure is closely related to oxygenation, a ventilation mode 
that can raise the mean airway pressure without increas-
ing the Pplat could be a useful means of maintaining 
oxygenation (Yanos et  al. 1998). Airway pressure release 
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ventilation (APRV) (Modrykamien et  al. 2011) and high-
frequency oscillatory ventilation both aim to achieve these 
goals and have been recommended for severe cases of 
ARDS caused by influenza A-H1N1 pneumonia. Although 
extracorporeal membrane oxygenation (ECMO) is a sug-
gested substitute to avoid VILI and can benefit patients 
with severe ARDS (Webb et al. 2009; Peek et al. 2009), its 
clinical application is limited because the technique is very 
resource-intensive (Peek et al. 2009). Therefore, a ventila-
tion modality that can be implemented for severe ARDS in 
the clinical setting of any facility is warranted.

Inverse ratio ventilation (IRV) is another technique that 
uses the same principles to improve oxygenation (Cole 
et al. 1984; Lain et al. 1989; Gurevitch et al. 1986; Tharratt 
et  al. 1988; Abraham and Yoshihara 1989) as other res-
cue therapies and can be undertaken with the majority of 
intensive care unit (ICU) ventilators at no additional cost. 
Despite some promise, previous studies have found IRV 
to have little or no benefit in patients with severe ARDS 
(Mercat et  al. 1993; Lessard et  al. 1994; Mancebo et  al. 
1994; Mercat et  al. 1997; Zavala et  al. 1998). However, 
these studies were conducted more than 20  years ago 
without the concept of lung protection and designed to 
compare the short-term effects on gas exchange, hemo-
dynamic parameters, and static compliance. The aim of 
this study is to assess whether IRV is feasible as a rescue 
therapy for life-threatening gas exchange failure when 
conventional ventilation modes could not maintain. We 
carried out a retrospective review of medical records and 
investigated the physiological data, the outcomes, and 
complications associated with IRV.

Methods
Ethics statement
The study protocol was approved by our institutional eth-
ics committee (reference number 2721).

Study design and patient cohort
This was a single-center, retrospective, observational 
study. A retrospective review of the clinical records of 
all patients with ARDS treated in the ICU of our insti-
tution from January 2007 to May 2014 was undertaken. 
All patients diagnosed with ARDS according to the Ber-
lin definition (Ranieri et al. 2012) and ventilated with IRV 
were included in the analysis.

Data
We recorded age, sex, body weight, underlying diseases, 
presumed cause of ARDS, indications for IRV, acid–base 
balance, serum lactate concentration, acute physiologi-
cal and chronic health evaluation (APACHE) II score at 
ICU admission, mechanical ventilation parameters, and 
Murray score before switching to IRV. The arterial partial 

pressure of oxygen to fraction of inspired oxygen (PaO2/
FiO2, P/F) was calculated, and the timing of initiation of 
IRV, duration of IRV, total duration of ventilation, and 
28- and 90-day mortality were also collected. Arterial 
blood pressure and heart rate before and after the initia-
tion of IRV and the incidence of pneumothorax were col-
lected to assess the adverse effects.

Mechanical ventilation and sedation strategies
Mechanical ventilation was initiated with pressure-con-
trolled assist-control ventilation (ACV) according to our 
procedures for acute hypoxemic respiratory failure. Briefly, 
the expiratory tidal volume and the Pplat were limited 
<8  ml/kg predicted body weight and 30  cmH2O, respec-
tively. When refractory hypoxemia [arterial oxygen satura-
tion measured by pulse oximetry (SpO2) of <90 %] persisted 
even when the Pplat reached 30 cmH2O with a fraction of 
inspired oxygen of >0.6, the ventilator mode was switched 
to APRV or IRV with the aim of achieving an adequate 
mean airway pressure and thus maintaining acceptable and 
stable oxygenation. The APRV parameters were set accord-
ing to a previous review (Habashi 2005). When APRV fails 
to maintain gas exchange, it was converted to IRV. When 
commencing IRV, the inspiratory to expiratory time ratio 
was fixed at 2:1, and the tidal volume was initially set at 
4–7 ml/kg predicted body weight. Additionally, PEEP was 
applied to maintain a mean airway pressure of 2–4 cmH2O 
higher than that of the previous ventilation mode and was 
increased incrementally until acceptable gas exchange was 
achieved. The respiratory frequency, peak inspiratory pres-
sure (PIP), and PEEP were adjusted to avoid respiratory aci-
dosis and maintain a pH of >7.25. Cardiac ultrasonography 
was performed daily to evaluate the right ventricular func-
tion. The Richmond agitation-sedation scale score (Sessler 
et al. 2002) was maintained at −3 to −4 during IRV. Seda-
tion had not been interrupted until IRV was terminated.

Statistical analysis
Statistical analyses were performed using JMP 9 (SAS 
Institute Inc., Cary, NC, USA). The significance of the 
categorical variables was calculated using Fisher’s exact 
test. A t test was used to compare quantitative vari-
ables, which were presented as either mean ±  standard 
deviation or proportion (%). Univariate analysis was per-
formed to screen variables associated with the 90-day 
mortality rate. A p value of <0.05 was considered statisti-
cally significant.

Results
Of 116 patients with ARDS screened during the study 
period, 13 patients had received IRV and were included in 
the analysis; their characteristics are summarized in Table 1. 
The APACHE II score at ICU admission was 29.4 ±  8.7. 
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Two patients had been diagnosed with chronic obstructive 
pulmonary disease and were being treated. The indication 
for IRV was refractory hypoxemia in all patients. The worst 
P/F before the initiation of IRV was 76 ± 27 mmHg. After 
the initiation of IRV, patient 1 underwent decompression 
laparotomy to resolve grade IV abdominal compartment 
syndrome due to large bowel obstruction, and patients 10 
and 12 received prone positioning. The ventilation modes 
prior to IRV were ACV (n =  8) or APRV after failure of 
ACV (n = 5). The average Murray score calculated in eight 
patients ventilated with ACV was 3.2  ±  0.5. The Mur-
ray score was not calculated in the patients ventilated with 
APRV because only release volume (not tidal volume) was 
measured with this modality. IRV was started within 72 h 
after the start of mechanical ventilation. Patients 3 and 13 
had late-onset ARDS, and IRV was started on ventilator day 
14 and 21, respectively. Patient 12 was evaluated on venti-
lator day 4, and IRV was started on that day. Volume-con-
trolled IRV was not used in the study.

Ventilator parameters and effects of IRV on gas exchange
The mean Pplat and PEEP in ACV before IRV were 
29.4 ± 3.3 and 12.4 ± 3.5 cmH2O, respectively. The mean 

highest PEEP in APRV before IRV was 29.0 ± 4.0 cmH2O. 
The ventilation frequency during IRV was 31–57 breaths/
min. The changes in Pplat, PEEP and ventilation fre-
quency over time are shown in Table 2. The Pplat signifi-
cantly increased after IRV (p = 0.00042).

Hypoxemia and acidosis was improved over time 
after IRV (Table 3). The time courses of P/F in all cases 
were shown in Fig.  1. The P/F significantly increased to 
208 ± 91 mmHg within the first 24 h after IRV compared 
with before IRV (p = 0.0000025).

Adverse events associated with IRV and the mortality rate
Five patients were in shock status when IRV was intro-
duced. Patient 1 became hemodynamically unstable on 
initiation of IRV and was successfully treated with vol-
ume resuscitation and administration of vasopressors. 
The remaining four patients did not require any additional 
resuscitation. Mean blood pressure was stable in the first 
24 h after the initiation of IRV (Fig. 1). Noradrenaline was 
used in 12 of 13 patients. The doses of noradrenaline were 
decreased or unchanged in the first 24 h after the initia-
tion of IRV (Fig. 2) and no further circulatory events were 
observed. All patients were sedated with a combination 

Table 1  Patient characteristics

APACHE II acute physiological and chronic health evaluation II score, ARDS acute respiratory distress syndrome, ICU intensive care unit, COPD chronic obstructive 
pulmonary disease, IRV inverse ratio ventilation, ACS abdominal compartment syndrome, ACV assist-control ventilation, APRV airway pressure release ventilation, NA 
not available

Patient Age Sex Body  
weight (kg)

APACHE 
II at ICU 
admission

Cause 
of ARDS

COPD Reason 
of IRV

Ventila-
tor mode 
before IRV

Murray score 
before IRV

Additional 
pulmonary 
protection

1 79 F 49 36 Septic shock/
ACS

− Hypoxemia/
acidemia

APRV NA Decompression 
laparotomy

2 69 M 38 26 Sepsis + Hypoxemia ACV 3.25

3 62 M 65 23 Pneumonia/
sepsis

− hypoxemia ACV 3.5

4 81 M 60 28 Pneumonia − Hypoxemia APRV NA

5 77 M 58 46 Pneumonia − Hypoxemia/
acidemia

ACV 3.5

6 69 M 43 39 Septic shock/
liver abscess

− Hypoxemia ACV 3.0

7 69 F 47 24 Septic shock − Hypoxemia ACV 4.0

8 70 M 60 14 Sepsis + Hypoxemia/
acidemia

ACV 3.0

9 62 M 60 40 Septic shock − Hypoxemia/
acidemia

ACV 2.5

10 77 F 51 31 Septic shock − Hypoxemia/
acidemia

APRV NA Prone position

11 68 M 48 26 Sepsis − Hypoxemia/
acidemia

APRV NA

12 57 M 81 26 Pneumonia/
septic shock

− Hypoxemia/
acidemia

APRV NA Prone position

13 72 M 53 23 Pneumonia/
sepsis

− Hypoxemia/
acidemia

ACV 2.75
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of fentanyl, dexmedetomidine, and propofol to facilitate 
mechanical ventilation. Pneumothorax was not observed, 
although no patients were paralyzed.

The 28- and 90-day mortality rates were 30.8 and 
38.5 %, respectively. All survivors were switched to APRV 
to maintain their mean airway pressure and weaned 
from mechanical ventilation, whereas all nonsurvivors 
were ventilated with IRV to the end. Age, the APACHE 
II score, the ventilation days before IRV, and the dura-
tion of IRV in survivors and non-survivors were shown 
in Table 4. Univariate analysis showed that the duration 
of IRV was associated with the 90-day mortality rate 
(p = 0.009).

Discussion
We found that IRV was started immediately after the fail-
ure of LTV or APRV, and improved oxygenation without 
major complications such as cardiovascular deterioration 
and pneumothorax. The Murray scores of patients in our 
cohort, who fulfilled the criteria for ECMO, reflect the 
severity of ARDS. There was no difficulty weaning back 
to a more conventional mode of ventilation in survivors. 
Mortality was acceptable compared with a recent report 
(Ranieri et al. 2012). These findings suggest that IRV has 
the potential to be an effective and safe option for tempo-
rarily maintaining gas exchange for refractory hypoxemia 
that has proved difficult to manage using conventional 
ventilation modes. IRV is feasible as a rescue therapy 
when ECMO is not available.

In the current study, mechanical ventilation before IRV 
was performed according to the concept of lung protec-
tion, limiting the tidal volume and Pplat. Although the 
PEEP before IRV was lower than that recommended in a 
previous randomized controlled trial (The acute respira-
tory distress syndrome network 2000), the PEEP is often 
set lower to prevent the Pplat from exceeding the safety 

Table 2  Ventilator parameters, hemodynamics, and the dose of noradrenaline before and after IRV

Data are presented mean ± SD

Pplat plateau pressure, PEEP positive end-expiratory pressure, BP blood pressure, IRV inverse ratio ventilation
a  Pplat is calculated regardless of the modality
b  Averaged PEEP is calculated in the patients ventilated with ACV

Pplata 
(cmH2O)

PEEP  
(cmH2O)

Frequency 
(breaths/min)

Systolic BP (mmHg) Mean BP (mmHg) Noradrenaline 
(µg/kg/min)

Before IRV 26 ± 6 11 ± 5b 17 ± 7 103 ± 21 76 ± 16 0.135 ± 0.216

1 h after IRV 37 ± 6 20 ± 5 40 ± 9 108 ± 13 83 ± 14 0.130 ± 0.150

6 h after IRV 35 ± 4 18 ± 4 39 ± 9 112 ± 20 81 ± 12 0.110 ± 0.142

12 h after IRV 34 ± 3 17 ± 3 38 ± 10 119 ± 21 84 ± 15 0.102 ± 0.133

24 h after IRV 34 ± 4 17 ± 3 41 ± 13 120 ± 14 85 ± 10 0.076 ± 0.100

Table 3  Arterial blood gas analysis before and after IRV

pH PaO2/FiO2 (mmHg) PaCO2 (mmHg)

Before IRV 7.29 ± 0.12 100 ± 62 47 ± 13

1 h after IRV 7.31 ± 0.09 144 ± 112 47 ± 16

6 h after IRV 7.29 ± 0.09 157 ± 92 46 ± 14

12 h after IRV 7.35 ± 0.08 192 ± 94 41 ± 13

24 h after IRV 7.36 ± 0.06 196 ± 90 41 ± 9

Fig. 1  Changes in mean blood pressure in the first 24 h. The bold line 
and error bar express average and standard deviation, respectively

Fig. 2  The doses of noradrenaline in the first 24 h. Twelve of thirteen 
patients received noradrenaline infusion
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threshold (Checkley et al. 2008). This is a clinical limitation 
of conventional ventilation and confirmed our concern 
that another modality is required in particular situations.

It is suggested that our stepwise protocol for the appli-
cation of IRV contributed to prevent adverse events. IRV 
was introduced when the patients were diagnosed as 
ARDS in the previous studies (Mercat et al. 1993, 1997; 
Lessard et  al. 1994; Mancebo et  al. 1994; Zavala et  al. 
1998). In our study IRV was used as the final option 
for elevating the mean airway pressure with a smaller 
increase in the PIP or Pplat because the Pplat had already 
reached the safety threshold. To facilitate IRV, we chose 
ventilation parameters that minimized the disadvantages 
rather than those that provided full therapeutic benefits. 
When the Pplat and PEEP increased during IRV, stepwise 
titration was performed to obtain the lowest appropriate 
pressure. Although the Pplat exceeded the safety thresh-
old of the lung protective strategy in some cases, the 
stepwise titration procedure maintained a safe minimum 
pressure, preventing barotrauma. IRV provided accept-
able gas exchange to continue the treatment for patients 
at life-threatening risk, and this was the aim of IRV. We 
tried to minimize the duration of IRV, and as soon as it 
was feasible the mode was changed to APRV, which reli-
ably maintained a mean airway pressure during IRV and 
was easier to synchronize with the patient’s own respira-
tory pattern. These factors may account for the low inci-
dence of adverse events and relatively low mortality rate.

One of the mechanisms underpinning the improve-
ment in oxygenation is thought to be promotion of alveo-
lar recruitment (Marini and Ravenscraft 1992) due to 
the longer inspiratory time. Another mechanism is the 
prevention of derecruitment due to the shorter expira-
tory time. Insufficient alveolar pressure may cause tidal 
recruitment/derecruitment of the alveoli, exposing the 
regions to shear stress (Ochiai 2015). A recent animal 
study demonstrated that IRV minimized cyclic recruit-
ment and derecruitment of atelectasis and improved 
oxygenation compared with the conventional mode (Boe-
hme et al. 2015). This was accompanied by redistribution 

of ventilation from the nondependent to dependent lung 
regions (Kotani et al. 2016). Because the ventilatory fre-
quency during IRV was 31–57 breaths/min in our cohort, 
the very short expiratory time contributed to stabiliza-
tion of the alveoli in accordance with the longer inspira-
tory time.

IRV is associated with a risk of developing VILI because 
of the higher pressure required to commence IRV. It is 
well recognized that IRV can cause hemodynamic insta-
bility as a consequence of an increased intrinsic PEEP 
and mean airway pressure (Cole et  al. 1984). However, 
we did not observe these adverse events in the current 
study. Hemodynamic compromise can be prevented or 
ameliorated by the incremental introduction of higher 
ventilation pressures, volume resuscitation, or vasopres-
sor therapy; this is the approach we adopted in one of the 
patient who experienced hemodynamic instability in our 
study. We found that a higher PEEP caused hypercapnia, 
but this was ameliorated by increasing the ventilator fre-
quency. Therefore, the overall benefits of IRV appear to 
outweigh its disadvantages.

Our study has several limitations. It was a single-center, 
retrospective, case-series study. Additionally, the patients’ 
clinical condition is not common, and the sample size was 
therefore small. Whether severe complications develop 
during IRV depends in major part on the clinical experi-
ence of the staff. There were several uncontrolled factors 
having an impact on the outcomes, such as patient back-
ground, fluid balance, and the timing of IRV introduc-
tion and termination. Switching to IRV would likely have 
occurred earlier in the patients’ clinical course than in pre-
vious studies. We did not measure or record lung param-
eters (e.g., mean airway pressure and intrinsic PEEP) or 
esophageal pressure. An inspiratory to expiratory ratio of 
2:1 was used in the study, but the effect of this ratio on the 
outcomes is unclear. We were unable to establish whether 
IRV reduced lung injury because we did not measure the 
biomarkers associated with VILI and did not routinely 
perform lung biopsy. Finally, the feasibility of volume-con-
trolled IRV is unknown because we did not use it.

Table 4  Risk factors for 90-day mortality rate

APACHE acute physiological and chronic health evaluation, ICU intensive care unit, MV mechanical ventilation, IRV inverse ratio ventilation

Total (n = 13) Survivors (n = 8) Nonsurvivors (n = 5) p value

Age (years) 70 ± 7 72 ± 8 67 ± 6 0.221

Male no. (%) 10 (77 %) 5 (63 %) 5 (100 %) 0.118

APACHE II at ICU admission 29.4 ± 8.7 30.3 ± 10.3 28.0 ± 6.3 0.670

MV before IRV (days) 4.4 ± 6.1 3.5 ± 4.4 5.8 ± 8.5 0.529

IRV duration (days) 10.5 ± 9.6 5.5 ± 4.2 18.6 ± 10.6 0.009
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Conclusions
Pressure-controlled IRV provided acceptable oxygena-
tion without major complications, suggesting that pres-
sure-controlled IRV is feasible as a rescue therapy in 
patients with ARDS that do not respond to conventional 
treatment. Further studies are warranted to confirm the 
efficacy and safety of pressure-controlled IRV as a rescue 
therapy for moderate to severe ARDS.
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