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Abstract 

Background:  Currently there is no reliable medical treatment for aortic regurgitation (AR).

Methods:  Thirty-nine Sprague–Dawley rats underwent creation of AR or sham operation. Treated rats were assigned 
to early or late institution of sildenafil therapy (100 mg/kg/day) for a total of 10 weeks. Treatment–effects were meas‑
ured by serial echocardiography, invasive hemodynamic measurements, and tissue analysis.

Results:  Rats assigned to early treatment developed less remodeling than untreated rats. Thus, left ventricular (LV) 
dilation was blunted by sildenafil with end–systolic diameter being significantly smaller (6.6 ± 0.4 vs. 7.7 ± 0.4 mm, 
respectively, p < 0.05). Also, LV wall thickness was significantly decreased in treated rats compared to controls 
(2.23 ± 0.08 vs. 2.16 ± 0.05 mm, p < 0.01). Fractional shortening was improved by treatment (p < 0.05). Myocar‑
dial fibrosis was borderline decreased by treatment (p = 0.09). Akt was increased in treated compared to controls 
(p < 0.05).

Conclusion:  Sildenafil slightly inhibits LV remodeling and improves fractional shortening in rats with AR when treat‑
ment is initiated early.
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Background
Aortic regurgitation (AR) is a common valvular disease 
that affects men more than women, and whose incidence 
increases with age (Maurer 2006). Severe AR is associ-
ated with higher morbidity and mortality compared to 
the general population (Dujardin et  al. 1999). Chronic 
AR results in a mixed hypertrophy phenotype (eccentric 
and concentric) resulting from predominantly volume 
but also elements of pressure overload (Opie et al. 2006). 
Although well tolerated for years, persistent overload is 
associated with activation of humoral systems such as 
the renin-angiotensin and sympathetic nervous system 
leading to myocyte hypertrophy resulting in a dilated 

left ventricle (LV) and systolic dysfunction. Once symp-
toms or systolic dysfunction in asymptomatic patients 
occur, outcomes become worse. However, if intervention 
is performed early, LV damage appears to be reversible 
(Bonow et  al. 1984, 1985; Dujardin et  al. 1999). Aortic 
valve replacement (AVR) is the most definitive treatment 
and LV dimensions act to be good indicators for timing 
of surgery and predictors of outcomes post surgery. Over 
decades, several attempts have been made to determine 
the effect of different pharmacologic therapies (Lin and 
Stewart 2011). However, there are no large randomized 
clinical trials, and there is substantial inconsistency in 
the results of published studies (Søndergaard et al. 2000; 
Evangelista et al. 2005). As a result the American Heart 
Association/American College of Cardiology and Euro-
pean Society of Cardiology offer only class IIb (level of 
evidence B) recommendations for vasodilator therapy 
in AR (Vahanian et  al. 2012; Nishimura et  al. 2014). 
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Phosphodiesterase 5A (PDE5A) inhibition has demon-
strated positive cardiac effects in various disease mod-
els, including mitral valve regurgitation (Kim et al. 2012). 
Recently, PDE5A-inhibition has shown to abrogate car-
diac remodeling and deterioration of LV function in pres-
sure overload by inhibiting several pro–hypertrophic 
signaling pathways (Takimoto et al. 2005). Yet, the effects 
of PDE5A-inhibition in AR are unknown. We examined 
the effects of PDE5A-inhibition in a rodent model of 
chronic AR with respect to LV remodeling and LV func-
tion, particularly clarifying the more clinical applicable 
question of timing of therapy vis-à-vis disease duration. 
Additionally, we investigated if the effects on the heart 
were mediated by molecular mechanisms known to be 
operative in pressure overload hypertrophy.

Results and discussion
Three rats died during the study–period; one from the 
AR (early) group, one from the AR + SIL (late) group and 
one from the AR (late) group. Only data from surviving 
rats were included in the final analysis.

Morphology and function
AR resulted in classic eccentric hypertrophy and led to 
rightward shift of PV–loops indicating LV remodeling, 
Fig. 1. Table 1 shows echocardiographic characteristics at 
baseline and 2 weeks after AR–induction. Table 2 shows 
morphometric measures at sacrifice.

Early treatment
Echocardiography showed AR  +  SIL (early) rats to 
develop less remodeling than AR (early). LV dimensions 

increased in all rats with AR, starting immediately after 
AR–induction. In AR (early) LV dilation continued 
throughout the study-period while treatment with silde-
nafil blunted this response, Fig.  2. LVEDD was signifi-
cantly lower after six and 9 weeks but did not in overall 
analysis. LVESD was significantly lower in AR  +  SIL 
(early) compared to AR (early) after twelve weeks and 
in overall analysis (p  =  0.03). Furthermore average LV 
wall thickness was significantly lower in AR + SIL (early) 
compared to AR (early) in overall analysis (p = 0.004) and 
consequently a lower LV mass was observed (p = 0.005, 
not shown).

As seen in Fig.  3 conventional echocardiographic 
measures of LV function showed less decrease in FS in 
AR +  SIL (early) than in AR (early) after 12  weeks and 
in overall analysis (p = 0.01). We did not find any differ-
ence in LV performance measured by speckle tracking 
echocardiography.

In contrast, invasive hemodynamic measurements 
showed no differences in measurements of LV perfor-
mance or filling between treated and untreated groups, 
Table  3. Pulse pressure (PP) was unaltered between AR 
(early) and AR + SIL (early).

In the early treated group, histological analysis showed 
a borderline significant decrease in subendocardial colla-
gen fibrosis compared to AR (early) (p = 0.09), Fig. 4.

We did not find any difference in phosphorylated levels of 
Akt S473 and Akt S308 between controls and sham–oper-
ated rats, while we found an increase in phosphorylated 
Akt S473 in AR + SIL compared to AR (p = 0.002). Total 
calcineurin and phosphorylated ratio of CamKII, ERK, 
JNK, and p38 were unchanged between groups, Fig. 5.

Fig. 1  Aortic regurgitation. Left panel shows left ventricle (LV) from a rat with aortic regurgitation with regurgitation indicated by arrows. Right panel 
shows pressure volume loops from a sham-operated (left) and untreated (AR) rat (right). The horizontal axis indicate relative volume unit (RVU) and 
the vertical axis indicate intraventricular pressure
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Late treatment
Echocardiographic measurements of LV remodeling 
showed weaker effect of sildenafil treatment in the late 
treated group compared to the early treated. We did not 
find any significant differences in overall analysis of LV 
remodeling. However we saw a possible trend towards 
less wall thickness and LV mass (not shown) in AR + SIL 
(late) compared to AR (late) (p =  0.057 and p =  0.07, 
respectively). Echocardiography showed ventricular 
function to be unchanged by treatment (Fig.  3), as FS, 
SR and strain decrease was parallel in AR +  SIL (late) 
and AR (late). This was confirmed by invasive hemody-
namic measurements showing no difference in dp/dtmax 
and dp/dtmin in AR +  SIL (late) compared to AR (late), 
Table 3. Diastolic blood pressure was positively affected 
by sildenafil treatment and thus PP was significantly 
lower in treated compared to untreated rats (46  ±  4 
vs. 66 ±  7  mmHg, p =  0.05). As an isolated finding of 

improved LV diastolic function, we found Tau to be lower 
in treated compared to untreated rats.

Discussion
In this study we demonstrate the effects of PDE5-inhibi-
tion in an experimental model of AR. We found PDE5-
inhibition to blunt LV remodeling and LV dysfunction, 
when treatment was administered early. Although only 
borderline significant, the LV changes occurred along 
with a small reduction in subendocardial collagen fibro-
sis. Protein analysis showed increased levels of Akt in 
early treated rats while five known key pro–hyper-
trophic proteins were unaltered by treatment. In rats 
treated late with sildenafil, similar salutary effects were 
not noted. Our results indicate mild positive effects of 
PDE5-inhibition in experimental AR, however with 
a specific treatment-window wherein treatment is 
effective.

Table 1  Echocardiographic characteristics

Intraventricular septum thickness in diastole (IVSd), posterior wall thickness in diastole (PWd), left ventricular end–diastolic diameter (LVEDD), left ventricular end–
systolic diameter (LVESD), strain rate (SR), fractional shortening (FS). Measurements are given as mean (SEM)

* p < 0.05 (sham vs. AR)

Baseline Two weeks

Sham (n = 8)
Mean

AR (n = 8)
Mean

Sham (n = 8)
Mean

AR (n = 8)
Mean

IVSd 1.54 ± 0.06 1.55 ± 0.06 1.68 ± 0.03 1.85 ± 0.06*

PWd 1.99 ± 0.05 2.04 ± 0.05 1.94 ± 0.04 2.13 ± 0.06*

LVEDD 8.66 ± 0.08 9.08 ± 0.09 8.90 ± 0.16 10.36 ± 0.23*

LVESD 5.16 ± 0.10 5.21 ± 0.18 5.09 ± 0.21 6.05 ± 0.30*

Strain −23.11 ± 0.78 −22.66 ± 1.09 −23.26 ± 1.02 −22.52 ± 1.03

SR (systolic) −5.43 ± 0.27 −5.31 ± 0.30 −5.33 ± 0.31 −5.12 ± 0.31

SR (diastolic) 6.41 ± 0.58 6.15 ± 0.38 4.41 ± 1.45 5.25 ± 0.32

FS 0.40 ± 0.01 0.43 ± 0.02 0.43 ± 0.02 0.42 ± 0.02

Table 2  Morphometric measure at sacrifice

Comparison of morphometric measures at sacrifice between sham and AR (disease p value) and between AR and AR+SIL (treatment p value). Left ventricle (LV) and 
right ventricle (RV)

* p value < 0.05

Early Late

Sham (n = 8) AR + SIL 
(n = 8)

AR (n = 7) p value (dis-
ease)

p value (treat-
ment)

AR + SIL 
(n = 6)

AR (n = 5) p value 
(treatment)

Body weight, g 670 ± 18 627 ± 13 711 ± 28 0.23 0.01* 657 ± 28 731 ± 53 0.23

Heart weight, g 1.66 ± 0.07 2.07 ± 0.13 2.45 ± 0.16 <0.05* 0.08 2.00 ± 0.11 2.27 ± 0.25 0.30

Heart weight ratio*, 
mg

2.49 ± 0.12 3.30 ± 0.17 3.47 ± 0.23 <0.01* 0.57 3.06 ± 0.21 3.08 ± 0.18 0.94

LV weight, g 1.24 ± 0.08 1.51 ± 0.09 1.76 ± 0.13 0.01* 0.13 1.49 ± 0.09 1.65 ± 0.17 0.40

RV weight, g 0.26 ± 0.01 0.30 ± 0.02 0.36 ± 0.03 <0.05* 0.14 0.31 ± 0.03 0.36 ± 0.04 0.34

Lung weight, g 1.59 ± 0.03 1.73 ± 0.04 2.10 ± 0.36 0.11 0.34 1.69 ± 0.07 1.72 ± 0.11 0.86
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In humans the clinical course of AR is slow and more 
benign than other cardiac overload conditions (Tois-
cher et  al. 2010) and patients can be asymptomatic for 
years. Nonetheless, in some patients the balance between 
preload reserve, hypertrophy and increased afterload is 
ultimately exhausted and left untreated patients develop 
symptoms of congestive heart failure and eventually die 
(Maganti et al. 2010). Currently, the only definitive treat-
ment is AVR (Bonow et al. 2008).

Remodeling and LV function
Chronic AR causes an increase in end-diastolic vol-
ume and chamber compliance, while enlarged chamber 
size increases systolic wall stress. As disease progresses 
recruitment of preload reserve and compensatory hyper-
trophy enables LV to maintain a near-normal systolic 

function. This model of experimental AR compares to 
the long compensated phase in man, where there is a bal-
anced eccentric LV and only subtle or no LV performance 
reduction.

In a model of transverse aortic constriction (TAC), 
early initiated sildenafil treatment has shown to inhibit 
development of LV hypertrophy and collagen fibrosis 
(Takimoto et  al. 2005). Although our results were less 
pronounced, they are similar with the TAC model. We 
found sildenafil started before LV changes occurred 
to inhibit LV dilation. However, we did not observe LV 
diameters to return to normal or FS to improve dramati-
cally. Additionally we observed sildenafil to only mildly 
reduce LV hypertrophy. Unlike the TAC model we did 
not find sildenafil to reverse already established LV 
changes.

Fig. 2  Left ventricle remodeling. LV diameters in end-diastole (LVEDD) and end–systole (LVESD) (left panel) and LV wall thickness (right panel) for 
early treated groups (upper) and late treated groups (lower). Asterisk indicate significant difference between AR vs. AR + SIL and hash indicate differ‑
ence between sham vs. AR at individual time points (t test/ANOVA). Vertical bar and related p value is for overall difference (repeated measures)
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Recently Kim et al. (2012) showed that anti-inflamma-
tory and anti–apoptotic properties of sildenafil are play-
ing an important role in preventing LV remodeling in a 
model of mitral valve regurgitation (MR). They found 
MR to activate stress responses like inflammatory path-
ways, DNA damage responses and cell cycle checkpoint 
pathways, all leading to LV remodeling. These negative 
effects were opposed by chronic treatment with silde-
nafil. Sildenafil attenuated remodeling by reversing dys-
regulated genes related to inflammation and apoptosis. 
Additionally they found sildenafil to down-regulate 
gene-sets related with hypertrophy. We did not specifi-
cally test anti-inflammatory and anti-apoptic proper-
ties, but we found an equivalent effect of sildenafil on 
remodeling.

Signaling pathways
Due to lack of good models only little is known about 
intracellular hypertrophy-signaling in volume overload. 
Since AR consists of both volume and pressure overload 
components, we found the rationale for targeting hyper-
trophy-signaling pathways known to be operative in pure 
pressure and volume overload.

Cyclic GMP is a key second-messenger mediating an 
immense number of processes within the cardiovascular 
system, and dysfunction at any level of cGMP-signaling 
is closely related with cardiovascular disease (Tsai and 
Kass 2009). Takimoto et  al. (Takimoto et  al. 2005) have 
found that cardiac PDE5A expression is low under stable 
conditions and that PDE5A–inhibition shows little effect 
on the normal heart. On the contrary, PDE5A activity is 

Fig. 3  Left ventricle function. LV function in early (upper panel) and late (lower panel) treated groups measured by fractional shortening (FS) (left) 
and by speckle tracking (right). Asterisk indicate significant difference between AR vs. AR + SIL and hash indicate difference between sham vs. AR at 
individual time points (t test/ANOVA). Vertical bar and related p value is for overall difference (repeated measures)
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increased during cardiac stress (Pokreisz et al. 2009) and 
this state is counter-balanced by increased PKG-1 activ-
ity. Takimoto et al. have shown cGMP catabolism to trig-
ger several pro-hypertrophic signaling pathways resulting 
in pathological remodeling (Takimoto et al. 2005).

The PI3K–Akt pathway is a cascade affecting heart-
growth and survival (Matsui and Nagoshi 2003). Physi-
ologic stress activates Akt while sustained activation 
changes expression-profiling similar to pathological 
hypertrophy (Bernardo et  al. 2010). Cyclic GMP has 
pleomorphic effects on Akt-activation. In rat ventricu-
lar myocytes Kato et  al. (2005) found high-level cGMP 
signaling to induce apoptic cell death while lower levels 
were associated with cell survival. In our study we found 
Akt to be significantly increased in early treated rats. The 
level of increase observed is equal to protective effects of 
Akt when comparing to the many-fold increase seen in 
pathologic hypertrophy.

We found no significant difference in calcineurin 
between groups and thus no effect of sildenafil-treat-
ment, which is in agreement with previously reports 
from an aortocaval-shunt model (Braun et  al. 2004). 
Additionally, we did not observe any effect of sildenafil 

on CAMKII, p38, ERKs, and JNKs. This indicates that 
hypertrophy in AR is independent of these pathways.

Although our results suggest mild positive effects 
of sildenafil in AR the exact mechanism behind this is 
unknown. In our study several properties of sildenafil 
were left untested. One particular effect is worth men-
tioning. There is abundant PDE5 expression in lung tis-
sue and PDE5–inhibition reduces pulmonary pressure 
and improves loading conditions (Lewis et  al. 2007). 
Especially the ability of sildenafil to alleviate LV diastolic 
function has been investigated in clinical studies (Guazzi 
et al. 2007), but has recently shown disappointing results 
(Redfield 2013). However, sildenafil also reduces periph-
eral vascular resistance and blood pressure, which could 
reduce regurgitation-volume in AR by improving the 
pressure gradient between the aorta and the left ven-
tricle during diastole. Additionally, reduction in after-
load and wall stress alleviates left ventricular load and 
improves forward stroke volume. In combination these 
changes may translate into reduction in LV mass and 
preservation of LV function. However, our study was not 
designed to specifically test the vaso–active properties of 
sildenafil.

Table 3  Invasive hemodynamic measurements

Early treated groups (panel A) and late treated groups (panel B) at baseline (left) and at sacrifice (right). p values are from paired analysis between AR and AR+SIL

Baseline Sacrifice

Sham (n = 8) AR (n = 8) AR + SIL (n = 8) Sham (n = 6) AR (n = 4) AR + SIL (n = 4) p value

(A) Early treatment group

 HR 318 ± 14 316 ± 8 324 ± 18 355 ± 11 324 ± 8 333 ± 15 0.97

 Systolic BP 133 ± 7 134 ± 6 134 ± 11 140 ± 4 140 ± 10 131 ± 8 1.00

 Diastolic BP 90 ± 4 91 ± 4 98 ± 5 92 ± 2 78 ± 7 78 ± 2 0.57

 PP 42 ± 10 46 ± 10 35 ± 11 47 ± 6 62 ± 7 53 ± 7 1.00

 dp/dtmax 8243 ± 280 8841 ± 220 8645 ± 301 8150 ± 204 7440 ± 317 7864 ± 290 0.96

 dp/dtmin (−) 6960 ± 318 7620 ± 240 7944 ± 421 7165 ± 461 5446 ± 432 5904 ± 617 1.00

 LVESP 131 ± 10 137 ± 8 131 ± 11 129 ± 9 125 ± 12 126 ± 13 0.26

 LVEDP 9.1 ± 1.3 8.1 ± 2.0 8.3 ± 1.2 8.1 ± 1.9 5.7 ± 2.4 9.8 ± 4.6 0.96

 Tau 12.4 ± 0.7 12.4 ± 0.7 12.1 ± 0.6 13.8 ± 1.1 11.1 ± 2.1 13.3 ± 2.6 0.81

Baseline Sacrifice

AR (n = 5) AR + SIL (n = 6) AR (n = 5) AR + SIL (n = 6) p value

(B) Late treatment group

 HR 296 ± 12 269 ± 12 235 ± 6 267 ± 10 0.02*

 Systolic BP 117 ± 3 115 ± 4 131 ± 6 128 ± 3 0.98

 Diastolic BP 85 ± 2 82 ± 3 65 ± 3 82 ± 2 0.03*

 PP 31 ± 2 33 ± 2 66 ± 7 46 ± 4 0.05*

 dp/dtmax 7600 ± 225 7810 ± 339 6473 ± 386 8211 ± 203 0.44

 dp/dtmin (−) 6836 ± 552 6893 ± 499 7120 ± 1474 6443 ± 556 0.25

 LVESP 104 ± 10 110 ± 7 148 ± 4 125 ± 9 0.29

 LVEDP 4.9 ± 0.4 4.4 ± 1.0 7.2 ± 0.5 8.5 ± 2.9 0.35

 Tau 10.2 ± 0.7 10.1 ± 0.3 18.2 ± 1.5 10.6 ± 0.3 0.03*
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Methods
Animal model
AR was induced by echocardiography-guided closed-
chest operation, described in detail elsewhere (Arsenault 
et  al. 2002; Plante et  al. 2003, 2004). Briefly, two aortic 
valve leaflets were punctured in a retrograde manner by 
a right–sided carotid arteriotomy. All rats were sedated 
with Isoflurane (1.5–2.0 % mixed with oxygen) followed 
by intra peritoneal cocktail (ketamine 90  mg  kg−1 and 
Xylazine 10 mg kg−1) injection. Treatment with a PDE5A-
inhibitor was initiated after 2  weeks of AR. Adminis-
tration was performed by mixing sildenafil (Pfizer inc, 
Groton, CT, USA, 100 mg/kg/day) in transgenic dough–
diet (Bioserv: Frenchtown, NJ, USA) that was fed to rats 
daily for a total of 10 weeks. All animal experiments were 
approved by the Johns Hopkins University Institutional 
Animal Care and Use Committee.

Early treatment protocol
Twenty-four male Sprague–Dawley rats (age 19–20 weeks: 
Charles River: Wilmington, MA, USA) were divided into 
three groups: Rats with AR treated with sildenafil begin-
ning at 2  weeks after AR (AR +  SIL (early), n =  8), rats 
with severe AR receiving no treatment (AR (early), n = 8), 
and sham-operated rats receiving no treatment (Sham, 
n = 8). Sham-operated rats had all procedures performed 

except perforation of aortic valves. Rats were sacrificed 
12 weeks after baseline examination.

Late treatment protocol
Fifteen male Sprague–Dawley rats (age 9–10 weeks) were 
subjected to AR and divided into two groups: Rats with 
AR treated with sildenafil beginning at 12 weeks after AR 
[AR + SIL (late), n = 8], and rats with severe AR receiv-
ing no treatment [AR (late), n = 7]. Rats were sacrificed 
22 weeks after baseline examination.

Echocardiography
Echocardiography was performed on a Vivid 7 machine 
(GE Healthcare: Horton, Norway) with a 14 MHZ lin-
ear vascular probe. Examinations were performed at fol-
lowing time points: Early study: 0 (baseline), 2, 6, 9 and 
12  weeks after AR. Late study: 0, 2, 6, 9, 10, 12, 16, 19, 
and 22 weeks after AR.

Diameters, wall thickness (WT), and shortening 
fraction (FS) were assessed by M–mode. Measure-
ments were averaged from four beats, two parasternal 
long–axis (PLAX) and two short–axis (SAX) planes. 
FS was calculated as [LVEDD −  LVESD]/[LVEDD]. As 
a measure of WT, septum and LV posterior walls were 
averaged. Speckle tracking was performed by acquir-
ing 2D cine loops from at least six cardiac cycles, in 

Fig. 4  Fibrosis. Bars indicate degree of collagen fibrosis (%) in LV in untreated (AR) and treated (AR + SIL) rats. Right images show histological sec‑
tions of LV tissue, with collagen colored blue
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mid-ventricular SAX plane at frame rates >70  s−1. 
Tracking was performed by using at least three consecu-
tive cardiac cycles in EchoPAC’s strain modality analysis 
software (v. 7.0, GE Healthcare, Waukesha, WI, USA). 
The global trace representing averaged circumferential 
deformation was used. For strain-rate measurements the 
global traces were used.

Hemodynamic measurements
Invasive LV hemodynamic measurements were per-
formed at baseline and before sacrifice. In anesthetized 
rats a micro–tip conductance pressure–volume cath-
eter (Millar Instruments, Inc.: Houston, TX, USA) was 
inserted into the heart by right–sided carotid arteriot-
omy. Pressure–volume loops (PV-loops) were obtained 
under resting conditions.

Histology
Formalin (10 %) fixed and paraffin embedded myocardium 
from LV was sectioned into 5  µm thick slices and stained 
with H&E and Masson’s trichrome. For analysis, four trans-
mural areas from each circumferential LV-section (one from 
each rat) were extracted using Scanscope software (Aperio 
Technologies inc.: Vista, CA, USA). For fibrosis quantifica-
tion FRIDA (FRamework for Image Dataset Analysis: The 
Johns Hopkins University, Baltimore, MD, USA) was used. 
This is a custom open-source image analysis software pack-
age for color image datasets. Epicardium, pericardium and 
larger vessels were excluded from this analysis.

Protein analysis
Tissue samples from snap–frozen hearts were prepared 
for protein analysis as described elsewhere (Champion 

Fig. 5  Protein analysis. Bars indicate the ratio of phosphorylated (P) to total (T) protein or housekeeping protein (GAPDH) normalized to untreated 
(AR). *p < 0.05 untreated (AR) vs. treated (AR + SIL)
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et  al. 2004). Proteins were prepared by standard proce-
dures for Western blotting and antibody probation. NIH 
Image J software was used for quantifying blots (NIH, 
version 1.45b). Phospho-protein activation was quanti-
fied as ratio of phosphorylated protein to total protein 
and GAPDH.

Statistical analysis
AR was documented by comparing sham-operated and 
untreated (AR) rats. The effect of treatment was docu-
mented by comparing medically treated (AR + SIL) with 
untreated (AR) rats. The difference between multiple 
groups was analyzed with ANOVA and Tukey’s test for 
multiple comparisons. Serial echocardiography was com-
pared by repeated measures. All p values are two-tailed 
and a significance level of 0.05 was used. Statistics are 
given as mean ± standard error unless stated otherwise. 
All analysis were performed using SAS® software (SAS 
for windows, release 9.1, SAS Institute Inc., Cary, NC, 
USA).

Limitations
Experimental AR is different to what is seen clinically, 
mainly due to the acute nature of the model. However 
this is a limitation in most experimental valve models and 
was accounted for by postponing measurements until 
after the acute phase, which allowed adaptation to the 
new loading conditions (Olsen et al. 2013).

Ten weeks of medical treatment is similar to what 
has been previously used (Takimoto et  al. 2005) and 
addresses the early chronic phase of AR. However longer 
treatment-duration could reveal more chronic effects of 
sildenafil.

Our sample size is modest but adequate to demonstrate 
significant differences in the early treatment group. A 
larger sample size may have revealed additional signifi-
cant effects.

As in clinical settings, speckle tracking imaging faces 
limitations with frame rates, which is amplified with fast 
heart rates. However, in small animals the shortened 
diastolic filling time is followed by a systolic phase that is 
as long or even longer, which allows >7 frames to recon-
struct the systolic part of the strain curve. This number is 
similar to what is used in human MR tagging studies.

Conclusion
In a rat model of chronic severe AR, we found sildena-
fil to mildly inhibit left ventricle remodeling and systolic 
dysfunction when treatment was started early in the 
course of disease.
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