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A spectrum of sharing: maximization of
information content for brain imaging data

Vince D Calhoun'?

Abstract

such as deep learning.

component analysis

Efforts to expand sharing of neuroimaging data have been growing exponentially in recent years. There are several
different types of data sharing which can be considered to fall along a spectrum, ranging from simpler and less
informative to more complex and more informative. In this paper we consider this spectrum for three domains:
data capture, data density, and data analysis. Here the focus is on the right end of the spectrum, that is, how to
maximize the information content while addressing the challenges. A summary of associated challenges of and
possible solutions is presented in this review and includes: 1) a discussion of tools to monitor quality of data as it
is collected and encourage adoption of data mapping standards; 2) sharing of time-series data (not just summary
maps or regions); and 3) the use of analytic approaches which maximize sharing potential as much as possible.
Examples of existing solutions for each of these points, which we developed in our lab, are also discussed
including the use of a comprehensive beginning-to-end neuroinformatics platform and the use of flexible
analytic approaches, such as independent component analysis and multivariate classification approaches,
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Review
Wide-spread sharing of neuroimaging data and results is
gaining momentum despite initial bold attempts which
failed to gain widespread adoption initially [1,2]. Re-
cently, calls for neuroimaging data sharing have been re-
vived [3], though there is a lack of consensus about ideal
models for incentivizing data sharing. Indeed there are
many issues to consider, such as when to best consider
sharing (e.g., at study setup, or after study completion),
incentives to both data providers and data consumers,
resources and sustainability, type of data to be shared
(e.g., summary results or raw data), as well as the use
of analytic approaches ranging from a high-level sum-
mary (e.g., meta-analytic) to data-driven and multivariate
approaches.

Data sharing involves balancing many trade-offs. In
this paper, we consider the larger issue of data sharing
as seen through the lens of a spectrum ranging from
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simpler and less informative, to more complex and more
informative. We consider, one-by-one in the subsequent
sections, three domains within this context including
data capture, data density, and data analysis (Figure 1)
with a primary focus on how to push towards the right
end of the spectrum to maximize information content
while addressing existing challenges.

First, regarding data capture, it almost goes without
saying that it makes sense to maximize the quality of
data as it is collected. However, most studies still do not
collect data fully electronically, do not store all aspects
of study information in a central place, and still draw
upon error prone data entry and use of individual
spreadsheets. In addition, one of the most difficult as-
pects of sharing data across studies relates to mapping
the assessment information into a common framework.
Indeed, the development of common data elements for
various domains is the focus of much research [4-6].
Secondly, the type of data shared ranges from higher to
lower information density from time series data (e.g., an
fMRI data set), to contrast or connectivity maps, to co-
ordinates and peaks (e.g., tables in a journal article). And
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Figure 1 A spectrum of data-sharing.
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finally, the flexibility of the analytic approach is tightly
tied into the availability of data at hand and also directly
related to the amount of information one can extract
from the data. We discuss all three of these issues and

make some recommendations which we hope will be
useful for the field.

Data capture

One of the perhaps more overlooked aspects of data shar-
ing involves the data collection phase. Most studies are
still focused primarily on optimizing the data collection
process within the study despite considerable evidence
that a more comprehensive approach reduces errors [7],
and sharing of the data is seen as a secondary phase or
perhaps relegated to a ‘necessary burden’ [8]. As seen
in Figure 1, the data collection process for assessments

can benefit greatly from the use of electronic capture
tools such as redcap [9], but there is a notable paucity
of tools which can handle both advanced assessments, as
well as neuroimaging (or genetics) data. One such tool we
have developed is the collaborative informatics and neuro-
imaging suite (COINS) [10]. COINS provides a multitude
of tools to maximize the efficiency and minimize the
errors associated with collecting both assessment and
neuroimaging data [11,12], and also provides tools to
easily enable the sharing of data from within this frame-
work [13]. Tools such as those in COINS are import-
ant not only to collect quality data, but also to encourage
adoption of common data elements that enable map-
ping of assessment and clinical information in addition
to imaging information between studies [4-6,14] (see
Figure 2).
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Figure 2 Examples of question types included in COINS.
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Concern: Storage

One of the concerns relevant to neuroimaging data (and
becoming even more so with the increased pace of data
collection [15]) is the amount of data storage required to
store the time series data. Storage can be addressed in
multiple ways including the use of cloud-based storage
[16], the centralization of large-data capacity, and the
use of distributed approaches [17]. While database man-
agement is a long-standing topic of discussion, the rela-
tively small sample sizes used in most imaging studies
[18], combined with a research silo culture (i.e., working
within a lab and not sharing information across labs),
have left most researchers with little incentive to invest
in developing and/or adopting sophisticated databases.
Recent changes include an increasing number of multi-
site studies [19,20], release of data from open science
initiatives [21], and the expansion of imaging and pheno-
typic data acquisition protocols (e.g., the introduction of
multiband imaging [22] have produced a nearly 40-fold
increase in the size of functional and diffusion datasets).
Multiple neuroinformatics tools are emerging to facilitate
data organization and sharing, including XNAT [23],
LONI [24], and BIRN HID [25] — each of which, is a work
in progress with unique advantages and disadvantages, as
well as uncertain readiness for widespread deployment. At
the Mind Research Network (MRN), we have developed
COINS, a sophisticated system for study management,
archiving, and sharing; it currently serves multiple inves-
tigators and imaging centers around the world [11].
COINS can handle a variety of imaging modalities and
analysis tools, as well as data capture and archival services
that automate the transfer, organization, backup and
processing of imaging data directly from the MRI scan-
ner. For collecting phenotypic data, COINS provides an
easy-to-use form builder that generates questionnaires of
varying complexity for web-based data entry, for use by
participants at home or in a research office. A tool called
oCOINS (offline COINS) facilitates offline data entry for
fieldwork; it features the necessary synchronization and
security features (e.g., differential role and permission
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setting). COINS’ data collection and organization features
are complemented by a graphical “Data Exchange” tool
which enables searching, identification, and sharing of
datasets between users (or others, with permission)
[11,12]. Containing over 550 studies, 37,000+ imaging ses-
sions from 30,000+ subjects and 395,000+ assessments,
COINS has undergone substantial testing and continues
to rapidly grow [13,26]. A map of the locations where data
has been provided or downloaded is provided in Figure 3.
Based on the large amount of download activity (and this
is not a unique phenomenon to COINS), it is clear there
is a great demand for more open data sharing in the neu-
roimaging community.

In summary, the use of standardized tools for capturing
and organizing data, is essential as they have been shown
to both reduce errors, as well as increase efficiency of data
capture [27-29]. There are many tools available for captur-
ing assessment data [29-32], though such solutions are
not used as much as they should be in neuroimaging stud-
ies, especially for neuroimaging data, and the studies that
do tend to use separate systems for neuroimaging and
assessment data. However there are some notable excep-
tions to this and a large growth in the number of neuroin-
formatics tools available to the community. The community
will benefit greatly from an increase in integrated systems
where querying for multiple data types (e.g., neuroimag-
ing, assessment, genetics, social media) is possible via a
single entry point.

Data density

Another domain of neuroimaging data sharing involves
data density. One can ‘share’ data by virtue of the tables
included in published papers, by sharing result images
containing values at all points in the brain, or by sharing
the full time-series data. This spectrum roughly maps
into the information density of a given data set, and this
has implications for its utility. For example, contrast
maps specific to a task have been shown to be sensitive
to underlying connectivity networks, indeed, applying in-
dependent component analysis (ICA) to contrast maps

® Data Consumer
® Data Provider

Figure 3 Map of COINS data distribution (consumers and providers).
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from a task-based study reveals networks of regions show-
ing common across-subject covariation, which resemble
with widely studied resting fMRI networks [33]. This is
likely due to a ‘fortuitous’ biasing of the task-based activity
by the underlying connectivity. However sharing only con-
trast images comes at a significant cost; that is loss of
information. As shown in [33], though it is clear that one
can estimate similar networks from second-level data, the
estimated networks are noisier than those estimated
from raw data, and thus more subjects would be needed
to compensate for this. One can directly estimate the
amount of information in contrast images versus raw data
using entropy. Figure 4 shows an example of the average
entropy calculated from the contrast images of 20 subjects
(blue), as well as the average entropy calculated from the
raw data (red); it is obvious that the variability among sub-
jects is much higher and the entropy is much lower for
the contrast images. In addition, there is information in
the time-series data that are not visible from the average
maps, for example without the raw data one is unable to
make inferences about the dynamics of the network pat-
terns (i.e., the chronnectome) [34], a rapidly growing area
of fMRI investigation. In addition, data fusion approaches
can benefit greatly from additional information about each
modality [35,36].

Concern: Privacy

It is obvious that if maximizing information is the only
goal then sharing of raw data should always be done.
However in some cases there are goals which compete
against the maximization of information, such as the need
to preserve privacy. In some cases privacy is of paramount
importance and can be a major barrier to data sharing.
High dimensional datasets entail a high risk for re-
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identification despite meeting current privacy standards
(e.g., HIPAA) —a common concern in the context of high
dimensional biological datasets (e.g., genetics, MRI im-
ages). The recent Netflix competition highlighted concerns
about phenotypic data when some competitors inadvert-
ently re-identified individuals from anonymous datasets
[37] (http://www.netflixprize.com; http://www.wikipedia.
org/wiki/Netflix_Prize). The well-known example of gen-
etic reidentification from datasets anonymized per
National Institutes of Health (NIH) guidelines is another
cautionary tale [38-41].

Data usage agreements (DUA) are a potential solution
for enabling access to data while maintaining participant
privacy, but unfortunately they have significant limita-
tions for large studies, for example getting approval for
many DUAs, each of which may require institutional ap-
proach, can be cumbersome and slow. NIH’s centralized
database efforts, such as the National Database for Autism
Research (NDAR) [42], are a step forward, but are US-
based and require a federal-wide assurance number (FWA),
limiting the international sharing of data, and still requires
centralized downloading and manual organization of
all data. The incorporation of a DUA management tool is
one possibility which would be extremely helpful for
building large consortia.

Data sharing efforts like ADNI [43], HCP [44], INDI
[8], and openfMRI [45] are open, provide deidentified
data, and use the DUA approach. Other approaches, in
particular ENIGMA [46], which work with more sensi-
tive genetic data, do not require data to be shared, but
instead work with individual investigators to have them
run scripts on their data to provide desired summary
measures for meta-analysis. This is more private, though
not in a quantifiable way.
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Figure 4 Entropy of contrast maps versus entropy of preprocessed fMRI data. It is quite clear that there is considerably more information
contained within the preprocessed time series data relative to the contrast maps extracted from the data.
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Another solution to address the above concerns about
privacy is to provide tools to share data in a way that
protects privacy while still enabling maximal information
extraction via analytic approaches, such as multivariate clas-
sification [17,47]. Systems that attempt privacy-preserving
computation fall into three categories. The first set pro-
vides plausible privacy by arguing that sharing only data
derivatives guarantees privacy since the raw data is not
shared (this is the ENIGMA model). Plausibly private sys-
tems are best described as not blatantly non-private. A
second class of systems, called definitional privacy, define
privacy via some legal definition of de-anonymization
(e.g., the safe harbor clause of HIPAA); by removing cer-
tain features. Such approaches provide legal or policy
guarantees, but make no formal claims of re-identifiability.
The final class of systems provide technological privacy;
privacy is defined as a property of the data (as in k-
anonymity [48]) or a property of a data processing algo-
rithm (as in differential privacy [49]). These definitions
give an operational meaning to privacy and provide limits
on the ability to re-identify an individual. Such systems
are not without precedent: in the genetics community,
ViPAR [50] and dataSHIELD [51] have used P2P data
technologies to support the sharing and aggregate analysis
of distributed data, while leaving data control at local sites.
Figure 5 provides an example of a differentially private
approach to data sharing which results in dramatically
improved error rates for a multivariate classifier, the sup-
port vector machine, compared to the rates one would get
without access to the private data.

The development of privacy preserving analysis ap-
proaches is an example of maximizing information while
addressing the important concern of privacy. The solution
discussed also touches on the use of flexible analytic ap-
proaches, such as multivariate classification. Such tools
are essential in our quest to make sense of the complex
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data we are collecting and ultimately, we hope, the human
brain. Regarding sharing of raw (and preprocessed data), a
recent large consortium (over 5,000 rest fMRI data sets)
on reproducibility and replicability (CoRR) of resting fMRI
is currently available through COINS and NITRC [52,53].
It will be very interesting to see how this data is used, and
certainly it would be possible to systematically compare,
and with larger numbers, the various points on the data
sharing spectra that we discuss. Though sharing of raw
data will always give the most flexibility, there are also
great benefits to sharing intermediate data. For example,
many interesting findings have emerged in the area of
meta-analysis or of the analysis of statistical maps calcu-
lated from imaging data [45,54,55].

Data analysis

In this final section we touch on the last domain — the
analytic approach. There are a wide range of options for
analyzing fMRI data ranging, such as approaches which
considers only single voxels or regions of interest one-
by-one to those that work on the full data set at once in
a multivariate framework. While it is not possible to do
justice to the breadth of approaches currently available,
one main emphasis in more recent years has been a
focus on networks [56] rather than individual regions or
voxels. Such approaches, including whole-brain seed-
based to ICA-based approaches, enable beautiful parcel-
lations of brain function to be estimated from the data
while also enabling statistical comparisons of the con-
nectivity both within and among networks (the latter is
called functional network connectivity or FNC [57,58]).
Figure 6 (top) shows an example of a group ICA-based
[59] parcellation and also an example of the FNC, or
among-network connectivity (bottom) both within
healthy individuals (bottom left), schizophrenia patients
(bottom middle) and differences (bottom right). While
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Figure 5 Classification results on private data. Differentially private approach to data sharing which enables the use of a support vector
machine classifier on data from multiple privacy sites to be pooled together, resulting in a significantly decreased error rate. Notably, with
enough sites, the error rate is comparable to that one would obtain if the data were completely open [47].
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Figure 6 Example of parcellation using ICA [60] including component maps (top) separated into categories based on the anatomic
location and FNC or among-network connectivity which can be summarized via the cross-correlation among network time courses
(bottom). Results for health individuals (HC), patients with schizophrenia (SZ), and the difference are also shown.

possible on summary maps as described earlier [33], the
use of such approaches is not optimal without access to
the original data.

Another example of a ‘high information’ analysis ap-
proach is the use of multivariate classification. One recent
approach that has shown promise for neuroimaging data

is deep learning [61,62], a technique which has performed
quite well in the area of social network mining, image pro-
cessing, and digit recognition among others. The idea is to
learn hidden, possibly nonlinear, aspects of data which in
the end can significantly improve classification perform-
ance. Figure 7 shows an example of the impact of model
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Figure 7 Impact of depth of model on classification accuracy in brain imaging data. As the depth of the learner increases (from left to
right) the discriminative power of the learnt features increases as well. Notably, the subjects that were held out are also well discriminated,
meaning that deep learning generalizes to unseen data. The mapping facilitates analysis of large datasets by displaying complete data in a single
figure in a way that highlight data regularities [61].
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depth on the results from a brain imaging analysis. It is
encouraging to see that in a cross-validated approach the
groups appear to be better separated with increasing
depth. This is of course no guarantee that deep learning
will work in all cases, but it does suggest there is potential
for learning important information from brain imaging
data which might not be immediately obvious from a sim-
ple group difference.

Concern: Interpretability

One key concern with the use of more complex analytic
approaches is the potential for overfitting the data as well
as the lack of interpretability, especially with nonlinear ap-
proaches. These are valid concerns, the first can be ad-
dressed by using best practices in cross-validation of
results (e.g., k-fold cross-validation) and careful evaluation
of potential confounding variables. The latter represents a
desire to interpret the results. Approaches like ICA are
quite often linear, and can thus be quite readily interpreted,
and the most widely-used ICA approaches optimize for
both independent and sparsity measures with considerable
success [63]. Fortunately, even for more complex methods,
there are ways to project the data into a domain that can
be interpreted. This however has not been a major goal of
the initial wave of results, which primarily focus on classifi-
cation performance. But even highly nonlinear approaches,
such as deep learning, can be carefully evaluated at each of
the layers to interpret the underlying results. However,
much more work is needed in this area.

In summary, flexible data analysis approaches can be
highly informative especially when the underlying signals
of interest are complex and poorly understood. Ultimately,
there is a trade-off in the use of a simpler model with
fewer parameters; however, a simpler model does not
guarantee a better solution. One example summarized in
[56] shows, in the case of predicting age, the mean activity
across the entire brain gives better predictive power over
more complex approaches, yet when predicting diagnosis,
a connectivity-based measure was more informative than
the simpler measures. That being said, given the high
complexity of the brain and questions we are asking, and
the extremely simple models that are most widely used in
brain imaging, there is substantial room for growth in the
area of more flexible modeling approaches which will
likely lead to an increased understanding of brain struc-
ture and function. This has already been born out, for ex-
ample functional connectivity [34,64,65] which was
initially dismissed by much of the field, has grown into a
major research focus.

Conclusions

Data sharing in neuroimaging is alive and well. This re-
view has focused upon the concept of maximization of
information, which is extremely important if we are to
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move our understanding of the brain forward. Consider
the fact that we are still finding new information within
very complex fMRI data sets that was not initially re-
vealed (such as the recent focus on time-varying con-
nectivity [34]). Current approaches are taking a variety
of practical shortcuts to push data sharing forward, such
as focusing only on meta-analytic approaches or sharing
of only contrast images. While such approaches have
their place and are extremely useful, we must not lose
sight of the goal of making all collected data available to
the community. Within the domains of data capture, data
density, and data analysis I have tried to provide some ex-
amples, challenges, and solutions in order to foster this
ongoing discussion. I look forward to the future and be-
lieve the combination of 1) technological advances and
tools to assist investigators in collection of high quality
data in a way that can be easily shared; 2) approaches to
confront storage and computational barriers associated
with sharing of the most raw form of the data; and 3) ad-
vanced algorithms to enable data-mining of rich data sets
even in the context of possible constraints, such as privacy
concerns, will move the field ahead at a rapid pace to help
fill in the huge gaps in knowledge we have about human
brain function and ultimately may help improve the lives
of those with devastating brain disease.
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