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Abstract
Some new iterative algorithms with errors for approximating common zero point of
an infinite family ofm-accretive mappings in a real Banach space are presented.
A path convergence theorem and some new weak and strong convergence
theorems are proved by means of some new techniques, which extend the
corresponding works by some authors. As applications, an infinite p-Laplacian-like
differential system is investigated, from which we construct an infinite family of
m-accretive mappings and discuss the connections between the equilibrium solution
of the differential systems and the zero point of them-accretive mappings.
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1 Introduction
Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual space of E. We use
‘→’ and ‘⇀’ (or ‘w-lim’) to denote strong and weak convergence, respectively. We denote
the value of f ∈ E∗ at x ∈ E by 〈x, f 〉.

Define a function ρE : [, +∞) → [, +∞) called the modulus of smoothness of E as
follows:

ρE(t) = sup

{‖x + y‖ + ‖x – y‖


–  : x, y ∈ E,‖x‖ = ,‖y‖ ≤ t
}

.

A Banach space E is said to be uniformly smooth if ρE(t)
t → , as t → .

A Banach space E is said to be strictly convex if and only if ‖x‖ = ‖y‖ = ‖( –λ)x +λy‖ for
x, y ∈ E and  < λ <  implies that x = y. A Banach space E is said to be uniformly convex if
for any ε ∈ (, ] there exists δ >  such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.

It is well known that a uniformly convex Banach space is reflexive and strictly convex.
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An operator B : E → E∗ is said to be monotone if 〈u – v, Bu – Bv〉 ≥ , for all u, v ∈ D(B).
The monotone operator B is said to be maximal monotone if the graph of B, G(B), is not
contained properly in any other monotone subset of E × E∗.

A single-valued mapping F : D(F) = E → E∗ is said to be hemi-continuous [] if
w-limt→ F(x + ty) = Fx, for any x, y ∈ E. A single-valued mapping F : D(F) = E → E∗ is
said to be demi-continuous [] if w-limn→∞ Fxn = Fx, for any sequence {xn} strongly con-
vergent to x in E.

Following from [] or [], the function h is said to be a proper convex function on E if
h is defined from E onto (–∞, +∞], h is not identically +∞ such that h(( – λ)x + λy) ≤
( – λ)h(x) + λh(y), whenever x, y ∈ E and  ≤ λ ≤ . h is said to be strictly convex if h(( –
λ)x + λy) < ( – λ)h(x) + λh(y), for all  < λ <  and x, y ∈ E with x �= y, h(x) < +∞ and
h(y) < +∞. The function h : E → (–∞, +∞] is said to be lower-semi-continuous on E if
lim infy→x h(y) ≥ h(x), for any x ∈ E.

A continuous strictly increasing function ϕ : [, +∞) → [, +∞) is called a gauge func-
tion [] if ϕ() =  and ϕ(t) → ∞, as t → ∞. The duality mapping Jϕ : E → E∗ associated
with the gauge function ϕ is defined by []

Jϕ(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ϕ(‖x‖)
,‖f ‖ = ϕ

(‖x‖)}
, x ∈ E.

It can be seen from [] that the duality mapping Jϕ has the following properties:
(i) Jϕ(–x) = –Jϕ(x) and Jϕ(kx) = ϕ(‖kx‖)

ϕ(‖x‖) Jϕ(x), for ∀x ∈ E and k > ;
(ii) if E∗ is uniformly convex, then Jϕ is uniformly continuous on each bounded subset

in E;
(iii) the reflexivity of E and strict convexity of E∗ imply that Jϕ is single-valued,

monotone and demi-continuous.
In the case ϕ(t) ≡ t, we call Jϕ the normalized duality mapping, which is usually denoted

by J .
For the gauge function ϕ, the function � : [, +∞) → [, +∞) defined by

�(t) =
∫ t


ϕ(s) ds (.)

is a continuous convex strictly increasing function on [, +∞).
Following the result in [], a Banach space E is said to have a weakly continuous duality

mapping if there is a gauge ϕ for which the duality mapping Jϕ(x) is single-valued and
weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence in E weakly convergent to
a point x, then the sequence Jϕ(xn) converges weakly∗ to Jϕ(x)). It is well known that lp has
a weakly continuous duality mapping with a gauge function ϕ(t) = tp– for all  < p < +∞.

Let C be a nonempty, closed and convex subset of E and Q be a mapping of E onto C.
Then Q is said to be sunny [] if Q(Q(x) + t(x – Q(x))) = Q(x), for all x ∈ E and t ≥ .

A mapping Q of E into E is said to be a retraction [] if Q = Q. If a mapping Q is a
retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is the range of Q.

A mapping f : C → C is called a contraction with contractive constant k ∈ (, ) if ‖f (x)–
f (y)‖ ≤ k‖x – y‖, for ∀x, y ∈ C.

A mapping T : C → C is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, for ∀x, y ∈ C. We
use Fix(T) to denote the fixed point set of T . That is, Fix(T) := {x ∈ C : Tx = x}. A mapping
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T : E ⊃ D(T) → R(T) ⊂ E is said to be demi-closed at p if whenever {xn} is a sequence in
D(T) such that xn ⇀ x ∈ D(T) and Txn → p then Tx = p.

A subset C of E is said to be a sunny nonexpansive retract of E [, ] if there exists a
sunny nonexpansive retraction of E onto C and it is called a nonexpansive retract of E if
there exists a nonexpansive retraction of E onto C.

A mapping A : D(A) ⊂ E → E is said to be accretive if ‖x – x‖ ≤ ‖x – x + r(y – y)‖,
for ∀xi ∈ D(A), yi ∈ Axi, i = , , and r > . For the accretive mapping A, we use N(A) to
denote the set of zero points of it; that is, N(A) := {x ∈ D(A) : Ax = }. If A is accretive,
then we can define, for each r > , a nonexpansive single-valued mapping JA

r : R(I + rA) →
D(A) by JA

r := (I + rA)–, which is called the resolvent of A []. We also know that, for an
accretive mapping A, N(A) = Fix(JA

r ). An accretive mapping A is said to be m-accretive if
R(I + λA) = E, for ∀λ > .

It is well known that if A is an accretive mapping, then the solutions of the problem
 ∈ Ax correspond to the equilibrium points of some evolution equations. Hence, the
problem of finding a solution x ∈ E with  ∈ Ax has been studied by many researchers
(see [–] and the references therein).

One classical method for studying the problem  ∈ Ax, where A is an m-accretive map-
ping, is the following so-called proximal method (cf. []), presented in a Hilbert space:

x ∈ H , xn+ ≈ JA
rn xn, n ≥ , (.)

where JA
rn := (I +rnA)–. It was shown that the sequence generated by (.) converges weakly

or strongly to a zero point of A under some conditions.
An explicit iterative process to approximate fixed point of a nonexpansive mapping T :

C → C was introduced in  by Halpern [] in the frame of Hilbert spaces:

u ∈ C, x ∈ C, xn+ = αnu + ( – αn)Txn, n ≥ , (.)

where {αn} ⊂ [, ].
In , based on (.) and (.), Qin and Su [] presented the following iterative algo-

rithm:
⎧⎪⎨
⎪⎩

x ∈ C chosen arbitrarily,
yn = βnxn + ( – βn)JA

rn xn,
xn+ = αnu + ( – αn)yn.

(.)

They showed that {xn} generated by (.) converges strongly to a zero point of an
m-accretive mapping A.

Motivated by iterative algorithms (.) and (.), Zegeye and Shahzad extended their
discussion to the case of finite m-accretive mappings {Ai}l

i=. They presented in [] the
following iterative algorithm:

x ∈ C, xn+ = αnu + ( – αn)Srxn, n ≥ , (.)

where Sr = aI +aJA +aJA + · · ·+alJAl with JAi = (I +Ai)– and
∑l

i= ai = . If
⋂l

i= N(Ai) �=
∅, they proved that {xn} generated by (.) converges strongly to the common zero point
of Ai (i = , , . . . , l) under some conditions.
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The work in [] was then extended to the following one presented by Hu and Liu in
[]:

x ∈ C, xn+ = αnu + βnxn + ϑnSrn xn, n ≥ , (.)

where Srn = aI + aJA
rn + aJA

rn + · · · + alJ
Al
rn with JAi

rn = (I + rnAi)– and
∑l

i= ai = .
{αn}, {βn}, {ϑn} ⊂ (, ) and αn + βn + ϑn = . If

⋂l
i= N(Ai) �= ∅, they proved that {xn} con-

verges strongly to the common point in N(Ai) (i = , , . . . , l) under some conditions.
In , Yao et al. presented the following iterative algorithm in the frame of Hilbert

space in []:

⎧⎪⎨
⎪⎩

x ∈ C,
yn = PC[( – αn)xn],
xn+ = ( – βn)xn + βnTyn, n ≥ ,

(.)

where T : C → C is nonexpansive with Fix(T) �= ∅. Suppose {αn} and {βn} are two real
sequences in (, ) satisfying

(a)
∑∞

n= αn = +∞ and limn→∞ αn = ;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} constructed by (.) converges strongly to a point in Fix(T).
Motivated by the work in [] and [], Shehu and Ezeora [] presented the following it-

erative algorithm and the discussion is undertaken in the frame of a real uniformly smooth
and uniformly convex Banach space:

⎧⎪⎨
⎪⎩

x ∈ C,
yn = QC[( – αn)xn],
xn+ = ( – βn)xn + βnSN yn, n ≥ .

(.)

Here QC is the sunny nonexpansive retraction of E onto C. Ai : C → E is m-accretive
mapping with

⋂N
i= N(Ai) �= ∅. SN := aI + aJA + aJA + · · · + aN JAN with JAi = (I + Ai)–,

for i = , , . . . , N .  < ak < , for k = , , , . . . , N , and
∑N

k= ak = . {αn}, {βn} ⊂ (, ). Then
{xn} converges strongly to the common zero point of Ai, where i = , , . . . , N .

In , by modifying iterative algorithm (.) and employing new techniques, Wei and
Tan [] presented and studied the following three-step iterative algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ C,
un = QC[( – αn)(xn + en)],
vn = ( – βn)xn + βnSnun,
xn+ = γnxn + ( – γn)Snvn, n ≥ ,

(.)

where QC is the sunny nonexpansive retraction of E onto C, {en} ⊂ E is the error sequence
and {Ai}N

i= is a finite family of m-accretive mappings. Sn := aI + aJA
rn, + aJA

rn, + · · · +
aN JAN

rn,N , JAi
rn,i = (I + rn,iAi)–, for i = , , . . . , N ,

∑N
k= ak = ,  < ak < , for k = , , , . . . , N .

And, some strong convergence theorems to approximate common zero point of Ai (i =
, , . . . , N ) are obtained.

In , Wang and Zhang [] extended the discussion of the finite family of m-accretive
mappings {Ai}N

i= to that of infinite family of m-accretive mappings {Ai}∞i=. They presented
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the following two-step iterative algorithms with errors {en} ⊂ E:

⎧⎪⎨
⎪⎩

x ∈ ⋂∞
i= D(Ai) chosen arbitrarily,

yn = α′
nxn + β ′

n
∑∞

i= δn,iJri xn + γ ′
nen,

xn+ = αnf (xn) + βnxn + γnyn, n ≥ ,
(.)

where f is a contraction on
⋂∞

i= D(Ai). For i = , , . . . , Jri = (I +riAi)–. {αn}, {βn}, {γn}, {α′
n},

{β ′
n}, and {γ ′

n} are real number sequences in (, ). Some strong convergence theorems to
approximate common zero point of Ai (i = , , . . .) are obtained under some conditions.

Inspired by the work in [, , –], we shall design a four-step iterative algorithm with
errors in a Banach space in Section . Some weak and strong convergence theorems for
approximating common zero point of an infinite family of m-accretive mappings are ob-
tained. Some new proof techniques can be found. In Section , we shall present an example
of infinite p-Laplacian-like differential systems, to highlight the significance of the studies
on iterative construction for zero points of accretive mappings in applied mathematics
and engineering. We demonstrate the applications of the main results in Section .

Our main contributions are:
(i) a new four-step iterative algorithm is designed by combining the ideas of famous

iterative algorithms such as proximal methods, Halpern methods, convex
combination methods, and viscosity methods;

(ii) three sequences constructed in the new iterative algorithm are proved to be
weakly or strongly to the common zero point of an infinite family of m-accretive
mappings;

(iii) the characteristic of the weakly convergent point of the new iterative algorithm is
pointed out;

(iv) under the new assumptions, a path convergence theorem for nonexpansive
mappings is proved;

(v) some new techniques are employed, for example, the tool ‖ · ‖ for estimating the
convergence of the iterative sequence {xn} in most of the existing related work is
partly replaced by function � defined by (.);

(vi) the discussion is undertaken in the frame of a Banach space, which is more general
than that in Hilbert space; the assumption that ‘the normalized duality mapping J
is weakly sequentially continuous’ in most of the existing related work is weakened
to ‘Jϕ is weakly sequentially continuous for a given gauge function ϕ ’;

(vii) compared to (.), Jri is replaced by Jrn,i ; compared to (.), a contraction f is
considered; compared to the work in [, , –], an infinite family of
m-accretive mappings is discussed;

(viii) in Section , the applications of the main results in Section  on approximating
the equilibrium solution of the nonlinear p-Laplacian-like differential systems are
demonstrated.

2 Preliminaries
Now, we list some results we need in the sequel.

Lemma . (see []) Let E be a real strictly convex Banach space and let C be a nonempty
closed and convex subset of E. Let Tm : C → C be a nonexpansive mapping for each
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m ≥ . Let {am} be a real number sequence in (, ) such that
∑∞

m= am = . Suppose that⋂∞
m= Fix(Tm) �= ∅. Then the mapping

∑∞
m= amTm is nonexpansive with Fix(

∑∞
m= amTm) =⋂∞

m= Fix(Tm).

Lemma . (see []) Assume that a real Banach space E has a weakly continuous duality
mapping Jϕ with a gauge ϕ. Then � defined by (.) has the following properties.

(i) �(‖x + y‖) ≤ �(‖x‖) + 〈y, Jϕ(x + y)〉, ∀x, y ∈ E.
(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E. Then

lim sup
n→∞

�
(‖xn – y‖)

= lim sup
n→∞

�
(‖xn – x‖)

+ �
(‖y – x‖)

, ∀y ∈ E.

Lemma . (see []) Let {an} and {cn} be two sequences of nonnegative real numbers
satisfying

an+ ≤ ( – tn)an + bn + cn, ∀n ≥ ,

where {tn} ⊂ (, ) and {bn} is a number sequence. Assume that (i)
∑∞

n= tn = +∞, (ii) either
lim supn→∞

bn
tn

≤  and
∑∞

n= cn < +∞. Then limn→∞ an = .

Lemma . (see []) Let {xn} and {yn} be two bounded sequences in a Banach space
E such that xn+ = βnxn + ( – βn)yn, for n ≥ . Suppose {βn} ⊂ (, ) satisfying  <
lim infn→+∞ βn ≤ lim supn→+∞ βn < . If lim supn→+∞(‖yn+ – yn‖ – ‖xn+ – xn‖) ≤ , then
limn→+∞ ‖yn – xn‖ = .

Lemma . (see []) Let E be a real uniformly convex Banach space and let C be a
nonempty, closed, and convex subset of E. Let T : C → C be a nonexpansive mapping such
that Fix(T) �= ∅, then I – T is demi-closed at zero.

Lemma . (see []) Let E be a Banach space and let A be an m-accretive mapping. For
λ > , μ > , and x ∈ E, we have

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx

)
,

where Jλ = (I + λA)– and Jμ = (I + μA)–.

Lemma . (see []) Let E be a real uniformly smooth and uniformly convex Banach
space. Let C be a nonempty, closed, and convex sunny nonexpansive retract of E, and let
QC be the sunny nonexpansive retraction of E onto C. Let T : C → C be a nonexpansive
mapping with Fix(T) �= ∅. If for each t ∈ (, ), define Tt : C → C by

Ttx := TQC
[
( – t)x

]
.

Then Tt is a contraction and has a fixed point zt , which satisfies ‖zt – Tzt‖ → , as t → .

3 Weak and strong convergence theorems
Lemma . Let E be a real strictly convex Banach space and C be a nonempty, closed, and
convex subset of E. Let Ai : C → E be m-accretive mappings, where i = , , . . . . Suppose D :=



Wei and Agarwal Fixed Point Theory and Applications  (2016) 2016:5 Page 7 of 23

⋂∞
i= N(Ai) �= ∅ and {rn,i} ⊂ (, +∞) for i = , , . . . . If {ai}∞i= ⊂ (, ) satisfies

∑∞
i= ai = .

Then (aI +
∑∞

i= aiJ
Ai
rn,i ) : E → E is nonexpansive and

Fix

(
aI +

∞∑
i=

aiJAi
rn,i

)
= D,

where JAi
rn,i = (I + rn,iAi)– for n ≥  and i = , , . . . .

Proof If we set T = I and Ti+ = JAi
rn,i , then (aI +

∑∞
i= aiJ

Ai
rn,i ) =

∑∞
i= aiTi+. Since both I

and JAi
rn,i are nonexpansive, Lemma . implies that (aI +

∑∞
i= aiJ

Ai
rn,i ) is nonexpansive and

Fix

(
aI +

∞∑
i=

aiJAi
rn,i

)
=

∞⋂
i=

Fix
(
JAi
rn,i

)
=

∞⋂
i=

N(Ai) = D.

This completes the proof. �

Theorem . Let E be a real strictly convex Banach space which has a weakly contin-
uous duality mapping Jϕ . Let C be a nonempty, closed, and convex sunny nonexpansive
retract of E, and QC be the sunny nonexpansive retraction of E onto C. Let f : C → C be a
contraction with contractive constant k ∈ (, ). Let Ai : C → E be m-accretive mappings,
for i = , , . . . . Let D :=

⋂∞
i= N(Ai) �= ∅. Suppose {αn}, {βn}, {μn}, {γn}, {δn}, {ζn} ⊂ (, ), and

{rn,i} ⊂ (, +∞) for i = , , . . . . Suppose {ai}∞i= ⊂ (, ) with
∑∞

i= ai =  and {en} ⊂ E is the
error sequence. Let {xn} be generated by the following iterative algorithm:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ C,
un = QC[( – αn)(xn + en)],
vn = ( – βn)xn + βn(aI +

∑∞
i= aiJ

Ai
rn,i )un,

wn = μnf (xn) + γnxn + δnvn,
xn+ = ( – ζn)wn + ζnxn, n ≥ .

(.)

Further suppose that the following conditions are satisfied:
(i) αn → , δn → , μn → , as n → ∞;

(ii) μn + γn + δn ≡ , n ≥ ;
(iii)  < lim infn→+∞ βn ≤ lim supn→+∞ βn <  and

 < lim infn→+∞ ζn ≤ lim supn→+∞ ζn < ;
(iv)

∑∞
n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε > , for n ≥  and i = , , . . . ;

(v) γn+ – γn → , βn+ – βn → , as n → ∞;
(vi)

∑∞
n= ‖en‖ < +∞.

Then the three sequences {xn}, {un}, and {wn} converge weakly to the unique element q ∈
D, which satisfies, for ∀y ∈ D,

lim sup
n→∞

�
(‖xn – q‖

)
= min

y∈D
lim sup

n→∞
�

(‖xn – y‖)
. (.)

Proof We shall split the proof into five steps.
Step . {xn}, {un}, {∑∞

i= aiJ
Ai
rn,i un}, {vn}, and {f (xn)} are all bounded.
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We shall first show that ∀p ∈ D,

‖xn+ – p‖ ≤ M +
n∑

i=

‖ei‖, (.)

where M = max{‖x – p‖, ‖f (p)–p‖
–k ,‖p‖}.

By using Lemma . and the induction method, we see that, for n = , ∀p ∈ D,

‖x – p‖ ≤ ( – ζ)‖w – p‖ + ζ‖x – p‖
≤ ( – ζ)

[
μ

∥∥f (x) – p
∥∥ + γ‖x – p‖ + δ‖v – p‖]

+ ζ‖x – p‖

≤ ( – ζ)

[
kμ‖x – p‖ + μ

∥∥f (p) – p
∥∥ + γ‖x – p‖

+ δ( – β)‖x – p‖ + δβ

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
r,i

)
u – p

∥∥∥∥∥
]

+ ζ‖x – p‖

≤ ( – ζ)
[
kμ + γ + δ( – β)

]‖x – p‖ + ( – ζ)μ
∥∥f (p) – p

∥∥ + ζ‖x – p‖
+ ( – ζ)δβ‖u – p‖

≤ ( – ζ)
[
kμ + γ + δ( – β)

]‖x – p‖ + ( – ζ)μ
∥∥f (p) – p

∥∥ + ζ‖x – p‖
+ ( – ζ)δβ

∥∥( – α)(x + e) – p
∥∥

≤ [
 – ( – k)μ( – ζ) – αβδ( – ζ)

]‖x – p‖ + ( – ζ)( – α)βδ‖e‖

+ ( – ζ)αβδ‖p‖ + ( – ζ)μ( – k)
‖f (p) – p‖

 – k
≤ M + ‖e‖.

Suppose that (.) is true for n = k. Then, for n = k + ,

‖xk+ – p‖ ≤ ( – ζk+)‖wk+ – p‖ + ζk+‖xk+ – p‖
≤ ( – ζk+)

[
μk+

∥∥f (xk+) – p
∥∥ + γk+‖xk+ – p‖ + δk+‖vk+ – p‖]

+ ζk+‖xk+ – p‖

≤ ( – ζk+)

[
kμk+‖xk+ – p‖ + μk+

∥∥f (p) – p
∥∥ + γk+‖xk+ – p‖

+ δk+( – βk+)‖xk+ – p‖ + δk+βk+

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rk+,i

)
uk+ – p

∥∥∥∥∥
]

+ ζk+‖xk+ – p‖
≤ ( – ζk+)

[
kμk+ + γk+ + δk+( – βk+)

]‖xk+ – p‖
+ ( – ζk+)μk+

∥∥f (p) – p
∥∥ + ζk+‖xk+ – p‖ + ( – ζk+)δk+βk+‖uk+ – p‖

≤ {
( – ζk+)

[
kμk+ + γk+ + δk+( – βk+)

]
+ ζk+

}‖xk+ – p‖
+ ( – ζk+)μk+

∥∥f (p) – p
∥∥

+ ( – ζk+)δk+βk+
∥∥( – αk+)(xk+ + ek+) – p

∥∥
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≤ [
 – ( – k)μk+( – ζk+) – αk+βk+δk+( – ζk+)

]‖xk+ – p‖ + ‖ek+‖

+ ( – ζk+)αk+βk+δk+‖p‖ + ( – ζk+)μk+( – k)
‖f (p) – p‖

 – k

≤ M +
k+∑
i=

‖ei‖.

Thus (.) is true for all n ∈ N+. Since
∑∞

n= ‖en‖ < +∞, (.) ensures that {xn} is
bounded.

For ∀p ∈ D, from ‖un – p‖ ≤ ‖( – αn)(xn + en) – p‖ ≤ ‖xn‖ + ‖en‖ + ‖p‖, we see that {un}
is bounded.

Since ‖∑∞
i= aiJ

Ai
rn,i un‖ ≤ ‖∑∞

i= aiJ
Ai
rn,i un –

∑∞
i= aiJ

Ai
rn,i p‖ + ( – a)‖p‖ ≤ ‖un – p‖ + ‖p‖,

{∑∞
i= aiJ

Ai
rn,i un} is bounded. Since both {∑∞

i= aiJ
Ai
rn,i un} and {xn} are bounded, {vn} is

bounded. From the definition of a contraction, we can easily see that {f (xn)} is bounded.
Set M = sup{‖un‖,‖JAi

rn,i un‖,‖∑∞
i= aiJ

Ai
rn,i un‖,‖f (xn)‖,‖vn‖,‖xn‖, : n ≥ , i ≥ }.

Step . limn→∞ ‖xn – wn‖ =  and limn→∞ ‖xn+ – xn‖ = .
In fact, if rn,i ≤ rn+,i, then, using Lemma .,

∥∥∥∥∥
∞∑
i=

aiJAi
rn+,i

un+ –
∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥

≤
∞∑
i=

ai
∥∥JAi

rn+,i
un+ – JAi

rn,i
un

∥∥

=
∞∑
i=

ai

∥∥∥∥JAi
rn,i

(
rn,i

rn+,i
un+ +

(
 –

rn,i

rn+,i

)
JAi
rn+,i

un+

)
– JAi

rn,i
un

∥∥∥∥

≤
∞∑
i=

ai

∥∥∥∥ rn,i

rn+,i
un+ +

(
 –

rn,i

rn+,i

)
JAi
rn+,i

un+ – un

∥∥∥∥

≤ ( – a)‖un+ – un‖ +
∞∑
i=

ai

(
 –

rn,i

rn+,i

)∥∥JAi
rn+,i

un+ – un
∥∥

≤ ( – a)‖un+ – un‖ +
M

ε

∞∑
i=

(rn+,i – rn,i). (.)

If rn+,i ≤ rn,i, then imitating the proof of (.), we have
∥∥∥∥∥

∞∑
i=

aiJAi
rn+,i

un+ –
∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥

≤ ( – a)‖un+ – un‖ +
M

ε

∞∑
i=

(rn,i – rn+,i). (.)

Combining (.) and (.), we have
∥∥∥∥∥

∞∑
i=

aiJAi
rn+,i

un+ –
∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥

≤ ( – a)‖un+ – un‖ +
M

ε

∞∑
i=

|rn,i – rn+,i|. (.)



Wei and Agarwal Fixed Point Theory and Applications  (2016) 2016:5 Page 10 of 23

On the other hand,

‖un+ – un‖ ≤ ‖xn+ – xn‖ + αn+‖xn+‖ + αn‖xn‖
+ ‖αn+en+ – αnen‖ + ‖en+ – en‖. (.)

In view of (.) and (.), we have

‖vn+ – vn‖ ≤ ( – βn+)‖xn+ – xn‖ + aβn+‖un+ – un‖

+ βn+

∥∥∥∥∥
∞∑
i=

aiJAi
rn+,i

un+ –
∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥

+ |βn+ – βn|‖xn‖ + a|βn+ – βn|‖un‖ + |βn+ – βn|
∥∥∥∥∥

∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥
≤ ( – βn+)‖xn+ – xn‖ + aβn+

[‖xn+ – xn‖ + αn+‖xn+‖
+ αn‖xn‖ + ‖en+ – en‖ + ‖αn+en+ – αnen‖

]

+ βn+

[
( – a)‖un+ – un‖ +

M

ε

∞∑
i=

|rn,i – rn+,i|
]

+ |βn+ – βn|‖xn‖ + a|βn+ – βn|‖un‖ + |βn+ – βn|
∥∥∥∥∥

∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥
≤ ‖xn+ – xn‖ + ‖xn‖ + ‖xn+‖ + ‖αn+en+ – αnen‖ + ‖en+ – en‖

+ |βn+ – βn|
∥∥∥∥∥

∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥ + |βn+ – βn|‖xn‖ + a|βn+ – βn|‖un‖

+
M

ε
βn+

∞∑
i=

|rn,i – rn+,i|. (.)

Thus in view of (.), we have

‖wn+ – wn‖ ≤ (kμn+ + γn+ + δn+)‖xn+ – xn‖ + |μn+ – μn|
∥∥f (xn)

∥∥
+ |γn+ – γn|‖xn‖ + δn+‖xn‖ + δn+‖xn+‖ + |δn+ – δn|‖vn‖
+ δn+‖en+ – en‖ + δn+‖αn+en+ – αnen‖ + δn+|βn+ – βn|‖xn‖

+ δn+|βn+ – βn|
∥∥∥∥∥

∞∑
i=

aiJAi
rn,i

un

∥∥∥∥∥ + δn+a|βn+ – βn|‖un‖

+ δn+βn+
M

ε

∞∑
i=

|rn,i – rn+,i|

≤ (
 – ( – k)μn+

)‖xn+ – xn‖
+ Mδn+ + M

(|μn+ – μn| + |γn+ – γn| + |δn+ – δn| + |βn+ – βn|
)

+ ‖en+ – en‖ + ‖αn+en+ – αnen‖

+ δn+βn+
M

ε

∞∑
i=

|rn,i – rn+,i|. (.)



Wei and Agarwal Fixed Point Theory and Applications  (2016) 2016:5 Page 11 of 23

Using Lemma ., we have from (.) limn→∞ ‖xn – wn‖ =  and then limn→∞ ‖xn+ –
xn‖ = .

Step . limn→∞ ‖xn – un‖ =  and limn→∞ ‖un – (aI +
∑∞

i= aiJ
Ai
rn,i )un‖ = .

We compute the following:

‖vn+ – vn‖ ≤ ( – βn+)‖xn+ – xn‖ + |βn+ – βn|‖xn‖

+ βn+

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn+,i

)
un+ –

(
aI +

∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥

+ |βn+ – βn|
∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥
≤ ( – βn+)‖xn+ – xn‖ + |βn+ – βn|M

+

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn+,i

)
un+ –

(
aI +

∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥.

Using the result of Step  and Lemma ., we have

lim
n→∞

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
un – vn

∥∥∥∥∥ = . (.)

Since
∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
un – vn

∥∥∥∥∥ = ( – βn)

∥∥∥∥∥xn –

(
aI +

∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥
and  < lim infn→∞ βn ≤ lim supn→∞ βn < , (.) implies that

lim
n→∞

∥∥∥∥∥xn –

(
aI +

∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥ = . (.)

Moreover,

‖un – xn‖ =
∥∥QC

[
( – αn)(xn + en)

]
– QCxn

∥∥ ≤ αn‖xn‖ + ( – αn)‖en‖,

then

lim
n→∞‖xn – un‖ = . (.)

Noticing (.) and (.), we have

lim
n→∞

∥∥∥∥∥un –

(
aI +

∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥ = . (.)

Step . ω(xn) ⊂ D, where ω(xn) is the set of all of the weak limit points of {xn}.
Since {xn} is bounded, there exists a subsequence of {xn}, which is denoted by {xnk }, such

that xnk ⇀ q, as k → ∞. From (.), we have unk ⇀ q, as k → ∞. Then Lemma .(ii)
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implies that

lim sup
k→∞

�
(‖unk – x‖)

= lim sup
k→∞

�
(‖unk – q‖

)
+ �

(‖q – x‖)
, ∀x ∈ E. (.)

Lemma ., Lemma .(i), and (.) imply that

lim sup
k→∞

�

(∥∥∥∥∥unk –

(
aI +

∞∑
i=

aiJAi
rnk ,i

)
q

∥∥∥∥∥
)

≤ lim sup
k→∞

�

(∥∥∥∥∥
∞∑
i=

aiJAi
rnk ,i

unk –

(
aI +

∞∑
i=

aiJAi
rnk ,i

)
q + aunk

∥∥∥∥∥
)

+ lim sup
k→∞

〈
( – a)unk –

∞∑
i=

aiJAi
rnk ,i

unk , Jϕ

(
unk –

(
aI +

∞∑
i=

aiJAi
rnk ,i

)
q

)〉

≤ lim sup
k→∞

�
(‖unk – q‖

)
. (.)

From (.) and (.), we know that �(‖(aI +
∑∞

i= aiJ
Ai
rnk ,i )q – q‖) ≤ , which implies

that

aq +
∞∑
i=

aiJAi
rnk ,i

q = q.

Then Lemma . ensures that q ∈ D.
Step . xn ⇀ q, as n → ∞, where q ∈ D is the unique element which satisfies (.).
Now, we define h(y) = lim supn→∞ �(‖xn – y‖), for y ∈ D. Then h(y) : D → R+ is proper,

strictly convex, lower-semi-continuous, and h(y) → +∞, as ‖y‖ → +∞. Therefore, there
exists a unique element q ∈ D such that h(q) = miny∈D h(y). That is, q satisfies (.).

Next, we shall show that xn ⇀ q, as n → ∞.
In fact, suppose there exists a subsequence {xnm} of {xn} (for simplicity, we still denote it

by {xn}) such that xn ⇀ v, as n → ∞, then v ∈ D in view of Step . Using Lemma .(ii),
h(q) = h(v) + �(‖v – q‖), which implies that �(‖v – q‖) = , and then v = q.

If there exists another subsequence {xnk } of {xn} such that xnk ⇀ p, as k → ∞. Then
repeating the above process, we have p = q.

Since all of the weakly convergent subsequences of {xn} converge to the same element q,
the whole sequence {xn} converges weakly to q. Combining the results of Steps  and ,
un ⇀ q, wn ⇀ q, as n → ∞.

This completes the proof. �

Remark . Compared to the work in [], the smoothness of E is not needed. The iter-
ative algorithm (.) is more general than those discussed in [, , –].

Remark . The properties of the function � defined by (.) are widely used in the proof
of Steps  and , which can be regarded as a new proof technique compared to the existing
work.

Remark . Three sequences are proved to be weakly convergent to the common zero
point of an infinite family of m-accretive mappings. The characteristic of the weakly con-
vergent point q of {xn} is presented in Theorem ..



Wei and Agarwal Fixed Point Theory and Applications  (2016) 2016:5 Page 13 of 23

Remark . The assumptions imposed on the real number sequences in Theorem . are
reasonable if we take αn = 

n , μn = n
n , γn = n–n–

n , δn = 
n , and βn = ζn = n+

n , for n ≥ .

Lemma . Let E be a real uniformly smooth and uniformly convex Banach space. Let
C be a nonempty, closed, and convex sunny nonexpansive retract of E, and QC be the
sunny nonexpansive retraction of E onto C. Let T : C → C be a nonexpansive mapping
with Fix(T) �= ∅. Let Tt : C → C be defined by Ttx := TQC[( – t)x], x ∈ C. Then:

(i) Tt is a contraction and has a fixed point zt , which satisfies ‖zt – Tzt‖ → , as t → ;
(ii) further suppose that E has a weakly continuous duality mapping Jϕ , then

limt→ zt = z ∈ Fix(T).

Proof Lemma . ensures the result of (i).
To show that (ii) holds, it suffices to show that, for any sequence {tn} such that tn → ,

we have limn→∞ ztn = z ∈ Fix(T).
In fact, the result of (i) implies that there exists zt ∈ Fix(T) such that zt = TQC[( – t)zt],

t ∈ (, ). For ∀p ∈ Fix(T), since

‖zt – p‖ =
∥∥TQC

[
( – t)zt

]
– TQCp

∥∥ ≤ ‖zt – p – tzt‖ ≤ ( – t)‖zt – p‖ + t‖p‖,

{zt} is bounded. Without loss of generality, we may assume that ztn ⇀ z. Using (i) and
Lemma ., we have z ∈ Fix(T).

Using Lemma ., we have, for ∀p ∈ Fix(T),

�
(‖zt – p‖)

= �
(∥∥TQC

[
( – t)zt

]
– TQCp

∥∥)
≤ �

(∥∥( – t)zt – p
∥∥)

≤ �
(‖zt – p‖)

– t
〈
zt , Jϕ(zt – p – tzt)

〉
= �

(‖zt – p‖)
– t

〈
zt – p – tzt , Jϕ(zt – p – tzt)

〉
– t

〈
p + tzt , Jϕ(zt – p – tzt)

〉
,

which implies that

‖zt – p – tzt‖ϕ
(‖zt – p – tzt‖

) ≤ 〈
p, Jϕ(p + tzt – zt)

〉
+ t

〈
zt , Jϕ(p + tzt – zt)

〉
.

In particular,

‖ztn – p – tnztn‖ϕ
(‖ztn – p – tnztn‖

)
≤ 〈

p, Jϕ(p + tnztn – ztn )
〉
+ tn

〈
ztn , Jϕ(p + tnztn – ztn )

〉
.

Thus

‖ztn – z – tnztn‖ϕ
(‖ztn – z – tnztn‖

)
≤ 〈

z, Jϕ(z + tnztn – ztn )
〉
+ tn

〈
ztn , Jϕ(z + tnztn – ztn )

〉
. (.)

Since E has a weakly continuous duality mapping Jϕ , (.) implies that ztn – z – tnztn →
, as n → ∞.

From ‖ztn – z‖ ≤ ‖ztn – z – tnztn‖ + tn‖ztn‖, we see that ztn → z, as n → ∞.
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Suppose there exists another sequence ztm ⇀ x, as tm →  and m → ∞. Then from (i)
‖ztm – Tztm‖ →  and I – T being demi-closed at zero, we have x ∈ Fix(T). Moreover,
repeating the above proof, we have ztm → x, as m → ∞. Next, we want to show that
z = x.

Similar to (.), we have

‖ztm – z – tmztm‖ϕ(‖ztm – z – tmztm‖)
≤ 〈

z, Jϕ(z + tmztm – ztm )
〉
+ tm

〈
ztm , Jϕ(z + tmztm – ztm )

〉
.

Letting m → ∞,

‖x – z‖ϕ
(‖x – z‖

) ≤ 〈
z, Jϕ(z – x)

〉
. (.)

Interchanging x and z in (.), we obtain

‖z – x‖ϕ
(‖z – x‖

) ≤ 〈
x, Jϕ(x – z)

〉
. (.)

Then (.) and (.) ensure

‖x – z‖ϕ
(‖x – z‖

) ≤ 〈
x – z, Jϕ(x – z)

〉
= ‖x – z‖ϕ

(‖x – z‖
)
,

which implies that x = z.
Therefore, limt→ zt = z ∈ Fix(T).
This completes the proof. �

Remark . Compared to the proof of Lemma . in [], a different method is used in
the proof of the result (ii) in Lemma ..

Theorem . Further suppose that E is real uniformly convex and uniformly smooth and
(vii)

∑∞
n=( – ζn)αnβnδn = +∞; (viii) μn = o(αnβnδn). The other restrictions are the same as

those in Theorem ., then the iterative sequence {xn} generated by (.) converges strongly
to p ∈ D.

Proof We shall split the proof into six steps. The proofs of Steps , , and  are the same
as those in Theorem ..

Step . lim supn→+∞〈p, Jϕ(p – xn)〉 ≤ , where p is an element in D.
From Lemma ., we know that there exists yt ∈ C such that

yt = aQC
[
( – t)yt

]
+

∞∑
i=

aiJAi
rn,i

QC
[
( – t)yt

]

for t ∈ (, ). Moreover, yt → p ∈ D, as t → .
Since ‖yt‖ ≤ ‖yt – p‖ + ‖p‖, {yt} is bounded. Using Lemma ., we have

�
(‖yt – xn‖

) ≤ �
(∥∥( – t)yt – xn

∥∥)

+

〈(
aI +

∞∑
i=

aiJAi
rn,i

)
xn – xn, Jϕ(yt – xn)

〉
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≤ �
(‖yt – xn‖

)
– t

〈
yt , Jϕ

[
( – t)yt – xn

]〉

+ K

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
xn – xn

∥∥∥∥∥,

where K = sup{ϕ(‖yt – xn‖) : n ≥ , t > } and from the result of Step  we know that K is
a positive constant.

Thus 〈yt , Jϕ[( – t)yt – xn]〉 ≤ K
t ‖(aI +

∑∞
i= aiJ

Ai
rn,i )xn – xn‖. Noticing (.) and (.), we

have
∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
xn – xn

∥∥∥∥∥

≤
∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
xn –

(
aI +

∞∑
i=

aiJAi
rn,i

)
un

∥∥∥∥∥

+

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
un – un

∥∥∥∥∥ + ‖un – xn‖

≤ ‖xn – un‖ +

∥∥∥∥∥
(

aI +
∞∑
i=

aiJAi
rn,i

)
un – un

∥∥∥∥∥ → ,

as n → ∞. Therefore,

lim
t→

lim sup
n→+∞

〈
yt , Jϕ

[
( – t)yt – xn

]〉 ≤ .

From the assumption on Jϕ and the following fact:

〈
p, Jϕ(p – xn)

〉
=

〈
p, Jϕ(p – xn) – Jϕ

[
( – t)yt – xn

]〉
+

〈
p – yt , Jϕ

[
( – t)yt – xn

]〉
+

〈
yt , Jϕ

[
( – t)yt – xn

]〉
,

we have lim supn→+∞〈p, Jϕ(p – xn)〉 ≤ .
Then

lim sup
n→∞

〈
p, Jϕ

[
p – xn – ( – αn)en + αnxn

]〉

≤ lim sup
n→∞

〈
p, Jϕ

[
p – xn – ( – αn)en + αnxn

]
– Jϕ(p – xn)

〉
+ lim sup

n→∞
〈
p, Jϕ(p – xn)

〉

= lim sup
n→∞

〈
p, Jϕ(p – xn)

〉 ≤ . (.)

Step . � defined by (.) satisfies �(kt) ≤ k�(t), for t ∈ [, +∞), where k ∈ [, ].
In fact, let F(t) =

∫ kt
 ϕ(s) ds – k

∫ t
 ϕ(s) ds, for t ∈ [, +∞). Then F ′(t) = kϕ(kt) – kϕ(t) ≤ ,

since k ∈ (, ) and the gauge function ϕ is increasing. Thus F is decreasing on [, +∞).
That is, F(t) ≤ F(), for t ∈ [, +∞). Then

∫ kt
 ϕ(s) ds ≤ k

∫ t
 ϕ(s) ds, for t ∈ [, +∞), which

implies that �(kt) ≤ k�(t), for t ∈ [, +∞).
Step . xn → p, as n → +∞, where p ∈ D is the same as that in Step .
Since � is convex, we have

�
(‖xn+ – p‖

) ≤ ( – ζn)�
(‖wn – p‖

)
+ ζn�

(‖xn – p‖
)
. (.)
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Using Lemma . and the result of Step , we have

�
(‖wn – p‖

) ≤ μn�
(∥∥f (xn) – p

∥∥)
+ γn�

(‖xn – p‖
)

+ δn�
(‖vn – p‖

)
≤ (μnk + γn)�

(‖xn – p‖
)

+ μn
〈
f (p) – p, Jϕ

(
f (xn) – p

)〉
+ δn�

(‖vn – p‖
)
. (.)

Similarly, we have

�
(‖vn – p‖

) ≤ ( – βn)�
(‖xn – p‖

)
+ βn�

(‖un – p‖
)

≤ ( – βn)�
(‖xn – p‖

)
+ βn( – αn)�

(‖xn – p‖
)

+ βn
〈
( – αn)en – αnp, Jϕ

(
( – αn)(xn + en) – p

)〉
= ( – βnαn)�

(‖xn – p‖
)

+ βn( – αn)
〈
en, Jϕ

(
( – αn)(xn + en) – p

)〉
+ βnαn

〈
p, Jϕ

(
p – xn – ( – αn)en + αnxn

)〉
. (.)

Let K = sup{ϕ(‖( – αn)(xn + en) – p‖),ϕ(‖f (xn) – p‖) : n ≥ }. Then K is a positive
constant. Using (.)-(.), we have

�
(‖xn+ – p‖

) ≤ {
 – ( – ζn)

[
μn( – k) + αnβnδn

]}
�

(‖xn – p‖
)

+ ( – ζn)βn( – αn)δn
〈
en, Jϕ

[
( – αn)(xn + en) – p

]〉
+ αnβnδn( – ζn)

〈
p, Jϕ

[
p – xn – ( – αn)en + αnxn

]〉
+ ( – ζn)μn

〈
f (p) – p, Jϕ

(
f (xn) – p

)〉
≤ [

 – αnβnδn( – ζn)
]
�

(‖xn – p‖
)

+ ( – ζn)( – αn)βnδnK‖en‖
+ αnβnδn( – ζn)

〈
p, Jϕ

[
p – xn – ( – αn)en + αnxn

]〉
+ ( – ζn)μn

〈
f (p) – p, Jϕ

(
f (xn) – p

)〉
. (.)

Let cn = αnβnδn( – ζn), then (.) reduces to �(‖xn+ – p‖) ≤ ( – cn)�(‖xn – p‖) +
cn{〈p, Jϕ[p – xn – ( – αn)en + αnxn]〉 + μn

αnβnδn
K‖f (p) – p‖} + K‖en‖.

From Lemma ., the assumptions (vii) and (viii), (.), and (.), we know that
�(‖xn – p‖) → , which implies that xn → p, as n → +∞. Combining the results in
Steps  and , we can also know that wn → p, un → p, as n → +∞.

This completes the proof. �

Remark . Actually, the three sequences {xn}, {wn}, and {un} are proved to be strongly
convergent to the common zero point p of an infinite family of m-accretive mappings.
The p in Theorem . also satisfies (.).

Remark . The assumptions imposed on the real sequences in Theorem . are reason-

able if we take αn = δn = 

n



, μn = 
n , γn =  – 

n – 

n



, ζn = n+
n , and βn = +n




n



, for n ≥ .
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4 Example: infinite p-Laplacian-like differential systems
Remark . In the next of this paper, we shall present an example of infinite p-Laplacian-
like differential systems. Based on the example, we shall construct an infinite family of
m-accretive mappings, present characteristic of the common zero point of theirs, and
demonstrate the applications of Theorems . and ..

Now, we investigate the following p-Laplacian-like differential systems:

⎧⎪⎨
⎪⎩

– div[(C(x) + |∇u|)
si
 |∇u|mi–∇u] = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|)
si
 |∇u|mi–∇u〉 = , a.e. on �,

i = , , . . . ,
(.)

where � is a bounded conical domain of the Euclidean space RN (N ≥ ) with its boundary
� ∈ C [].

mi + si +  = pi, mi ≥  and N
N+ < pi < +∞, for i = , , . . . . | · | is the Euclidean norm in RN

and 〈·, ·〉 is the Euclidean inner-product. ϑ is the exterior normal derivative of �. C(x) ≥ 
and C(x) ∈ Lpi (�), i ∈ N+.

We use ‖ · ‖pi and ‖ · ‖,pi ,� to denote the norms in Lpi (�) and W ,pi (�), respectively. Let

pi

+ 
p′

i
= .

Remark . If si =  and mi = pi – , i ∈ N+, then (.) is reduced to the case of infinite
p-Laplacian differential systems.

Remark . ([]) The mapping Jpi : Lpi (�) → Lp′
i (�) defined by Jpi u = |u|pi– sgn u, for

u ∈ Lpi (�), is the duality mapping with the gauge function ϕ(r) = rpi– for i ∈ N+. This
presents a vivid example of a duality mapping in Lpi (�).

Lemma . ([]) Let E be a real Banach space and E∗ be its duality space. If B : E → E∗

is maximal monotone and coercive, then B is a surjection.

Lemma . ([]) For each i ∈ N+, define the mapping Bi : W ,pi (�) → (W ,pi (�))∗ by

〈v, Biu〉 =
∫

�

〈(
C(x) + |∇u|) si

 |∇u|mi–∇u,∇v
〉
dx

for any u, v ∈ W ,pi (�). Then Bi is everywhere defined, monotone, and hemi-continuous.

Remark . Based on Bi, we shall construct two groups of mappings Ãi : L(�) → L(�)
and Ai : Lpi (�) → Lpi (�) in the following. Since Bi may not be coercive, different proof
methods are employed while showing that both Ãi and Ai are m-accretive mappings, com-
pared to the work done in [].

Definition . For each i ∈ N+, define the mapping Ãi : L(�) → L(�) in the following
way:

D(Ãi) = {u(x) ∈ L(�) : there exists hi(x) ∈ L(�) such that hi(x) = Biu}, for any
u ∈ D(Ãi), Ãiu = hi(x).

Proposition . The mapping Ãi is m-accretive.
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Proof First, for every λ > , the mapping Ti,λ : H(�) → (H(�))∗ defined by Ti,λ = u +λÃiu
is maximal monotone and coercive. It follows from the fact that L(�) ⊂ (H(�))∗ and
Lemma . that R(I + λÃi) = L(�) for every λ > .

Secondly, for any ui ∈ D(Ãi), 〈u – u, Ãiu – Ãiu〉 = 〈u – u, Biu – Biu〉 ≥  since Bi is
monotone.

This complete the proof. �

Lemma . If f , g ∈ L(�) and there exist u, v ∈ L(�) such that f = u + λÃiu, g = v + λÃiv.
Then

∫
�

|u – v|pi dx ≤
∫

�

|f – g|pi dx,

where pi ≥ . (Functions u(x) and v(x) exist from Proposition ..)

Proof Define ψ : R → R by ψ(t) = 
pi

|t|pi , let ∂ψ : R → R denote its subdifferential and for
μ > , let (∂ψ)μ : R → R denote the Yosida approximation of ∂ψ . Let ψμ be an indefinite
integral of (∂ψ)μ so that (∂ψ)μ = ∂ψμ. We write ∂ψμ = χμ : R → R and observe that χμ is
monotone, Lipschitz with constant 

μ
and differential everywhere except at t = .

Since

ψμ

(
f (x) – g(x)

)
– ψμ

(
u(x) – v(x)

) ≥ [
χμ

(
u(x) – v(x)

)][(
f (x) – g(x)

)
–

(
u(x) – v(x)

)]

for x ∈ �, we have
∫

�

ψμ(f – g) dx ≥
∫

�

ψμ(u – v) dx +
∫

�

[
χμ(u – v)

][
(f – g) – (u – v)

]
dx.

So, to prove the lemma, it suffices to prove that
∫

�

χμ(u – v)(Ãiu – Ãiv) dx ≥ 

for every μ >  in view of the fact that ψμ(t) ↑ ψ(t) for every t ∈ R and the monotone
convergence theorem.

Now, since
∫

�

χμ(u – v)(Ãiu – Ãiv) dx

=
〈
χμ(u – v), Biu – Biv

〉

≥
∫

�

[(
C(x) + |∇u|) si

 |∇u|mi+ –
(
C(x) + |∇u|) si

 |∇u|mi |∇v|

–
(
C(x) + |∇v|) si

 |∇v|mi |∇u| +
(
C(x) + |∇v|) si

 |∇v|mi+]χ ′
μ(u – v) dx

=
∫

�

[(
C(x) + |∇u|) si

 |∇u|mi –
(
C(x) + |∇v|) si

 |∇v|mi
](|∇u| – |∇v|)χ ′

μ(u – v) dx

≥ ,

the last inequality is available since χμ is monotone and χμ() = .
This completes the proof. �
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Definition . For i ∈ N+, define the mapping Ai : Lpi (�) → Lpi (�) in the following way:
(i) if pi ≥ , D(Ai) = {u(x) ∈ Lpi (�) : there exists hi(x) ∈ Lpi (�) such that hi(x) = Biu},

for any u ∈ D(Ai), Aiu = hi(x);
(ii) if N

N+ < pi < , we define Ai : Lpi (�) → Lpi (�) as the Lpi -closure of
Ãi : L(�) → L(�) defined in Definition ..

Proposition . For  ≤ pi < +∞, the mapping Ai : Lpi (�) → Lpi (�) is m-accretive, where
i ∈ N+.

Proof First, we show that

R(I + λAi) = Lpi (�)

for every λ > .
In fact, since pi ≥ , then Proposition . implies that

R(I + λÃi) = L(�) ⊇ Lpi (�).

Then for any f (x) ∈ Lpi (�), there is a u ∈ D(Ãi) such that f = u + λÃiu. Since  =  + λÃi,
by Lemma ., we have

∫
�

|u|pi dx ≤
∫

�

|f |pi dx < +∞.

That is, u ∈ Lpi (�) and so R(I + λAi) = Lpi (�) in view of the definition of Ai.
Secondly, we shall show that Ai is accretive.
For any uj ∈ D(Ai), j = , , we are left to show that

〈|u – u|pi– sgn(u – u), Aiu – Aiu
〉 ≥ .

It suffices for us to show that

〈|u – u|pi– sgn(u – u), Biu – Biu
〉 ≥ .

To this aim, take for a constant k > , define χk : R → R by

χk(t) =
∣∣(t ∧ k) ∨ (–k)

∣∣pi–
sgn t.

Then χk is monotone, Lipschitz with χk() = , and χ ′
k is continuous except at finitely

many points on R. This shows that

〈|u – u|pi– sgn(u – u), Biu – Biu
〉

= lim
k→+∞

∫
�

〈(
C(x) + |∇u|) si

 |∇u|mi–∇u –
(
C(x) + |∇v|) si

 |∇v|mi–∇v,∇u – ∇v
〉

× χ ′
k(u – u) dx

≥
∫

�

[(
C(x) + |∇u|) si

 |∇u|mi –
(
C(x) + |∇v|) si

 |∇v|mi
]
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× (|∇u| – |∇v|)χ ′
k(u – u) dx

≥ .

This completes the proof. �

Proposition . For N
N+ < pi < , the mapping Ai : Lpi (�) → Lpi (�) is m-accretive, where

i ∈ N+.

Proof For f (x) ∈ Lpi (�), we may choose a sequence {fn} ⊂ L(�) such that fn(x) → f (x) in
Lpi (�), as n → ∞.

Proposition . implies that there is a un ∈ L(�) such that un + λÃiun = fn, for n ≥ .
Using Lemma ., we have

∫
�

|un – um|pi dx ≤
∫

�

|fn – fm|pi dx.

This implies that there is a u(x) ∈ Lpi (�) such that un → u in Lpi (�) and then Defini-
tion . ensures that R(I + λAi) = Lpi (�).

The nonexpansive property of (I + λAi)– : Lpi (�) → Lpi (�) follows from Lemma .,
which implies that Ai is accretive.

This completes the proof. �

Lemma . ([]) Let � be a bounded conical domain in RN . If mp > N , then
W m,p(�) ↪→↪→ CB(�); if  < mp ≤ N and q = Np

N–mp , then W m,p(�) ↪→↪→ Lq(�), where
 ≤ q < q and ‘↪→↪→’ means compact embedding.

Lemma . ([]) Let X denote the closed subspace of all constant functions in W ,p(�).
Let X be the quotient space W ,p(�)/X. For u ∈ W ,p(�), define the mapping P : W ,p(�) →
X by Pu = 

meas(�)
∫
�

u dx. Then there is a constant C > , such that ∀u ∈ W ,p(�),

‖u – Pu‖p ≤ C‖∇u‖(Lp(�))N .

Theorem . For i ∈ R+, N(Ai) = {u ∈ Lpi (�) : u(x) ≡ constant on �}.

Proof (i) pi ≥ .
Let u(x) ∈ N(Ai), then  = 〈u, Biu〉 =

∫
�

(C(x) + |∇u|)
si
 |∇u|mi+ dx ≥ ∫

�
|∇u|pi dx ≥ ,

which implies that u(x) ≡ constant. That is, N(Ai) ⊂ {u ∈ Lpi (�) : u(x) ≡ constant on �}.
On the other hand, suppose u(x) ≡ constant. Then  = 〈v, Biu〉, for ∀v ∈ W ,pi (�). Then

u ∈ N(Ai). The result follows.
(ii) N

N+ < pi < .
Suppose u ∈ Lpi (�) and u(x) ≡ constant. Let un ≡ u, then Ãiun =  in view of (i). Thus

{u ∈ Lpi (�) : u(x) ≡ constant on �} ⊂ N(Ai) in view of the definition of Ai.
On the other hand, let u ∈ N(Ai). Then there exist {un} and {fn} in L(�) such that un →

u, fn →  in Lpi (�) and Ãiun = fn. Now, define the following functions:

η(t) =

{
|t|pi– sgn t, if |t| ≥ ,
t, if |t| < 
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and

ξ (t) =

{
|t|– 

pi sgn t, if |t| ≥ ,
t, if |t| < .

Then for u ∈ L(�), the function t ∈ R → ∫
�

ξ (u + t) dx ∈ R is continuous and
limt→±∞

∫
�

ξ (u + t) dx = ±∞. Therefore, there exists tu ∈ R such that
∫
�

ξ (u + tu) dx = .
So, for un ∈ L(�), we may assume that there exists tn ∈ R such that

∫
�

ξ (un + tn) dx = 
and Ãiun = fn, for n ≥ . Let vn = un + tn, then Ãivn = Ãiun = fn, for n ≥ .

Now, we compute the following:

‖fn‖pi

(∫
|vn|≤

|vn|p′
i dx +

∫
|vn|≥

|vn| dx
) pi–

pi

≥ ‖fn‖pi

(∫
|vn|≤

|vn|p′
i dx +

∫
|vn|≥

|vn|pi dx
) pi–

pi

= ‖fn‖pi

∥∥η(vn)
∥∥

p′
i
≥ 〈

η(vn), fn
〉

=
〈
η(vn), Ãivn

〉 ≥
∫

�

|∇vn|piη′(vn) dx

≥ const.
∫

�

∣∣∇(
ξ (vn)

)∣∣pi dx. (.)

Using Lemma .,
∫

�

∣∣∇(
ξ (vn)

)∣∣pi dx ≥ const.
∥∥ξ (vn)

∥∥pi
,pi ,�

. (.)

Then Lemma . implies that

∥∥ξ (vn)
∥∥pi

,pi ,�
≥ const.

∥∥ξ (vn)
∥∥pi

p′
i

= const.
(∫

|vn|≤
|vn|p′

i dx +
∫

|vn|≥
|vn|(– 

pi
)p′

i dx
) pi

p′
i

= const.
(∫

|vn|≤
|vn|p′

i dx +
∫

|vn|≥
|vn| dx

) pi
p′

i . (.)

From (.)-(.), we know that ‖ξ (vn)‖pi
,pi ,� ≤ const.‖fn‖pi → , as n → ∞. Then

ξ (vn) →  in Lp′
i (�). Since the Nemytskyi mapping u ∈ Lp′

i (�) → ξ–(u) ∈ Lpi (�) is con-
tinuous, vn →  in Lpi (�). Then u(x) ≡ constant. Thus N(Ai) ⊂ {u ∈ Lpi (�) : u(x) ≡
constant on �}.

This completes the proof. �

Remark . Two infinite families of m-accretive mappings related to nonlinear p-Lap-
lacian-like differential systems are constructed, which emphasizes the importance of the
study on approximating common zero points of infinite nonlinear m-accretive mappings.

Remark . Theorem . helps us to see the assumption that
⋂∞

i= N(Ai) �= ∅ in Theo-
rems . and . are valid.



Wei and Agarwal Fixed Point Theory and Applications  (2016) 2016:5 Page 22 of 23

Definition . If f (x) ≡  in (.), then the solution u(x) of (.) is called the equilibrium
solution to the p-Laplacian-like differential systems (.).

Theorem . For i ∈ N+, u(x) ∈ N(Ai) if and only if u(x) is the equilibrium solution of
(.).

Proof It is easy to see that if u(x) ∈ N(Ai), then u(x) is the equilibrium solution of (.).
On the other hand, if u(x) is the equilibrium solution of (.), then

– div
[(

C(x) + |∇u|) si
 |∇u|mi–∇u

]
= , a.e. in �.

Thus for ∀ϕ ∈ C∞
 (�), by using the property of generalized function, we have

 =
〈
ϕ, – div

[(
C(x) + |∇u|) si

 |∇u|mi–∇u
]〉

=
∫

�

– div
[(

C(x) + |∇u|) si
 |∇u|mi–∇u

]
ϕ dx

=
∫

�

〈(
C(x) + |∇u|) si

 |∇u|mi–∇u,∇ϕ
〉
dx = 〈ϕ, Biu〉,

which implies that u(x) ∈ N(Ai).
This completes the proof. �

Remark . Based on Theorem ., Theorems . and . can be applied to approximate
the equilibrium solution of (.).
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