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Abstract
In the paper, we study a plasma fluid physical model, namely the
Zakharov–Kuznetsov (ZK, for simplicity) equation with fractional power nonlinear
terms by the complete discrimination system for polynomial method, and give a
detailed construction of all its single traveling wave solutions. The results show
abundant traveling wave patterns of the ZK equation.
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1 Introduction
Due to the role of nonlinear differential equations in modeling physical phenomena, an
important task in nonlinear science is to find the exact solutions to those equations. Cor-
respondingly, a lot of useful methods have been proposed to solve nonlinear differential
equations, including direct expansion methods and ansatz methods (see, for example [1–
5] and the references therein). In addition, some further arguments on L-integrability and
Liouville theorem in infinite-dimensional Hamiltonian systems have been given [6]. How-
ever, for those direct expansion methods, a weakness is that one cannot obtain complete
results though the considered equations can be reduced to integral forms. In order to
overcome this weakness, Liu proposed the complete discrimination system for polyno-
mial method to give the complete classifications of all single traveling wave solutions for
such nonlinear differential equations [7–11]. In Liu’s method, we firstly reduce the con-
sidered partial differential equation to the integral form under the traveling wave trans-
formation, then we can use the complete discrimination system for polynomial to give the
factorization when the integrand is determined by a polynomial, and finally we classify
the solutions of the corresponding integral. If the equation cannot be directly reduced to
an integral form, we can use Liu’s trial equation method to get an integrable sub-equation,
from which we obtain exact solutions by using the complete discrimination system for
polynomial [12–17]. Liu’s methods have been further applied and developed extensively
to solve more nonlinear problems (see, for example, [17–23] and the references therein).
For exact solutions of nonlinear differential equations, there are a large number of results
(see, for example, Seadawy et al.’s interesting works [24–33]). Recently, Ma et al. proposed a
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powerful method, namely the transformed rational function method, for generating trav-
eling wave solutions and studied deeply and extensively another kind of exact solutions
called lump solutions [34–41].

In the paper, we consider a kind of the Zakharov–Kuznetsov (ZK, for simplicity) equa-
tions with fractional power nonlinear terms. The ZK equation was first derived to describe
the behavior of weakly nonlinear ion-acoustic waves in plasma which comprises cold ions
and hot isothermal electrons when there is a uniform magnetic field [42–44]. Moreover, it
also governs two-dimensional modulations of a KdV soliton equation in fluid mechanics.
The usual ZK equation reads

ut + auux + (uxx + uyy)x = 0, (1)

which is more difficult to study than the KP equation because it is not integrable under
the meaning of the inverse scattering transform method. In addition, we know that the
solitary-wave solutions of the ZK equation are inelastic.

Furthermore, to describe ion-acoustic waves in cold-ion plasma when the behavior of
electrons is not isothermal, Schamel [45] derived the new ZK equations with fractional
power nonlinear terms as follows:

ut + u
1
2 ux + auxxx = 0 (2)

and

ut +
(
1 + bu

1
2
)
ux +

1
2

uxxx = 0. (3)

Monro and Parkes also obtained a different fractional power form of the ZK equation

16ut + 20
(
u

3
2
)

x + uxxx = 0. (4)

Wazwaz obtained some special forms of exact solutions to a fractional ZK equation by the
sine-cosine ansatz method [46]. Other related studies on the equation can be seen in [47,
48]. However, to our knowledge, all single traveling wave solutions to the ZK equations
have not been given [43–48].

In the paper, we use the complete discrimination system for polynomial to give a com-
plete classification of all single traveling wave solutions for two fractional power ZK equa-
tions. From a practical point of view, the classification of traveling wave solutions is very
convenient since we can determine the type of solutions when the conditions of concrete
parameters are given.

The paper is organized as follows. In Sect. 2, we give the classification for γ = 1
2 . In

Sect. 3, we give the classification for γ = 3
2 . In the last section, we give a short discussion

and conclusion.

2 Classification of solutions: first case
We consider a general form of the fractional power ZK equation

aut + b
(
uγ

)
x + uxxx = 0, (5)
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where a and b are coefficients, and γ in general is a fractional number such as γ = 1
2 and

γ = 3
2 and so on. It is easy to see that this ZK equation includes the previous ZK equations

as special examples.
Substituting traveling wave transformation

u(x, t) = u(ξ ), ξ = x – ωt (6)

into Eq. (5), we get the ODE as follows:

–aωu′ + b
(
uγ

)′ + u′′′ = 0. (7)

Integrating the above equation twice yields

(
u′)2 = b0 + b1u + aωu2 –

2b
γ + 1

uγ +1, (8)

where b0 and b1 are two integral constants. If γ is a rational number, we can write it as
γ = n

m , and then we have

(
u′)2 = b0 + b1u + aωu2 –

2bm
n + m

u
n+m

m . (9)

Further, we take u = vm to get

m2v2m–2(v′)2 = b0 + b1vm + aωv2m –
2bm

n + m
vn+m. (10)

Writing it as an integral form, we have

∫ vm–1 dv
√

b0 + b1vm + aωv2m – 2bm
n+m vn+m

= ± 1
m

(ξ – ξ0), (11)

where ξ0 is an integral constant. This integral form is our starting point of solving exact so-
lutions. If we denote F(v) = b0 + b1vm + aωv2m – 2bm

n+m vn+m, it is easy to see that the solutions
of integral depend on the roots of F(v) completely. A powerful mathematical tool, namely
a complete discrimination system for polynomial, can be used to solve the problem. Firstly,
we take γ = 1

2 respectively to give all solutions to the corresponding integral

∫ v dv
√

b0 + b1v2 – 4b
3 v3 + aωv4

= ±1
2

(ξ – ξ0). (12)

We consider two cases b0 = 0 and b0 �= 0 to give solutions respectively.
Case 1. b0 = 0. Then the integral form becomes

∫ dv
√

b1 – 4b
3 v + aωv2

= ±1
2

(ξ – ξ0). (13)

Denote � = b2
3 – 4b1aω as the discrimination of f (v) = b1 – 4b

3 v + aωv2. According to the
values of �, we obtain the following solutions.
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Family 2.1.1. � = 0. Then we have f (v) = aω(v–α)2, where α =
√

b1
aω

. We get the solution

u =
{
α ± exp

(
±

√
aω

2
(ξ – ξ0)

)}2

. (14)

Family 2.1.2. � > 0. Then we have f (v) = aω(v–α)(v–β), where α and β are two distinct
real roots of f = 0. We get the solution

u =
{

α – β(1 ± exp(±
√

aω

2 (ξ – ξ0)))

± exp(±
√

aω

2 (ξ – ξ0))

}2

. (15)

Family 2.1.3. � < 0. Then we have f (v) = aω((v – α)2 + β2), where α = 2b
3aω

, β =√
b1
aω

– 4b2

9a2ω2 . We get the solution

u =
{
α ± β coth

(
±

√
aω

2
(ξ – ξ0)

)}2

. (16)

Case 2. b0 �= 0. Without loss of generality, assume aω > 0 and denote

F(v) = v4 + a3v3 + a2v2 + a1x + a0, (17)

where a3 = – 4b
3aω

, a2 = b1
aω

, a0 = b0
aω

. The complete discrimination system for the fourth
order polynomial F(v) is given by [11]

D1 = 4, D2 = –p, D3 = 8rp – 2p3 – 9q2,

D4 = 4p4r – p3q2 + 36prq2 – 32r2p2 –
27
4

q4 + 64r3,

F2 = 9q2 – 32pr,

(18)

where p = a2, q = a3
3

8 – a2a3
2 , r = a0 + a2a2

3
16 – 3a4

3
256 . There are the following cases to be discussed.

Family 2.2.1. D4 = 0, D3 = 0, D2 < 0. Then we have

F(v) = v2 + lv + s2, (19)

where l, s are real numbers, and l2 – 4s2 < 0. We have the solution represented by the
implicit function u on ξ

±
√

aω

2
(ξ – ξ0) =

1
2
√

2s – l
ln

√
u ∓ √

2s – lu 1
4 + s√

u ± √
2s – lu 1

4 + s

+
1√

2s + l

{
arctan

4u 1
4 ± √

2s – l
2
√

2s + l
+ arctan

4u 1
4 ∓ √

2s – l
2
√

2s + l

}
. (20)

Family 2.2.2. D4 = 0, D3 = 0, D2 = 0. Then we have

F(v) = (v – α)4. (21)
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If α > 0, we have

±
√

aω

2
(ξ – ξ0) =

1
2
√

α
ln

∣
∣∣∣
u 1

4 –
√

α

u 1
4 +

√
α

∣
∣∣∣ –

u 1
4√

u – α
. (22)

If α < 0, we have

±
√

aω

2
(ξ – ξ0) =

1√
–α

arctan
u 1

4√
–α

–
u 1

4√
u – α

. (23)

Family 2.2.3. D4 = 0, D3 = 0, D2 > 0, E2 = 0. Then we have

F(v) = (v – α)2(u – β)2, (24)

where α, β are real numbers, and α > β . If α > β > 0, we have

±
√

aω

2
(α + β)(ξ – ξ0) =

√
α ln

∣
∣∣
∣
u 1

4 –
√

α

u 1
4 +

√
α

∣
∣∣
∣ –

√
β ln

∣
∣∣
∣
u 1

4 –
√

β

u 1
4 +

√
β

∣
∣∣
∣. (25)

If 0 > α > β , we have

±
√

aω

2
(α + β)(ξ – ξ0) = 2

√
–α arctan

u 1
4√

–α
– 2

√
–β arctan

u 1
4√

–β
. (26)

If α > 0 > β , we have

±
√

aω

2
(α + β)(ξ – ξ0) =

√
α ln

∣
∣∣
∣
u 1

4 –
√

α

u 1
4 +

√
α

∣
∣∣
∣ – 2

√
–β arctan

u 1
4√

–β
. (27)

Family 2.2.4. In all other cases such as F(v) = (v – α)2(v – β)(v – γ ) and so on, the cor-
responding solutions can be expressed in terms of elliptic functions and hyper-elliptic
functions. We omit them for brevity.

3 Classification of solutions: second case
Now we consider the second case γ = 3

2 . Then we have

∫ v dv
√

b0 + b1v2 + aωv4 – 4b
5 v5

= ±1
2

(ξ – ξ0). (28)

By taking the transformation

v =
(

–
5

4b

) 1
5

w –
aω

4b
, (29)

the above equation becomes

∫ (w – s0) dw√
F(w)

= ±
(

–
4b
5

) 2
5 1

2
(ξ – ξ0), (30)
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where

F(w) = w5 + pw3 + qw2 + rw + s, (31)

and

p = 10d2 – 4c4d, q = –10d3 + 6c4d2 + c2, r = 5d4 – 4c4d3 – 2c2d,

s = b0 – d5 + c4d4 + c2d2, c4 = aω

(
–

5
4b

) 4
5

,

c2 =
(

b –
5

4b

) 2
5

, s0 =
aω

4b

(
–

4b
5

) 1
5

.

(32)

We write its complete discrimination system of F(w) as follows (see [7, 10]):

D2 = –p, D3 = 40rp – 12p3 – 45q2,

D4 = 12p4r – 4p3q2 + 117prq2 – 88r2p2

– 40qsp2 – 27q4 – 300qrs + 160r3,

D5 = –1600qsr3 – 3750pqs3 + 2000ps2r2 – 4p3q2r2 + 16p3q3s

– 900rs2p3 + 825p2q2s2 + 144pq2r3 + 2250rq2s2 + 16p4r3

+ 108p5s2 – 128r4p2 – 27r2q4 + 108sq5 + 256r5 + 3125s4

– 72rsqp4 + 560sqr2p2 – 630prsq3,

E2 = 160r2p3 + 900q2r2 – 48rp5 + 60rP2q2 + 1500pqrs + 16q2p4

– 1100qsp3 + 625s2p2 – 3375sq3,

F2 = 3q2 – 8rp.

(33)

According to the above complete discrimination system, we list the following eleven
cases to discuss. Among these, in first five cases, the solutions can be represented in terms
of elementary functions, while in other cases the solutions are given by elliptic functions
or elliptic integrals.

Family 3.1. D5 = 0, D4 = 0, D3 > 0, E2 �= 0. Then we have

F(w) = (w – α)2(w – β)2(w – γ ), (34)

where α, β , γ are real numbers, and γ �= α > β �= γ . When w > γ , we have

±(ξ – ξ0) =
2(α – s0)

(α – β)√γ – α
arctan

√w – γ√
γ – α

–
2(s0 – β)

(α – β)
√

γ – β
arctan

√w – γ√
γ – β

, γ > α, (35)

±(ξ – ξ0) = –
2(s0 – β)

(α – β)
√

γ – β
arctan

√
((– 5

4b )1/5 – a
4b )–1v – γ

√
γ – β
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+
(α – s0)

(α – β)√α – γ

× ln

∣∣
∣∣

√
((– 5

4b )1/5 – a
4b )–1v – γ – √

α – γ
√

((– 5
4b )1/5 – a

4b )–1v – γ + √
α – γ

∣∣
∣∣, β < γ < α, (36)

or

±(ξ – ξ0) =
α – s0

(α – β)√α – γ
ln

∣∣
∣∣

√
((– 5

4b )1/5 – a
4b )–1v – γ – √

α – γ
√

((– 5
4b )1/5 – a

4b )–1v – γ + √
α – γ

∣∣
∣∣

–
s0 – β

(α – β)
√

β – γ
ln

∣∣∣
∣

√
((– 5

4b )1/5 – a
4b )–1v – γ –

√
β – γ

√
((– 5

4b )1/5 – a
4b )–1v – γ +

√
β – γ

∣∣∣
∣, γ < β . (37)

Family 3.2. D5 = 0, D4 = 0, D3 = 0, D2 �= 0, F2 �= 0. Then we have

F(w) = (w – α)3(w – β)2, (38)

where α, β are real numbers, and α �= β . When w > α, we have

±α – β

2
(ξ – ξ0) =

β – s0√
((– 5

4b )1/5 – a
4b )–1v – α

+ (α – s0)
√

α – β arctan

√
((– 5

4b )1/5 – a
4b )–1v – α

√
α – β

, α > β , (39)

or

±α – β

2
(ξ – ξ0) =

β – s0√
((– 5

4b )1/5 – a
4b )–1v – α

–
α – s0

2
√

β – α
ln

∣∣
∣∣

√
((– 5

4b )1/5 – a
4b )–1v – α –

√
β – α

√
((– 5

4b )1/5 – a
4b )–1v – α +

√
β – α

∣∣
∣∣, α < β . (40)

Family 3.3. D5 = 0, D4 = 0, D3 = 0, D2 �= 0, F2 = 0. Then we have

F(w) = (w – α)4(w – β), (41)

where α, β , are real numbers, and α �= β . When w > α, we have

±(ξ – ξ0) =
α – s0

α – β

√
((– 5

4b )1/5 – a
4b )–1v – β

((– 5
4b )1/5 – a

4b )–1v – α

+
{

α – s0

2(α – β) 3
2

–
1√

α – β

}
arctan

√
((– 5

4b )1/5 – a
4b )–1v – β

√
β – α

, α < β , (42)
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or

±(ξ – ξ0) =
α – s0

β – α

√
(– 5

4b )1/5 – a
4b )–1v – β

((– 5
4b )1/5 – a

4b )–1v – α

+
{

α – s0

(β – α) 3
2

+
1√

β – α

}

× ln

∣∣
∣∣

√
((– 5

4b )1/5 – a
4b )–1v – β –

√
β – α

√
((– 5

4b )1/5 – a
4b )–1v – β +

√
β – α

∣∣
∣∣, α > β . (43)

Family 3.4. D5 = 0, D4 = 0, D3 = 0, D2 = 0. Then we have

F(w) = (w – α)5, (44)

where α is real number. When w > α, we have

±(ξ – ξ0) = –2
(((

–
5

4b

)1/5

–
a

4b

)–1

v – α

)– 1
2

–
2(α – s0)

3

(((
–

5
4b

)1/5

–
a

4b

)–1

v – α

)– 2
3

. (45)

Family 3.5. D5 = 0, D4 = 0, D3 < 0, E2 �= 0. Then we have

F(w) = (w – α)
(
w2 + rw + s

)2, (46)

where α is real number, and r2 – 4s < 0. When w > α, we have

±(ξ – ξ0) =
b – α + s0

4ab
ln

(((
–

5
4b

)1/5

–
a

4b

)–2((
–

5
4b

)1/5

–
a

4b

)–2

v2

+ r
((

–
5

4b

)1/5

–
a

4b

)–1

v + s
)

+
7b – α + s0

2b
√

4b – a2
arctan

2(– 5
4b )1/5 – a

4b )–1v – a
4b – a2 , (47)

where

b =
√

α2 + rα + s, a =
√

2b – r – 2α. (48)

Family 3.6. D5 = 0, D4 > 0. Then we have

F(w) = (w – α)2(w – α1)(w – α2)(w – α3), (49)

where α, α1, α2, α3 are real numbers, and α1 > α2 > α3. We have

±(ξ – ξ0) =
∫ dw√

(w – α1)(w – α2)(w – α3)

–
2(α – s0)

(α – α2)√α2 – α3

{
F(ϕ, k) –

α1 – α2

α1 – α
Π

(
ϕ,

α1 – α2

α1 – α
, k

)}
, (50)
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where

F(ϕ, k) =
∫ ϕ

0

dϕ
√

1 – k2 sin2 ϕ
, (51)

Π (ϕ, h, k) =
∫ ϕ

0

dϕ

(1 + h sin2 ϕ)
√

1 – k2 sin2 ϕ
. (52)

Family 3.7. D5 = 0, D4 = 0, D3 < 0, E2 = 0. Then we have

F(w) = (w – α)3((w – l1)2 + s2
1
)
, (53)

where α, l1, and s1 are real numbers. When w > α and α �= l1 + s1, we have

±(ξ – ξ0) =
∫ dw

√
(w – α)((w – l1)2 + s2

1)

+ (α – s0)
{

tan θ + cot θ

2(s1 tan θ – l1 – α)
√

s1
sin3 2θ

F(ϕ, k) –
s1 tan θ + s1 cot θ

s1 cot θ + l1 + α

×
{

(
tan θ + l1 + α

(s1 cot θ + l1 – α) sinϕ

√
1 – k2 sin2 ϕ + F(ϕ, k) – E(ϕ, k)

}}
, (54)

where

E(ϕ, k) =
∫ ϕ

0

√
1 – k2 sinθ dθ . (55)

Family 3.8. D5 = 0, D4 < 0. Then we have

F(w) = (w – α)2(w – β)
(
(w – l1)2 + s2

1
)
, (56)

where α, l1, and s1 are real numbers. The solution is represented by

±(ξ – ξ0) =
∫ dw

√
(w – β)((w – l1)2 + s2

1)

+ (α – s0)
{

tan θ + cot θ

2(s1 tan θ – l1 – α)
√

s
sin3 2θ

F(ϕ, k) –
s1 tan θ + s cot θ

s1 cot θ + l1 + α

×
{

(
tan θ + l1 + α

(s cot θ + l1 – α) sinϕ

√
1 – k2 sin2 ϕ + F(ϕ, k) – E(ϕ, k)

}}
. (57)

Family 3.9. D5 = 0, D4 = 0, D3 > 0, E2 = 0. Then we have

F(w) = (w – α)3(w – β)(w – γ ), (58)

where α, β , and γ are real numbers. The solution is represented by

±(ξ – ξ0) =
∫ dw

√
(w – α)(w – β)(w – γ )

+
(α – β)(α – s0)

2√
α – γ

E

(
arcsin

√
α – γ

w – γ
,

√
β – γ

α – γ

)
–

√
w – β

(w – γ )(w – α)
. (59)
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In other cases, we can give the corresponding solutions similarly. We omit them for sim-
plicity.

Family 3.10. In the following three cases: D5 > 0, D4 > 0, D3 > 0, D2 > 0 or D5 < 0 or D5 >
0 ∧ (D4 ≤ 0 ∨ D3 ≤ 0 ∨ D2 ≤ 0), where ∧ means “and”, ∨ means “or”, we have respectively

F(w) = (w – α1)(w – α2)(w – α3)(w – α4)(w – α5), (60)

F(w) = (w – α1)(w – α2)(w – α3)
(
(w – l)2 + s2), (61)

or

F(w) = (w – α)
(
(w – l1)2 + s2

1
)
)
(
(w – l2)2 + s2

2
)
. (62)

Then the corresponding solutions can be expressed by hyper-elliptic functions or hyper-
elliptic integral. We omit them for brevity.

4 Conclusion
By the complete discrimination system for polynomial method, we give the complete clas-
sification of the traveling wave solutions to a fractional power ZK equation under γ = 1

2
and γ = 3

2 . The last case is more difficult than the first one since we need the complete
discrimination system for fifth order polynomial. These results mean that there are rich
traveling wave patterns for the ZK equation. Our results provide a complete classification
of all single traveling wave solutions to two fractional power ZK equations. If we take the
concrete parameters in a real model, we can give the corresponding representation of the
solution. Therefore, it is rather convenient for practice. On the other hand, most of the
solutions have implicit function forms if we consider w or v as the function of ξ . But, in-
versely, if we take ξ as the function of w or v, the solutions will become explicit functions.
In general, these implicit function solutions cannot be obtained by the direct expansion
methods and ansatz methods in [46, 47].
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