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1 Introduction
This article is concerned with the oscillation and asymptotic behavior of a nonlinear third-
order neutral delay differential equation

(
r(t)

(
z′′(t)

)α)′ + q(t)f
(
x
(
σ (t)

))
= , (.)

where t ≥ t > , z(t) := x(t) + p(t)x(τ (t)), and α ≥  is a ratio of odd positive integers. We
also suppose that the following assumptions hold:

(A) r ∈ C([t,∞), (,∞)), p, q ∈ C([t,∞), [,∞)), τ ∈ C([t,∞),R), σ ∈ C([t,∞),R),
and q is not identically zero for large t;

(A)
∫ ∞

t
r–/α(t) dt = ∞ and  ≤ p(t) ≤ p < ∞;

(A) τ (t) ≤ t, σ (t) ≤ t, and limt→∞ τ (t) = limt→∞ σ (t) = ∞;
(A) f ∈ C(R,R) and there exists a positive constant k such that f (u)/uα ≥ k for all u �= ;
(A) τ ′(t) ≥ τ >  and τ ◦ σ = σ ◦ τ .

By a solution to equation (.) we mean a function x ∈ C([Tx,∞),R), Tx ≥ t, which has
the property r(z′′)α ∈ C([Tx,∞),R) and satisfies (.) on the interval [Tx,∞). We consider
only those solutions to (.) which satisfy condition sup{|x(t)| : t ≥ T} >  for all T ≥ Tx

and assume that (.) possesses such solutions. A solution of (.) is called oscillatory if it
has arbitrarily large zeros on [Tx,∞); otherwise, it is said to be nonoscillatory.

In recent years, the oscillation theory of functional differential equations has received
much attention since it has a great number of applications in engineering and natural
sciences. For some related contributions on the oscillatory behavior of various classes of
functional differential equations, we refer the reader to [–] and the references cited
therein. In the following, we provide some background details that motivated our study.
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Baculíková et al. [] and Li and Rogovchenko [] established several oscillation theorems
for a second-order neutral differential equation

(
r(t)

∣∣z′(t)
∣∣α–z′(t)

)′ + q(t)f
(
x
(
σ (t)

))
= , z := x + p · (x ◦ τ )

under the assumptions that (A)-(A) hold and α >  is a constant. For oscillation of third-
order neutral differential equations, Baculíková and Džurina [, ], Candan [], and Džu-
rina et al. [] considered the couple of third-order neutral differential equations

(
a(t)

((
x(t) ± p(t)x

(
δ(t)

))′′)γ )′ + q(t)xγ
(
τ (t)

)
= 

in the case where

 ≤ p(t) ≤ p < . (.)

Baculíková and Džurina [] studied a class of third-order neutral differential equations

(
a(t)

((
x(t) + p(t)x

(
δ(t)

))′)γ )′′ + q(t)xγ
(
τ (t)

)
= ,

whereas Baculíková and Džurina [], Jiang and Li [], Li and Rogovchenko [], Li et al.
[], and Xing et al. [] considered a third-order neutral differential equation

(
r(t)

(
x(t) + p(t)x

(
τ (t)

))′′)′ + q(t)x
(
σ (t)

)
= . (.)

In particular, using the comparison method, Xing et al. [] obtained the following result
for equation (.); see ([], Corollary .).

Theorem . Assume that conditions (A)-(A) and (A) are satisfied, and let σ – ∈
C([t,∞),R), (σ –(t))′ ≥ σ > , and σ (t) < τ (t) ≤ t. If

r′ ≥  (.)

and

lim inf
t→∞

∫ t

τ–(σ (t))

sQ̄(s)
r(s)

ds >
(τ + p)

στe
,

where Q̄(t) := min{q(σ –(t)), q(σ –(τ (t)))}, τ– and σ – denote the inverse functions of
τ and σ , respectively, then every solution x of (.) is either oscillatory or satisfies
limt→∞ x(t) = .

It should be noted that assumptions (.) and (.) are restrictive conditions in the study
of oscillation of (.) and research in this paper was strongly motivated by the recent con-
tributions of Li and Rogovchenko [, ], Li et al. [], and Xing et al. []. Our principal
goal is to establish an oscillation criterion for a nonlinear third-order neutral delay dif-
ferential equation (.) which can be applied in the case when p >  as well and without
requiring condition (.). In the sequel, we use the following notation:

f+(t) := max
{

, f (t)
}

, Q(t) := min
{

q(t), q
(
τ (t)

)}
, R(t) := max

{
r(t), r

(
τ (t)

)}
,
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and all functional inequalities are tacitly assumed to hold for all t large enough, unless
mentioned otherwise.

2 Lemmas
Lemma . Assume that conditions (A)-(A) hold and x is a positive solution of (.).
Then there are only the following two possible cases for z:

(I) z(t) > , z′(t) > , z′′(t) > , and (r(z′′)α)′(t) ≤ ;
(II) z(t) > , z′(t) < , z′′(t) > , and (r(z′′)α)′(t) ≤ ,

where t ≥ T , T ≥ t is sufficiently large.

Proof The proof is similar to that of Baculíková and Džurina ([], Lemma ), and thus is
omitted. �

Lemma . Assume that conditions (A)-(A) are satisfied. Let x be a positive solution
of (.) and the corresponding z satisfy case (II) in Lemma .. If

∫ ∞

t

ξ

(


R(ξ )

∫ ∞

ξ

Q(s) ds
)/α

dξ = ∞, (.)

then limt→∞ x(t) = limt→∞ z(t) = .

Proof Note that there exist three constants c, c, and c such that limt→∞ r(t)(z′′(t))α =
c ≥ , limt→∞ z′(t) = c ≤ , and limt→∞ z(t) = c ≥ . A similar analysis to that in ([],
Theorem ) leads to the conclusion that limt→∞ x(t) = limt→∞ z(t) = . �

3 Main results
Theorem . Assume that conditions (A)-(A) and (.) are satisfied. If there exist two
functions ρ ∈ C([t,∞), (,∞)) and δ ∈ C([t,∞), [,∞)) such that

∫ ∞

t∗

[
–αkρ(t)Q(t)

(∫ σ (t)
t

∫ s
t

r–/α(u) du ds
∫ t

t
r–/α(u) du

)α

– G(t)
]

dt = ∞ (.)

for a sufficiently large t ≥ t and for some t∗ > t > t, where

G(t) := ρ(t)
[((

r(t)δ(t)
)′ – r(t)δ+/α(t)

)

+
pα


τ

((
r
(
τ (t)

)
δ
(
τ (t)

))′ – r
(
τ (t)

)
τ ′(t)δ+/α(

τ (t)
))]

+
ρ(t)r(t)

(α + )α+

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(t)
)α+

+
pα



τα+


ρ(t)r(τ (t))
(α + )α+

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(
τ (t)

)
τ ′(t)

)α+

, (.)

then every solution x of (.) is either oscillatory or satisfies limt→∞ x(t) = .

Proof Suppose that x is a nonoscillatory solution of (.) which, without loss of general-
ity, is eventually positive. Then there exists a t ≥ t such that x(t) > , x(τ (t)) > , and
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x(σ (t)) >  for t ≥ t. By Lemma ., we observe that z satisfies either (I) or (II) for t ≥ T ,
where T ≥ t is large enough. We consider each of the two cases separately.

Assume first that case (I) holds. By virtue of (.) and (A),

(
r(t)

(
z′′(t)

)α)′ = –q(t)f
(
x
(
σ (t)

)) ≤ –kq(t)xα
(
σ (t)

) ≤ . (.)

It follows from (r(τ (t))(z′′(τ (t)))α)′ = (r(z′′)α)′(τ (t))τ ′(t) that there exists a t ≥ T such that,
for t ≥ t,

pα


(r(τ (t))(z′′(τ (t)))α)′

τ ′(t)
≤ –pα

kq
(
τ (t)

)
xα

(
σ
(
τ (t)

))
.

Using the latter inequality and condition τ ′(t) ≥ τ > , we get, for t ≥ t,

pα


τ

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′ ≤ –pα
kq

(
τ (t)

)
xα

(
σ
(
τ (t)

))
. (.)

Combining (.) and (.) and using the assumption σ ◦ τ = τ ◦ σ , we conclude that

(
r(t)

(
z′′(t)

)α)′ +
pα


τ

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′

≤ –k
(
q(t)xα

(
σ (t)

)
+ pα

q
(
τ (t)

)
xα

(
σ
(
τ (t)

)))

≤ –k min
{

q(t), q
(
τ (t)

)}(
xα

(
σ (t)

)
+ pα

xα
(
τ
(
σ (t)

)))

= –kQ(t)
(
xα

(
σ (t)

)
+ pα

xα
(
τ
(
σ (t)

)))
. (.)

Using condition  ≤ p(t) ≤ p < ∞ and the inequality (see ([], Lemma ))

xα
 + xα

 ≥ 
α– (x + x)α ,

where α ≥ , x ≥ , and x ≥ , we have

xα
(
σ (t)

)
+ pα

xα
(
τ
(
σ (t)

)) ≥ (x(σ (t)) + px(τ (σ (t))))α

α– ≥ zα(σ (t))
α– . (.)

Substitution of (.) into (.) implies that, for t ≥ t,

(
r(t)

(
z′′(t)

)α)′ +
pα


τ

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′ ≤ –
k

α– Q(t)
(
z
(
σ (t)

))α . (.)

For t ≥ t, define a function ω by

ω(t) := ρ(t)
[

r(t)(z′′(t))α

(z′(t))α
+ r(t)δ(t)

]
. (.)

Then ω(t) >  for t ≥ t. Differentiation of (.) yields

ω′(t) = ρ ′(t)
[

r(t)(z′′(t))α

(z′(t))α
+ r(t)δ(t)

]
+ ρ(t)

[
r(t)(z′′(t))α

(z′(t))α
+ r(t)δ(t)

]′

=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(
r(t)δ(t)

)′ + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α
– αρ(t)

r(t)(z′′(t))α+

(z′(t))α+ . (.)



Jiang et al. Advances in Difference Equations  (2016) 2016:171 Page 5 of 12

By virtue of (.),

(
z′′(t)
z′(t)

)α+

=
(

ω(t)
ρ(t)r(t)

– δ(t)
)(α+)/α

. (.)

Substituting (.) into (.), we conclude that

ω′(t) =
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(
r(t)δ(t)

)′ + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α

– αρ(t)r(t)
(

ω(t)
ρ(t)r(t)

– δ(t)
)(α+)/α

≤ ρ ′
+(t)

ρ(t)
ω(t) + ρ(t)

(
r(t)δ(t)

)′ + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α

–
α

(ρ(t)r(t))/α

(
ω(t) – ρ(t)r(t)δ(t)

)+/α . (.)

Let

A := ω(t) and B := ρ(t)r(t)δ(t).

Using the inequality (see ([], Lemma ) and note that α ≥  is a ratio of odd integers)

A+/α – (A – B)+/α ≤ B/α
[(

 +

α

)
A –


α

B
]

, AB ≥ , (.)

we have

(
ω(t) – ρ(t)r(t)δ(t)

)+/α ≥ ω+/α(t) +

α

(
ρ(t)r(t)δ(t)

)+/α

–
(

 +

α

)
ω(t)

(
ρ(t)r(t)δ(t)

)/α . (.)

Combining (.) and (.), we get

ω′(t) ≤ ρ ′
+(t)

ρ(t)
ω(t) + ρ(t)

(
r(t)δ(t)

)′ + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α
–

α

(ρ(t)r(t))/α

×
[
ω(α+)/α(t) +


α

(
ρ(t)r(t)δ(t)

)(α+)/α –
(

 +

α

)
ω(t)

(
ρ(t)r(t)δ(t)

)/α
]

= ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α
+ ρ(t)

(
r(t)δ(t)

)′ – ρ(t)r(t)δ(α+)/α(t)

+
(

ρ ′
+(t)

ρ(t)
+ (α + )δ/α(t)

)
ω(t) –

α

(ρ(t)r(t))/α ω(α+)/α(t). (.)

Let

C :=
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(t), D :=
α

(ρ(t)r(t))/α , and u := ω(t).
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Using the inequality (see [])

Cu – Du(α+)/α ≤ αα

(α + )α+
Cα+

Dα
, D > , (.)

we deduce from (.) that

ω′(t) ≤ ρ(t)
(r(t)(z′′(t))α)′

(z′(t))α
+ ρ(t)

(
r(t)δ(t)

)′ – ρ(t)r(t)δ+/α(t)

+
ρ(t)r(t)

(α + )α+

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(t)
)α+

. (.)

Define another function ν by

ν(t) := ρ(t)
[

r(τ (t))(z′′(τ (t)))α

(z′(τ (t)))α
+ r

(
τ (t)

)
δ
(
τ (t)

)
]

. (.)

Then ν(t) >  for t ≥ t. Differentiation of (.) implies that

ν ′(t) = ρ ′(t)
[

r(τ (t))(z′′(τ (t)))α

(z′(τ (t)))α
+ r

(
τ (t)

)
δ
(
τ (t)

)
]

+ ρ(t)
[

r(τ (t))(z′′(τ (t)))α

(z′(τ (t)))α
+ r

(
τ (t)

)
δ
(
τ (t)

)]′

=
ρ ′(t)
ρ(t)

ν(t) + ρ(t)
(
r
(
τ (t)

)
δ
(
τ (t)

))′ + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))α

– αρ(t)
r(τ (t))(z′′(τ (t)))α+τ ′(t)

(z′(τ (t)))α+

=
ρ ′(t)
ρ(t)

ν(t) + ρ(t)
(
r
(
τ (t)

)
δ
(
τ (t)

))′ + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))α

– αρ(t)r
(
τ (t)

)
τ ′(t)

(
ν(t)

ρ(t)r(τ (t))
– δ

(
τ (t)

))(α+)/α

≤ ρ ′
+(t)

ρ(t)
ν(t) + ρ(t)

(
r
(
τ (t)

)
δ
(
τ (t)

))′ + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))α

–
ατ ′(t)

(ρ(t)r(τ (t)))/α

(
ν(t) – ρ(t)r

(
τ (t)

)
δ
(
τ (t)

))+/α . (.)

Let

A := ν(t) and B := ρ(t)r
(
τ (t)

)
δ
(
τ (t)

)
.

Using inequality (.), we obtain

(
ν(t) – ρ(t)r

(
τ (t)

)
δ
(
τ (t)

))+/α ≥ ν+/α(t) +

α

(
ρ(t)r

(
τ (t)

)
δ
(
τ (t)

))+/α

–
(

 +

α

)
ν(t)

(
ρ(t)r

(
τ (t)

)
δ
(
τ (t)

))/α . (.)



Jiang et al. Advances in Difference Equations  (2016) 2016:171 Page 7 of 12

Substituting (.) into (.), we get

ν ′(t) ≤ ρ ′
+(t)

ρ(t)
ν(t) + ρ(t)

(
r
(
τ (t)

)
δ
(
τ (t)

))′ + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))α
–

ατ ′(t)
(ρ(t)r(τ (t)))/α

×
[
ν+/α(t) +


α

(
ρ(t)r

(
τ (t)

)
δ
(
τ (t)

))+/α

–
(

 +

α

)
ν(t)

(
ρ(t)r

(
τ (t)

)
δ
(
τ (t)

))/α
]

≤ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))α
+ ρ(t)

(
r
(
τ (t)

)
δ
(
τ (t)

))′ – ρ(t)r
(
τ (t)

)
δ+/α(

τ (t)
)
τ ′(t)

+
(

ρ ′
+(t)

ρ(t)
+ (α + )δ/α(

τ (t)
)
τ ′(t)

)
ν(t) –

ατ ′(t)
(ρ(t)r(τ (t)))/α ν(α+)/α(t). (.)

Let

C :=
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(
τ (t)

)
τ ′(t), D :=

ατ ′(t)
(ρ(t)r(τ (t)))/α , and u := ν(t).

Using inequality (.), we deduce from (.) that

ν ′(t) ≤ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))α
+ ρ(t)

(
r
(
τ (t)

)
δ
(
τ (t)

))′ – ρ(t)r
(
τ (t)

)
τ ′(t)δ+/α(

τ (t)
)

+
ρ(t)r(τ (t))

(α + )α+(τ ′(t))α

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(
τ (t)

)
τ ′(t)

)α+

. (.)

Since z′′(t) >  and τ (t) ≤ t, we have z′(τ (t)) ≤ z′(t). Inequality (.) yields

ν ′(t) ≤ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(t))α
+ ρ(t)

(
r
(
τ (t)

)
δ
(
τ (t)

))′ – ρ(t)r
(
τ (t)

)
τ ′(t)δ+/α(

τ (t)
)

+
ρ(t)r(τ (t))

(α + )α+(τ ′(t))α

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(
τ (t)

)
τ ′(t)

)α+

. (.)

Combining (.) and (.) and utilizing (.), we obtain

ω′(t) +
pα


τ

ν ′(t) ≤ ρ(t)
(r(t)(z′′(t))α)′ + pα

/τ(r(τ (t))(z′′(τ (t)))α)′

(z′(t))α

+ ρ(t)
((

r(t)δ(t)
)′ – r(t)δ+/α(t)

)

+
ρ(t)r(t)

(α + )α+

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(t)
)α+

+
pα


τ

ρ(t)
((

r
(
τ (t)

)
δ
(
τ (t)

))′ – r
(
τ (t)

)
τ ′(t)δ+/α(

τ (t)
))

+
pα


τ

ρ(t)r(τ (t))
(α + )α+(τ ′(t))α

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(
τ (t)

)
τ ′(t)

)α+

≤ ––αkρ(t)Q(t)
(z(σ (t)))α

(z′(t))α
+ ρ(t)

((
r(t)δ(t)

)′ – r(t)δ+/α(t)
)

+
pα


τ

ρ(t)
((

r
(
τ (t)

)
δ
(
τ (t)

))′ – r
(
τ (t)

)
τ ′(t)δ+/α(

τ (t)
))
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+
ρ(t)r(t)

(α + )α+

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(t)
)α+

+
pα



τα+


ρ(t)r(τ (t))
(α + )α+

(
ρ ′

+(t)
ρ(t)

+ (α + )δ/α(
τ (t)

)
τ ′(t)

)α+

= ––αkρ(t)Q(t)
(z(σ (t)))α

(z′(t))α
+ G(t), (.)

where G is defined as in (.). By virtue of (r(t)(z′′(t))α)′ ≤ , we have

z′(t) = z′(t) +
∫ t

t

z′′(s) ds

= z′(t) +
∫ t

t

(r(s)(z′′(s))α)/α

r/α(s)
ds

≥ r/α(t)z′′(t)
∫ t

t

r–/α(s) ds. (.)

That is,

z′(t)r–/α(t) – z′′(t)
∫ t

t

r–/α(s) ds ≥ ,

which yields

(
z′(t)

∫ t
t

r–/α(s) ds

)′
≤ . (.)

It follows from σ (t) ≤ t that

z′(σ (t))
∫ σ (t)

t
r–/α(s) ds

≥ z′(t)
∫ t

t
r–/α(s) ds

,

and so

z′(σ (t))
z′(t)

≥
∫ σ (t)

t
r–/α(s) ds

∫ t
t

r–/α(s) ds
. (.)

Using (.), we obtain

z(t) = z(t) +
∫ t

t

z′(s) ds

= z(t) +
∫ t

t

z′(s)
∫ s

t
r–/α(u) du

∫ s

t

r–/α(u) du ds

≥ z′(t)
∫ t

t
r–/α(u) du

∫ t

t

∫ s

t

r–/α(u) du ds

for t ≥ t > t, which implies that

z(t)
z′(t)

≥
∫ t

t

∫ s
t

r–/α(u) du ds
∫ t

t
r–/α(u) du

. (.)
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It follows now from (.) and (.) that

(z(σ (t)))α

(z′(t))α
=

(
z′(σ (t))

z′(t)
z(σ (t))
z′(σ (t))

)α

≥
(∫ σ (t)

t

∫ s
t

r–/α(u) du ds
∫ t

t
r–/α(u) du

)α

. (.)

Substitution of (.) into (.) yields

ω′(t) +
pα


τ

ν ′(t) ≤ ––αkρ(t)Q(t)
(∫ σ (t)

t

∫ s
t

r–/α(u) du ds
∫ t

t
r–/α(u) du

)α

+ G(t). (.)

Integrating (.) from t (t > t) to t, we have

∫ t

t

[
–αkρ(v)Q(v)

(∫ σ (v)
t

∫ s
t

r–/α(u) du ds
∫ v

t
r–/α(u) du

)α

– G(v)
]

dv ≤ ω(t) +
pα


τ

ν(t), (.)

which contradicts (.).
Assume now that case (II) holds. By virtue of Lemma ., limt→∞ x(t) = . This com-

pletes the proof. �

Remark . With an appropriate choice of the functions ρ and δ, one can derive from
Theorem . a number of oscillation criteria for equation (.). The details are left to the
reader.

4 Examples and discussion
We give the following examples to illustrate applications of Theorem ..

Example . For t ≥ , consider a third-order neutral delay differential equation

(
x(t) + x

(
t


))′′′
+

γ

t x
(

t


)
= , (.)

where γ >  is a constant. Let α = k = , r(t) = , p(t) = p = , τ (t) = t/, τ = /, q(t) =
γ /t, f (u) = u, σ (t) = t/, σ = , ρ(t) = t, and δ(t) = . It is not difficult to verify that con-
ditions (A)-(A) are satisfied and G(t) = /(t). Noticing that R(t) = max{r(t), r(τ (t))} = 
and Q(t) = min{q(t), q(τ (t))} = min{γ /t, γ /t} = γ /t, we have

∫ ∞

t

ξ

(


R(ξ )

∫ ∞

ξ

Q(s) ds
)/α

dξ =
∫ ∞


ξ

∫ ∞

ξ

γ

s ds dξ =
γ



∫ ∞


ξ– dξ = ∞.

Denote the left hand side of (.) by ψ(t∗). Then

ψ(t∗) =
∫ ∞

t∗

(
γ

t

∫ t/
t

(s – t) ds
∫ t

t
du

–

t

)
dt

=
∫ ∞

t∗

[
γ

t(t – t)

(
t


–




t
 –




tt + tt

)
–


t

]
dt

=
∫ ∞

t∗

(
γ

(t – t)
–


t

–
γ t

t(t – t)
+

γ (tt – .t
)

t(t – t)

)
dt = ∞,
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provided that γ > .. Hence, by Theorem ., every solution x of (.) is either oscillatory
or satisfies limt→∞ x(t) =  for any γ > ..

On the other hand, Q̄(t) = min{q(σ –(t)), q(σ –(τ (t)))} = min{γ /(t), γ /(t)} =
γ /(t), and so

lim inf
t→∞

∫ t

τ–(σ (t))

sQ̄(s)
r(s)

ds = lim inf
t→∞

∫ t


 t

γ

s
ds >


.e

,

provided that γ > /(e ln .) ≈ .. An application of Theorem . implies that every
solution x of (.) is either oscillatory or satisfies limt→∞ x(t) =  for all γ > .. There-
fore, Theorem . improves Theorem .. Observe that results reported in Baculíková and
Džurina [, ], Candan [], Džurina et al. [], Jiang and Li [], and Li et al. [] cannot be
applied to (.) due to the fact that p(t) =  > .

Example . For t ≥ , consider a third-order neutral delay differential equation

(
( + sin t)

[(
x(t) + x(t – k)

)′′])′ +
γ

t x(t – k) = , (.)

where γ , k, and k are positive constants. Let α = , k = , r(t) =  + sin t, p(t) = p = ,
τ (t) = t – k, τ = , q(t) = γ /t, f (u) = u, σ (t) = t – k, ρ(t) = t, and δ(t) = . By virtue
of  ≤ r(t) ≤ ,

∫ ∞
 r–/α(s) ds = ∞. It is not hard to see that assumptions (A)-(A) hold.

Noticing that  ≤ R(t) = max{r(t), r(τ (t))} = max{ + sin t,  + sin(t – k)} ≤  and Q(t) =
min{q(t), q(τ (t))} = min{γ /t,γ /(t – k)} = γ /t, we obtain

∫ ∞

t

ξ

(


R(ξ )

∫ ∞

ξ

Q(s) ds
)/α

dξ =
∫ ∞


ξ

(


R(ξ )

)/(∫ ∞

ξ

γ

s ds
)/

dξ

≥
(

γ



)/ ∫ ∞


ξ– dξ

= ∞.

Moreover,

G(t) =
t( + sin t)



(
t

t

)

+
t( + sin(t – k))



(
t

t

)

≤ 

t
.

Denote the left hand side of (.) by ψ(t∗). Then

ψ(t∗) =
∫ ∞

t∗

[
γ

t

(∫ t–k
t

∫ s
t

( + sin u)–/ d uds
∫ t

t
( + sin u)–/ du

)

– G(t)
]

dt

≥
∫ ∞

t∗

[
γ

t

(∫ t–k
t

(s – t) ds
–/(t – t)

)

–


t

]
dt

=
∫ ∞

t∗

[
γ

t

(
(t – k)/ – tt + β

–/(t – t)

)

–


t

]
dt

= ∞,

provided that γ > / = ., where β = –t
/ + tk + tt. Therefore, by Theorem .,

every solution x of (.) is either oscillatory or satisfies limt→∞ x(t) =  for any γ > ..
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Theorem . and results of Baculíková and Džurina [] do not allow us to arrive at this
conclusion due to the fact that α �= . Observe that results reported in Baculíková and
Džurina [, ], Candan [], Džurina et al. [], Jiang and Li [], and Li et al. [] cannot be
applied to (.) since p(t) =  > .

Remark . Without requiring assumptions (.) and (.), Theorem . is presented by
using the double generalized Riccati substitutions (.) and (.). We stress that the study
of oscillatory properties of equation (.) in the case p(t) >  brings about additional dif-
ficulties. In particular, as in the papers by Baculíková and Džurina [] and Li and Ro-
govchenko [], we have to impose additional assumptions (A). One of the principal dif-
ficulties one encounters lies in the fact that x(t) ≥ ( – p(t))z(t) is not a valid estimate if
p(t) >  and x is an eventually positive solution of (.). The question regarding the anal-
ysis of oscillatory behavior of solutions to (.) with other methods that do not require
these assumptions remains open at the moment.

Remark . Note that Theorem . guarantees that every solution x of (.) is either os-
cillatory or satisfies limt→∞ x(t) =  and, unfortunately, this result cannot distinguish so-
lutions with different behaviors. Since the sign of the derivative z′ is not fixed, it is not easy
to establish sufficient conditions which ensure that all solutions of (.) are just oscillatory
and do not satisfy limt→∞ x(t) = . Neither is it possible to use the technique exploited in
this paper for proving that all solutions of (.) satisfy limt→∞ x(t) = . Hence, these two
interesting problems remain for future research.
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