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Abstract
A mathematical model for HIV-1 infection with multiple delays is proposed. These
delays account for (i) the delay in contact process between the uninfected cells virus,
(ii) a latent period between the time target cells which are contacted by the virus
particles and the time the virions enter the cells, and (iii) a virus production period for
new virions to be produced within and released from the infected cells. For this
model, the basic reproductive number is identified and its threshold property is
discussed. The uninfected and infected steady states are shown to be locally as well
as globally asymptotically stable. The value of the basic reproductive number shows
that increasing any one of these delays will decrease this number. This may suggest a
new direction for new drugs that can prolong the infection process and spreading of
virus. The proved results have potential applications in HIV-1 therapy.

1 Introduction
Mathematical modeling in epidemiology provides understanding of the mechanisms that
influence the spread of a disease and suggests control strategies. Human immunodefi-
ciency virus (HIV-) is a lentivirus that causes acquired immunodeficiency syndrome
(AIDS). The HIV infection is characterized by three different phases, namely, the primary
infection, a clinically asymptomatic stage (chronic infection), and acquired immunodefi-
ciency syndrome (AIDS). In recent years the population dynamics of infectious diseases
have been extensively studied [–]. Clinical research combined with mathematical mod-
eling has enhanced progress in the understanding of the HIV- infection []. This is be-
cause mathematical models can offer a way to study the dynamics of viral load in vivo and
can be very useful in understanding the interaction between virus and host cell.

In the last decade, the HIV-infection models with time delays have been studied by many
authors, and time delays of one type or another have been incorporated into biological
models by many authors (e.g., [–, –] and the references cited therein). The re-
sults presented in [–] have shown that larger intercellular delay may help eradicate
the virus, while the activation of CTLs can only help reduce the virus load and increase
the healthy CD+ cells in the long term sense. Pawelek et al. [] have studied that models
of HIV- infection incorporating intracellular delays are more accurate representations of
the biology, and that they can change the estimated values of the kinetic parameters when
compared to models without delays. Therefore, we incorporate time delay terms in the
model in the interaction of different cells.
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This research extends the work in [] by incorporating delays in the contact process
between the uninfected cells and virus. By introducing these multiple delay terms, the
proposed model becomes

ẋ(t) = N – dx(t) – βe–mτ x(t – τ)v(t – τ),

ẏ(t) = βe–mτ x(t – τ)v(t – τ) – ay(t) – py(t)z(t),

v̇(t) = ky(t) – uv(t),

ż(t) = cy(t – τ)z(t – τ) – bz(t),

()

where x(t), y(t), and v(t) are the densities of uninfected target cells, infected target cells and
free virus, respectively, at time t. β is the infection rate of uninfected cells by the virus. The
healthy cell is assumed to be produced at a constant rate N . It is also assumed that, once
cells are infected, they may die at rate a either due to the action of the virus or the immune
system, in the meantime each producing HIV- virus particles at a rate k during their life
with an average length /a. The density z represents CTL response cells. Here, τ can be
regarded as the average time for a viral particle to go through the eclipse phase (or average
latent period) and τ may be treated as the average time between the entry of a virion
into a cell and the creation and release of new virions from this cell. Realistically, τ may
differ from τ. e–mτ is the probability of surviving of cells in the time period from τ to t,
where m is assumed to be the constant death rate of infected CD+ T cells. The novelty
of the proposed model is that it considers a delay in the process of infection of healthy T
cells, and in virus production. In the previous research the rate of contact of targeted cells
and virus was ignored. This work considers the whole process of infection of healthy cells.
In eliminating or controlling the disease after human body was infected by the virus, the
immune response plays an important role. Antigenic stimulation in generating CTLs may
need a period of time τ, that is, the CTL response at time t may depend on the population
of antigen at a period time (t – τ) [].

We study the dynamical behavior of the proposed model and show how delays influence
the stability. We discuss the well-posedness of the solution of equilibria and their stability.
In order to properly define biologically meaningful equilibria, we find the basic reproduc-
tion number. It will be shown that an infection-free equilibrium, E, is locally as well as
globally asymptotically stable. We also show that the single-infection equilibrium, E, is
locally as well as globally asymptotically stable, and the double-infection equilibrium, E,
is also globally asymptotically stable.

The rest of this paper is organized as follows. The next section is devoted to the well-
posedness and positivity of the solution. In Section , local and global stabilities of the
infection-free equilibrium, E, are discussed, and in Section  we discuss the infection-
free equilibrium, E, and the double-infection equilibrium, E. A numerical simulation
and conclusion are discussed in Section .

2 Positivity and well-posedness of the solution and basic reproductive number
In this section, first we discuss the positivity and well-posedness of the solution.

Theorem . All solutions of the system () remain non-negative, provided the given initial
conditions are non-negative and bounded.



Ali et al. Advances in Difference Equations  (2016) 2016:88 Page 3 of 12

Proof Let X = C([–τ , ]; R) be the Banach space of continuous mapping from [–τ , ] to R

equipped with the sup-norm. It is biologically reasonable to consider the following initial
conditions for the system ():

x(φ) ≥ , y(φ) ≥ , z(φ) ≥ , v(φ) ≥ , φ ∈ [–τ , ], ()

where (x(φ), y(φ), v(φ), z(φ)) ∈ X and τ = max{τ, τ}. By the fundamental theory of func-
tional differential equations (see, e.g., [, ]), we know that there exists a unique solution
x(t), y(t), z(t), and v(t) for the given initial conditions in (). By using the constant of the
variation formulas, we get the following solution of the system ():

x(t) = x()e–
∫ t

(d) dζ +
∫ t



(
N – x(t – τ)v(t – τ)βe–mτ

)
e–

∫ t
(d) dζ dη,

y(t) = y()e–
∫ t

(a+pz(ζ )) dζ +
∫ t



(
βe–mτ x(t – τ)v(t – τ)

)
e–

∫ t
η (a+pv(ζ )) dζ dη,

z(t) = z()e–bt +
∫ t


cy(t – τ)z(t – τ)e–b(t–η) dη,

v(t) = v()e–ut +
∫ t


ky(η)e–u(t–η) dη,

which clearly indicates that all the solutions are positive. In order to show the boundedness
of the solution x(t), y(t), z(t), and v(t), we define

B(t) = x(t) + y(t) +
a

k
v(t) +

p
c

z(t + τ). ()

Calculating the derivative of equation () and using system () yield

dB(t)
dt

= N – dx(t) – βe–mτ x(t – τ)v(t – τ) + βe–mτ x(t – τ)v(t – τ)

– ay(t) – py(t)z(t) +
a

k
(
ky(t) – uv(t)

)
+

bk


(
cz(t) – qw(t)

)

= N –
(

dx(t) +
a


y(t) + u
a

k
v(t) + b

p
c

z(t + τ)
)

≤ N – δB(t).

Here δ = min(d, a
 , u, b). This implies that B(t) is bounded for large t. So x(t), y(t), v(t), and

z(t) are ultimately bounded.
Now we discuss the equilibria of the system () which has three possible biological

meaningful equilibria. We have the disease-free equilibrium, E(x, y, v, z), the single-
infection equilibrium, E(x, y, v, z), and the double-infection equilibrium, E(x, y,
v, z), which are given by

E =
(

N
d

, , , , 
)

,

E =
(

au
βke–mτ

,
ud(R – )
βke–mτ

,
d(R – )
βe–mτ

, 
)

,
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E =
(

Nuc
βkbe–mτ + ucd

,
b
c

,
bk
uc

,
βkNcae–mτ – a(cdu + bkβe–mτ )

p(cdu + kbβe–mτ )

)

.

From the biological meaning of the basic reproduction number (see []), we define

R =
kβNe–mτ

adu
,

where N
d is the average number of healthy cells available for infection, βe–mτ

a is the av-
erage number of host cells that each HIV- virus infects and k

u is the average number of
virons that an infected cell produces. If R < , then E is the only biologically meaningful
equilibrium. If R > , there are other biologically meaningful equilibria, E and E. �

3 Stability of the disease-free equilibrium E0

In this section, we show the dynamical behavior of the system () at E.

Theorem . When R < , then the disease-free equilibrium E is locally asymptotically
stable while for R > , E becomes unstable and the single-infection equilibrium E oc-
curs.

Proof The characteristic equation of the Jacobian matrix corresponding to the linearized
system () at E is given by

det
[
γ I – J(E)

]
= det

⎛

⎜
⎜
⎜
⎝

γ + d  βxe–τ(γ +m) 
 γ + a –βxe–τ(γ +m) p
 –k γ + u 
   γ + b

⎞

⎟
⎟
⎟
⎠

= , ()

where J(E) denotes the Jacobian matrix at E.
After some simplification, equation () takes the form

det
[
γ I – J(E)

]
= (b + γ )(d + γ )

[

(a + γ )(u + γ ) –
N
d

βke–τ(γ +m)
]

= . ()

The two roots of the characteristic equation () are γ = –b and γ = –d and the remaining
roots can be obtained from the following equation:

(a + γ )(u + γ ) =
N
d

βke–τ(γ +m). ()

If γ has a non-negative real part then the modulus of the left-hand side of equation ()
satisfies

∣
∣(a + γ )(u + γ )

∣
∣ ≥ au.

The modulus of the right-hand side of equation () satisfies

N
d

βk
∣
∣e–τ(γ +m)∣∣ = |auR| < au,



Ali et al. Advances in Difference Equations  (2016) 2016:88 Page 5 of 12

which is contradiction. Hence, the real part of γ has no non-negative part and the
infection-free state E is locally asymptotically stable when R < . For R > , we have

h(γ ) = (a + γ )(u + γ ) –
N
d

βke–τ(γ +m)

= γ  + (u + a)γ + au
(
 – e–γ τ R

)
.

Hence h() = au( – R) <  and limγ→∞ h(γ ) = +∞. By the continuity of h(η), there exists
at least one positive root of h(γ ) = . Thus, the infection-free equilibrium, E, is unstable
if R >  (see []). �

Theorem . If R < , then the disease-free equilibrium E is globally asymptotically sta-
ble.

Proof Let us consider the following Lyapunov functional:

L(t) = x

(
x
x

– ln

(
x
x

)

– 
)

+ y(t) +
a
k

v(t) +
p
c

z(t)

+ xβe–mτ

∫ t

t–τ

x(ζ )v(ζ ) d(ζ )
x(ζ + τ)

+ p
∫ t

t–τ

y(ζ )z(ζ ) d(ζ ). ()

By taking the derivative of equation () and by using the system (), we have

L̇(t) =
(

 –
x

x

)
(
N – dx(t) – βe–mτ x(t – τ)v(t – τ)

)
+

(
βxe–mτ y(t – τ)z(t – τ)

– ay(t) – py(t)z(t)
)

+
a
k
(
ky(t) – uv(t)

)
+

p
c
(
cy(t – τ)z(t – τ) – bz(t)

)

+ βxe–mτ

(
x(t)v(t)
x(t + τ)

–
x(t – τ)v(t – τ)

x(t)

)

+ p
(
y(t)z(t) – y(t – τ)z(t – τ)

)
. ()

After some simplification equation () yields

L̇(t) = –
d
x
(
x(t) – x

) +
(

β
N
d

e–mτ
x(t)

x(t + τ)
–

au
k

)

v(t) –
bp
c

z(t) ≤ . ()

If τ is very large, then the rate of infection is very small and on the other hand, if τ is very
small, then the infection will spread more rapidly so we take x(t) = x(t + τ). Therefore, the
above equation () becomes

L̇(t) = –
d
x
(
x(t) – x

) –
au
k

( – R)v(t) –
bp
c

z(t). ()

Thus, if R < , then equation () implies that L̇(t) <  and the equality holds only when
x = N

d , y(t) = , z(t) = , v(t) = , w(t) = . Therefore, by LaSalle’s invariance principle (see
[]), we conclude that E is globally asymptotically stable when R < . �
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4 Stability of single- and double-infection equilibria
In this section, we discuss the single-infection-free equilibrium, E.

Theorem . E is locally asymptotically stable if  < R <  + bβke–mτ
cdu , provided that

τ, τ ≥ , otherwise E is unstable.

Proof The characteristic equation of the Jacobian matrix corresponding to the linearized
system () at E is given by

det
[
γ I – J(E)

]

= det

⎛

⎜
⎜
⎜
⎝

γ + d + βve–τ(m+γ )  βxe–τ(γ +m) 
–βve–τ(m+γ ) γ + a –βxe–τ(γ +m) p

 –k γ + u 
   γ + b – cye–γ τ

⎞

⎟
⎟
⎟
⎠

= .

After some fundamental calculation, we get the above characteristic equation in the fol-
lowing form:

(
γ + b – cye–γ τ

)[
γ  + aγ

 + aγ + a +
(
bγ

 + bγ + b
)
e–τγ

]
= , ()

where

a = a + u + d, a = (a + u)d + au, a = aud,

b = βve–mτ , b = (a + u)βve–mτ – kβxe–mτ , b = auβve–mτ .

First, we discuss the following factor of equation ():

γ  + aγ
 + aγ + a +

(
bγ

 + bγ + b
)
e–τγ = . ()

Now, we present possible cases of delay term τ. When τ = , then equation () becomes

γ  + cγ
 + cγ + c = , ()

where

c = a + b = a + u + d + d(R – ) > ,

c = a + b = (a + u)d + (a + u)d(R – ) > ,

c = a + b = aud + aud(R – ) > ,

c – cc = dR
(
a + (a + u)(u + dR)

)
> c = aud + aud(R – ).

Thus, by using the Routh-Hurtwitz criterion in [] one has no positive roots when τ = .
Next, we consider the root distribution of equation () when τ �= . If iκ (κ > ) is a

solution of equation (), then, separating real and imaginary parts, we get the following
equations:

aκ – κ =
(
b – bκ

) sinκτ – bκ cosκτ,

aκ
 – a =

(
b – bκ

) cosκτ + bκ sinκτ .
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By squaring and adding the above equations, we get

κ + mκ
 + mκ

 + m = , ()

where

m = a
 – a – b

,

m = a
 – aa + bb – b

 ,

m = a
 – b

.

Let us suppose that σ = κ > , then equation () becomes

σ  + mσ
 + mσ + m = , ()

where

m = a
 – a – b

 = a + u + d – (R – )d > a + u,

m = a
 – aa + bb – b



= (ad) + (ud) + au
(
d(R – )

) + (a + u)d(R – )
(
au – (a + u)d(R – )

)

> (ad) + (ud) + au(a + u)d(R – ),

m = (aud) –
(
aud(R – )) > (aud)(R – ).

Hence, if R > , then equation () has no positive roots. It is to be noted that the equilib-
rium E is locally asymptotically stable by the general theory on characteristic equations
of delay differential equations [].

To find the other root, we consider the second factor of equation () to be given by

γ + b – cye–γ τ = . ()

If τ = , then for  < R <  + bβke–mτ
cdu , we have

γ = cy – b =
c

kβe–mτ

(

R –
(

 +
bβke–mτ

cdu

))

< .

This shows that the root of equation () is negative for τ = . To discuss the roots in the
case τ > , we assume γ = κi (κ > ) to be a pure imaginary root of equation (), to get

κ = c
(

βNke–mτ – aud
aβke–mτ

)

sinκτ,

b = c
(

βNke–mτ – aud
aβke–mτ

)

cosκτ,

which implies that

κ =
[

c
(

βNke–mτ – aud
aβke–mτ

)]

– b.

However, for  < R <  + bβke–mτ
cdu this implies that κ < , which is a contradiction.
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Thus, we conclude that all the roots of equation () have a negative real part when
τ ≥ . Therefore, the equilibrium E is locally asymptotically stable, when  < R <  +
bβke–mτ

cdu and τ, τ ≥ . �

Theorem . The single-infection-free equilibrium, E, is globally asymptotically stable,
if  < R <  + bβke–mτ

cdu , while for R >  + bβke–mτ
cdu , E is unstable.

Proof Denote f (ρ) = ρ –  – lnρ , ρ ∈ R+. Let us construct the Lyapunov functional

L(t) = xf
(

x
x

)

+ yf
(

x
y

)

+
a
k

vf
(

v
v

)

+
p
c

zf
(

z
z

)

+ βxve–mτ

∫ t

t–τ

f
(

x(μ)v(μ)
x(τ + μ)v

)

dμ + p
∫ t

t–τ

y(μ)z(μ) dμ. ()

By taking the derivative of the equation (), we obtain

L̇(t) =
(

 –
x

x

)
(
λ – dx(t) – βe–mτ x(t – τ)v(t – τ)

)

+
(

 –
y

y

)
(
βe–mτ x(t – τ)v(t – τ) – ay(t) – py(t)z(t)

)

+
p
c

(

 –
z
z

)
(
cy(t – τ)z(t – τ) – bz(t)

)
+

a
k

(

 –
v

v

)
(
ky(t) – uv(t)

)

+ βxe–mτ
x(t)v(t)
x(τ + t)

– βxe–mτ v ln

(
x(t)v(t)

x(τ + t)v

)

– βxe–mτ
x(t – τ)v(t – τ)

x(τ + t)
+ βxe–mτ v ln

(
x(t – τ)v(t – τ)

x(τ + t)v

)

. ()

Using E in the system () yields the following identities:

λ = dx + βxve–mτ ,

ay = βe–mτ xv,

ky = uv.

Using the above identities in equation (), we get

L̇(t) = e–mτ

(

 –
x

x
–

x
x

)

+ βxve–mτ

(

 –
x

x
–

yv

yv
–

yx(t – τ)v(t – τ)
xvy

– ln

(
x(t)v(t)

x(t – τ)v(t – τ)

))

+
bp
c

(

R –
(

 +
bβke–mτ

cdu

))

z

+
(

au
k

x(t)
x(t + τ)

–
au
k

)

v. ()

When τ is very large, then x(t) = x(t + τ). Thus, the above equation () can be written as

L̇(t) = e–mτ

(

 –
x

x
–

x
x

)

+ βxve–mτ

(

 –
x

x
–

yv

yv
–

yx(t – τ)v(t – τ)
xvy

– ln

(
x(t)v(t)

x(t – τ)v(t – τ)

))

+
bp
c

(

R –
(

 +
bβke–mτ

cdu

))

z. ()
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To show that L̇(t) < , we need to prove that the following inequalities hold:

e–mτ

(

 –
x

x
–

x
x

)

≤ ,

(

 –
x

x
–

yv

yv
–

yx(t – τ)v(t – τ)
xvy

– ln

(
xt(t)v(t)

x(t – τ)v(t – τ)

))

≤ .
()

Thus, the above results are satisfied only if R <  + bβke–mτ
cdu , then equation () implies that

dL
dt ≤ . Moreover, the equality holds when x = x and y = y, v = v, and z = z. Thus, by

LaSalle’s invariance principle [], we conclude that E is globally asymptotically stable.
�

Theorem . If τ �=  and τ �=  and R >  + bβke–mτ
cdu , then the double-infection equilib-

rium, E, is globally asymptotically stable.

Proof Let us construct the Lyapunov functional given by

L(t) = xf
(

x
x

)

+ yf
(

x
y

)

+
a
k

vf
(

v
v

)

+
p
c

zf
(

z
z

)

+ βxve–mτ

∫ t

t–τ

f
(

x(μ)v(μ)
x(τ + μ)v

)

dμ + p
∫ t

t–τ

y(μ)z(μ) dμ. ()

Using E in the system (), we get the following identities:

N – dx = βxve–mτ ,

βxve–mτ = ay + pyz,

ky = uv,

by = c.

By taking the derivative of equation () and using the above identities, we get

L̇(t) = e–mτ

(

 –
x

x
–

x
x

)

+ βxve–mτ

(

 –
x

x
–

yv

yv
–

yx(t – τ)v(t – τ)
xvy

+ ln

(
x(t – τ)v(t – τ)

x(t)v(t)

))

+
(

βxe–mτ
x(t)

x(t + τ)
–

au
k

)

v

– pyz – pyz + pzv
y
v

+ pyz
v
v

. ()

When τ is very large and x(t) = x(t + τ) then equation () becomes

L̇(t) = e–mτ

(

 –
x

x
–

x
x

)

+ βxve–mτ

(

 –
x

x
–

yv

yv
–

yx(t – τ)v(t – τ)
xvy

– ln

(
x(t)v(t)

x(t – τ)v(t – τ)

))

–
p

acdu

(

R –
(

 +
bβke–mτ

cdu

))((
v

v
– 

)

y

–
(

v
v

– 
)

y

)

. ()
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The following inequalities hold:

e–mτ

(

 –
x

x
–

x
x

)

≤ ,

(

 –
x

x
–

yv

yv
–

yx(t – τ)v(t – τ)
xvy

– ln

(
xt(t)v(t)

x(t – τ)v(t – τ)

))

≤ .

Therefore, equation () implies that dL
dt ≤ , when R <  + bβke–mτ

auc . Moreover, the equal-
ity holds when x = x and y = y, v = v, and z = z. Thus by LaSalle’s invariance principle
[], we conclude that E is globally asymptotically stable. �

5 Numerical simulation and discussion
In the previous sections, we studied dynamical behaviors of the system () and obtained
some important results. For a numerical simulation of the proposed model, we used the
parameter values given in Table .

Figure  represents the dynamical behavior of the densities of uninfected target cells
x(t), the infected target cells y(t), the free virus v(t), and the density z represents the CTL
response cells at time t. Our results show that by incorporating the delay term in the model
one increases the number of CDT positive cells and decreases the uninfected cells.

In this paper we discuss a HIV-infection model by introducing delay terms in different
interaction terms. Dynamical analysis of the system () shows that delays play an impor-
tant role in the stability of the equilibrium. The detailed analytic study has shown that
the extended model with delays, like the model with no delay, also has three equilibrium
solutions. The disease-free equilibrium E, the single-infection equilibrium, E, and the
double-infection equilibrium, E, and a series of bifurcations occur as the basic repro-
duction number is increased. One has shown that E is globally asymptotically stable for
R ∈ (, ) and becomes unstable at the transcritical bifurcation point R =  and bifurcates
into E, which is globally asymptotically stable for R > . However, it loses it stability at
another bifurcation point R >  + bβke–mτ

cdu and E occurs. Also, it has been shown that E

is globally asymptotically stable.
From the reproductive number R(τ) = kβNe–mτ

adp , which is a function of τ, we see that
it is decreasing in delay τ with R(∞) = , which means that the intracellular delay τ

plays a positive role in preventing the virus. Because the larger τ can bring R to a level
lower than one. When the delay is chosen as the bifurcation parameter, it is shown that
the delay plays an important role in determining the dynamical behavior of the system.

Table 1 Parameters used for numerical simulation

Notation Parameter definition Value Source

N recruitment rate 160 [20]
d death rate of uninfected target cells 0.16 assumed
P infection rate of uninfected cells by virus 0.002 [21]
a death rate of productively infected cells 1.85 [20]
P killing rate of infected cells by CTL response cells 0.2 assumed
k rate of the virus particles produced by infected cells 1,200 [20]
u viral clearance rate constant 8 assumed
c rate at which the CTL response is produced 0.2 [21]
b death rate of the CTL response 0.4 assumed
T1 intracellular delay 0.2 [21]
T2 delay in antigenic stimulation 2.4 [21]
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Figure 1 The plot shows the numerical solution of the system (1).

This indeed suggests that delay is a very important fact which should not be missed in
HIV- modeling. Finally, through numerical simulations, it can be concluded that delays
in the infection process and virus production period play an important role in the disease
control.
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