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Abstract
In this paper we derive new exact solitary wave solutions and quasi-periodic traveling
wave solutions of the KdV-Sawada-Kotera-Ramani equation by using a method which
we introduce here for the first time. Firstly, we reduce the associated fourth-order
nonlinear ordinary differential equation (ODE) into a solvable first-order nonlinear
ODE to obtain new exact traveling wave solutions, including the solitary wave and
periodic solutions. Furthermore, using the new method we derive the quasi-periodic
wave solutions of this equation by assuming that the solutions of the corresponding
higher-order ODE are the sum of the solutions of two solvable first-order nonlinear
ODEs. This new method can be used to investigate the exact traveling wave solutions
and quasi-periodic wave solutions of a general class of higher-order wave equations.
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1 Introduction
In this paper we study the KdV-Sawada-Kotera-Ramani equation [–]

ut + a
(
u + uxx

)
x + b

(
u + uuxx + uxxxx

)
x = , (.)

which was used to theoretically study the resonances of solitons in a one-dimensional
space by Hirota and Ito []. Equation (.) is reduced to the KdV equation when b = 
and to the Sawada-Kotera equation when a = ; thus, it is a linear combination of the KdV
equation and the Sawada-Kotera equation. The existence of conservation laws for this
equation was proved by Konno []. Some traveling wave solutions were derived in [] by
the (G′/G)-expansion method. In [], the traveling wave solutions of (.) were studied by
using the generalized auxiliary equation method. Unfortunately, too many undetermined
coefficients were involved in this method and some conditions on these coefficients were
ignored, and thus some wrong results were given in [], which can be checked by Maple.

We aim to investigate the traveling wave solutions of the KdV-Sawada-Kotera-Ramani
equation (.) in the form u(x, t) = y(ξ ) = y(x – ct), where c is the wave speed. Under the
traveling wave coordinates, (.) is transformed to the nonlinear ordinary differential equa-
tion of the independent variable ξ . By integrating the transformed ODE once with respect
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to ξ , we obtain

dy
dξ +

(
y +

a
b

)
dy
dξ  + y +

a
b

y –
c
b

y + g = , (.)

where g is a constant of integration. Clearly, u(x, t) = y(ξ ) = y(x – ct) is a traveling wave
solution of (.) if and only if y(ξ ) satisfies (.) with the wave speed c and any arbitrary
constant g . Since the reduced ODE (.) is a fourth-order nonlinear equation which is
equivalent to a four-dimensional system, it is very difficult to investigate (.) from the
point of view of dynamical systems.

There are two classes of solitary waves, namely, embedded solitons and gas solitons that
have been studied by many researches in the fields of nonlinear optics and water wave the-
ory [, –]. In fact, soliton solutions are typically presented by homoclinic solutions
to saddle-center equilibrium and saddle-saddle equilibrium, respectively, of the associ-
ated ODEs which describe traveling waves of the model PDEs. By using the method of
dynamical systems and Congrove’s results [], Li and Zhang [] investigated the exact
explicit gap soliton, embedded soliton, periodic, and quasi-periodic wave solutions of the
KdV-Sawada-Kotera-Ramani equation.

Notice that (.) contains dy
dξ , dy

dξ , and a polynomial of y. Clearly, the general form of
(.) is given by

dy
dξ + (Ay + B)

dy
dξ  + Dy + Ey + Fy + G = , (.)

which is actually a special case of the equation

dy
dξ + (Ay + B)

dy
dξ  + C

(
dy
dξ

)

+ Dy + Ey + Fy + G =  (.)

with C = . In fact, there exist a lot of nonlinear wave equations and some time-fractional
nonlinear wave equations whose corresponding ODEs or their reduced ODEs are special
cases of (.). See for example [, , , , ].

Recently by using the sub-equation method and dynamical system analysis, the bifurca-
tion and exact solutions of (.) were studied in [, ]. Following the idea and the results
in [], the bifurcations and exact traveling wave solutions to the KdV-Sawada-Kotera-
Ramani equation are obtained in Section . The sub-equation method has been proposed
and well applied in studying the exact solutions of nonlinear differential equations [–].
The main idea of the sub-equation method is to assume that the solutions to higher-order
ODEs are polynomials of some functions satisfying a simpler equation. However, we ob-
serve that a family of solutions to (.) can be the sum of two solutions to a second-order
ODE which can be reduced to a first-order nonlinear ODE. By using the exact solutions
and bifurcations of this sub-equation which was derived in [], some new traveling wave
solutions and quasi-periodic traveling wave solutions of the KdV-Sawada-Kotera-Ramani
equation are derived in Section .
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2 A family of exact traveling wave solutions of the KdV-
Sawada-Kotera-Ramani equation

2.1 Preliminaries
Equation (.) is a special case of (.), which is (.) in [] with C = . Thus, from The-
orem . and Theorem . in [], we have the corresponding theorems regarding (.).

Theorem . Suppose that D ≤ A/. The function y = y(ξ ) solves the fourth-order dif-
ferential (.) if it solves equation

(
dy
dξ

)

= ay + ay + ay + a, (.)

where

a =
–A ± √

A – D


,

a = –
Ba + E
a + A

,

a = –
(Ba + a

 + F)
a + A

,

a = –
Ba + aa + G

a
.

(.)

Note that all the denominators in (.) are assumed to be nonzero. If the denominator
of ai in (.) is zero, then ai can be arbitrary constant provided the numerator is also zero.

Theorem . Let h± = �(–a±√
�)+aaa

a


and y±
e = –a±√

�

a
, where � = a

 –aa > , then
the following conclusions hold:

() For a = h+, (.) has a bounded solution approaching y+
e as ξ goes to infinity, which

can be expressed as

u =
–a +

√
�

a
–

√
�

a
sech

[


�


 (ξ – ξ)

]
, (.)

a constant solution

y =
–a +

√
�

a
, (.)

and an unbounded solution

u =
–a +

√
�

a
+

√
�

a
csch

[


�


 (ξ – ξ)

]
, (.)

where ξ is an arbitrary constant.
() For a ∈ (h–, h+), if a > , then for any y ∈ ( –a–

√
�

a
, –a–

√
�

a
),

y = y –



(
y +

a

a
+

√
�+

)
sn(�+(ξ – ξ), k+

)
, (.)
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is a family of smooth periodic solutions of (.). Here k+ = 
√

y
+ a

a
y+ a

a
–y– a

a
+
√

�+
, �+ =

√


 ×
√

–ay – a + a
√

�+ and �+ = ( a
a

) – y
 –  a

a
y –  a

a
.

If a < , then, for any y ∈ ( –a–
√

�

a
, –a–

√
�

a
),

y = y –



(
y +

a

a
–

√
�–

)
sn(�–(ξ – ξ), k–

)
, (.)

is a family of smooth periodic solutions of (.). Here k– = 
√

y
 + a

a
y+ a

a
y+ a

a
+
√

�–
, �– =

√


 ×
√

–ay – a – a
√

�–, and �– = ( a
a

) – y
 –  a

a
y –  a

a
.

() For a ∈ (–∞, h–] ∪ (h+, +∞), (.) has no non-trivial bounded solutions. When
a = h–, an unbounded solution is given by

y = –
a +

√
�

a
+

√
�

a
sec

[


�


 (ξ – ξ)

]
(.)

and a constant solution

y = –
a +

√
�

a
. (.)

2.2 A family of exact traveling wave solutions of (1.1) obtained from
Theorems 2.1 and 2.2

By letting A = , B = a/b, D = , E = a/b, F = –c/b, and G = g , (.) is reduced to
(.). Clearly D =  < A/. Thus from Theorem ., we know that y = y(ξ ) solves
(.) if it solves the first-order nonlinear ODE (.) with a = –, a = –a/(b), a =
(a + bc)/(b), and a = (bg + a + abc)/(,b). Note that g in (.) is an ar-
bitrary constant, so a is also an arbitrary constant. Consequently, we obtain the solutions
of (.) from Theorem . provided a

 – aa = (a + bc)/(b) > , i.e., c > –a/(b) for
b >  or c < –a/(b) for b < .

Theorem . The KdV-Sawada-Kotera-Ramani equation (.) has the following traveling
wave solutions with the wave speed c satisfying a + bc > :

() It has a bounded solitary wave solution,

y = –
a

b
–

√
(a + bc)

|b| +
√

(a + bc)
|b| sech

[



(
a + bc

b

) 


(x – ct – ξ)
]

, (.)

where ξ is an arbitrary constant.

() For any y ∈ (– a
b +

√
(a+bc)

|b| , – a
b + 

√
(a+bc)

|b| ),

y = y –



(
y +

a
b

–
√

�

)
sn(�(x – ct – ξ), k

)
(.)

is a family of smooth periodic traveling wave solutions of the KdV-Sawada-Kotera-Ramani

equation (.). Here � =
√




√
y + a

b +
√

�, k =

√
y

 + a
b y– a+bc

b

y+ a
b +

√
�

, and � = –y
 –

a
b y + ac+a+bc

b .
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() It has two classes of unbounded solutions,

y = –
a

b
–

√
(a + bc)

|b| –
√

(a + bc)
|b| csch

[



(
a + bc

b

) 


(x – ct – ξ)
]

(.)

and

y = –
a

b
+

√
(a + bc)

|b| –
√

(a + bc)
|b| sec

[



(
a + bc

b

) 


(x – ct – ξ)
]

. (.)

3 Exact quasi-periodic traveling wave solutions of the KdV-
Sawada-Kotera-Ramani equation

In this section, we obtain a new family of exact traveling wave solutions of the KdV-
Sawada-Kotera-Ramani equation (.), which includes the quasi-periodic solutions.

3.1 A new family of exact solutions and quasi-periodic solutions of (1.3)
Let y = U + V , then (.) is reduced to

(
dU
dξ + (AU + B)

dU
dξ  + DU + EU + FU + g

)

+
(

dV
dξ + (AV + B)

dV
dξ  + DV  + EV  + FV + g

)

+ V
(

A
dU
dξ  + DU + EU + (F – F)

)

+ U
(

A
dV
dξ  + DV  + EV + (F – F)

)
= , (.)

where F and F are some constants to be determined later, g and g are arbitrary con-
stants. Clearly, y = U + V solves (.) if there exist some values of F and F such that U
and V satisfy

⎧
⎨

⎩
A dU

dξ + DU + EU + (F – F) = ,
dU
dξ + (AU + B) dU

dξ + DU + EU + FU + g = ,
(.)

and

⎧
⎨

⎩
A dV

dξ + DV  + EV + (F – F) = ,
dV
dξ + (AV + B) dV

dξ + DV  + EV  + FV + g = ,
(.)

respectively.
Suppose U satisfies the first equation of system (.). Multiplying it by dU

dξ
and integrat-

ing once, we obtain

(
dU
dξ

)

= –
D
A

U –
E
A

U – 
F – F

A
U + G, (.)
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where G is an integral constant. By letting a = –D/A, a = –E/A, and a = –(F – F)/A,
from Theorem ., we know that U solves system (.) if and only if

–
D
A

=
–A ± √

A – D


,

–
E
A

= –
Ba + E
a + A

,

–
F – F

A
= –

(Ba + a
 + F)

a + A
.

(.)

Solving the first equation of system (.) for D gives D = A/ and thus a = –A/. By
substituting the value of a into the second equation and solving for E, we have E = AB/
and a = –B/. Then substituting the values of a and a into the third equation of (.)
gives F – F + F = B/. In the same way, from system (.), we can obtain F – F + F =
B/. Consequently, we can determine the two undetermined constants F and F as
F = F = B/ – F/. We thus have the following theorem.

Theorem . Suppose that the coefficients of (.) satisfy D = A/ and E = AB/. Then
y(ξ ) = U(ξ ) + V (ξ ) solves (.) if U and V satisfy equation

dφ

dξ  = –



Aφ –



Bφ –
(


A

F –


A
B

)
. (.)

Obviously, (.) is equivalent to the first-order ODE

(
dφ

dξ

)

= –



Aφ –



Bφ –
(


A

F –


A
B

)
φ + G (.)

if dφ/dξ �=  except for the case when φ = (–B ± √
B – F)/(A). Here G is an arbitrary

integral constant. From (.), we can obtain the solutions of (.).

3.2 Exact solutions and quasi-periodic solutions of the
KdV-Sawada-Kotera-Ramani equation (1.1)

It is easy to see that the associated ODE (.) of the KdV-Sawada-Kotera-Ramani equation
is the fourth-order ODE (.) with A = , B = a/b, D = , E = a/b, F = –c/b, and G = g .
Clearly, the coefficients of (.) satisfy the conditions of Theorem ., that is, D = A/
and E = AB/. Thus Theorem . implies that (.) admits the solutions y = U + V , where
U and V are determined by

dφ

dξ  = –φ –
a

b
φ –

a + bc
b (.)

or

(
dφ

dξ

)

= –φ –
a

b
φ –

a + bc
b φ + G. (.)

Note that G is an arbitrary constant, U and V are not constants except –a±√
a + bc/

(b). Consequently, we know that when the wave speed c satisfies a + bc > , i.e.,



Zhang and Khalique Advances in Difference Equations  (2015) 2015:195 Page 7 of 12

c > –a/(b) for b >  or c < –a/(b) for b < , (.) admits the following six classes of
solutions for different values of G and G:

φ(ξ ) =
–a +

√
a + bc
b

; (.)

φ(ξ ) =
–a –

√
a + bc
b

; (.)

φ(ξ ) = –
sgn(b)a +

√
a + bc

|b|

+
√

a + bc
|b| sech

[



(
a + bc

b

) 


(ξ – ξ)
]

; (.)

φ(ξ ) = –
sgn(b)a +

√
a + bc

|b|

–
√

a + bc
|b| csch

[



(
a + bc

b

) 


(ξ – ξ)
]

; (.)

φ(ξ ) = –
sgn(b)a –

√
a + bc

|b|

–
√

a + bc
|b| sec

[



(
a + bc

b

) 


(ξ – ξ)
]

; (.)

For any θ ∈ ( – sgn(b)a+
√

a+bc
|b| , – sgn(b)a+

√
a+bc

|b| ),

φ(ξ , θ ) = θ –



(
θ +

a
b

–
√

�

)
sn(�(ξ – ξ), k

)
, (.)

where �(θ , c) =
√




√
θ + a

b + 
√

�, k(θ , c) =

√
θ+ a

b θ– a+bc
b

θ+ a
b +

√
�

, and �(θ , c) = –θ –
a

bθ + a+bc
b .

According to the above analysis and Theorem ., we obtain the solutions of (.) and
consequently the exact traveling wave solutions of the KdV-Sawada-Kotera-Ramani equa-
tion (.). We have the following theorem.

Theorem . The KdV-Sawada-Kotera-Ramani equation (.) admits the following trav-
eling wave solutions: yij(x, t) = φi(ξ , c) + φj(ξ , c), i, j ∈ {, , , , , }, with ξ = x – ct. Here φis
are determined by (.)-(.), respectively, and the wave speed c satisfies a + bc > .

In fact, from Theorem ., we can obtain the following three classes of solitary wave so-
lutions; two families of periodic wave solutions, a family of quasi-periodic wave solutions,
and some unbounded solutions.

() For any constant c satisfying a + bc > ,

y(x, t) = φ(ξ ) = –
sgn(b)a +

√
a + bc

|b|

+
√

a + bc
|b| sech

[



(
a + bc

b

) 


(x – ct – ξ)
]

, (.)
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Figure 1 The solitary wave solution y33 of the
KdV-Sawada-Kotera-Ramani equation (1.1) with
a = 1, b = 1, and c = 1.

y(x, t) = φ(ξ ) + φ(ξ ) = –
sgn(b)a +

√
a + bc

|b|

+
√

a + bc
|b| sech

[



(
a + bc

b

) 


(x – ct – ξ)
]

, (.)

and

y(x, t) = φ(ξ ) + φ(ξ )

= –
a

b
+

√
a + bc

|b| sech
[




(
a + bc

b

) 


(x – ct – ξ)
]

(.)

are three classes of solitary wave solutions of the KdV-Sawada-Kotera-Ramani equation.
The phase portrait of solution (.) with a = , b = , and c =  is shown in Figure . Note
that solution (.) is the same as solution (.) obtained earlier in Section , solution
(.) is a new solitary wave solution and solution (.) is the solitary wave solution ()
obtained in [].

() For any θ ∈ ( – sgn(b)a+
√

a+bc
|b| , – sgn(b)a+

√
a+bc

|b| ), and any constant c satisfying a +
bc > ,

y(x, t) = φ(ξ ) + φ(ξ , θ ) =
–a +

√
a + bc
b

+ θ

–



(
θ +

a
b

–
√

�

)
sn(�(x – ct – ξ), k

)
(.)

and

y(x, t) = φ(ξ ) + φ(ξ , θ ) =
–a –

√
a + bc
b

+ θ

–



(
θ +

a
b

–
√

�

)
sn(�(x – ct – ξ), k

)
(.)

are two families of periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation.

Here � =
√




√
θ + a

b + 
√

�, k =

√
θ+ a

b θ– a+bc
b

θ+ a
b +

√
�

, and � = –θ – a
bθ + a+bc

b .
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Figure 2 The quasi-periodic wave solution y66 of
(1.1) with a = 1, b = 1, c = 1, θ1 = –1/30 +

√
30/20,

and θ2 = –
√

110(1/5 – 3
√

30/10)/60.

() For any constant c satisfying a + bc >  and two arbitrary constants θ and θ sat-
isfying θi ∈ ( – sgn(b)a+

√
a+bc

|b| , – sgn(b)a+
√

a+bc
|b| ), i = , , we have

y(x, t) = φ(ξ , θ) + φ(ξ , θ)

= θ –



(
θ +

a
b

–
√

�(θ)
)

sn(�(θ)(x – ct – ξ), k(θ)
)

+ θ –



(
θ +

a
b

–
√

�(θ)
)

sn(�(θ)(x – ct – ξ), k(θ)
)
, (.)

where �(θi) =
√




√
θi + a

b + 
√

�(θi), k(θi) =

√
θ

i + a
b θi– a+bc

b

θi+ a
b +

√
�(θi)

, and �(θi) = –θ
i –

a
bθi + a+bc

b , i = , . Note that (.) with θ = θ is a class of periodic traveling wave
solutions (.), which were obtained in Section . However, (.) is a family of quasi-
periodic traveling wave solutions when θ �= θ and �(θ)/�(θ) is irrational.

The phase portrait of (.) with a = , b = , c = , θ = –/ +
√

/, and θ =
–
√

(/ – 
√

/)/ is shown in Figure .
() For any θ ∈ ( – sgn(b)a+

√
a+bc

|b| , – sgn(b)a+
√

a+bc
|b| ), and any constant c satisfying a +

bc > ,

y(x, t) = φ(ξ ) + φ(ξ , θ ) = –
sgn(b)a +

√
a + bc

|b| + θ

+
√

a + bc
|b| sech

[



(
a + bc

b

) 


(ξ – ξ)
]

–



(
θ +

a
b

–
√

�

)
sn(�(x – ct – ξ), k

)
(.)

is a family of bounded wave solutions of the KdV-Sawada-Kotera-Ramani equation (see

Figure ). Here � =
√




√
θ + a

b + 
√

�, k =

√
θ+ a

b θ– a+bc
b

θ+ a
b +

√
�

, and � = –θ – a
bθ +

a+bc
b .
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(a) (b)

Figure 3 The bounded wave solution y36 of (1.1) with a = 1, b = 1, and c = 1. (a) Three-dimensional
portrait; (b) overhead view with contour plot.

() For any constant c satisfying a + bc > ,

y(x, t) = φ(ξ ) + φ(ξ ) = –
sgn(b)a –

√
a + bc

|b|

–
√

a + bc
|b| csch

[



(
a + bc

b

) 


(x – ct – ξ)
]

; (.)

y(x, t) = φ(ξ ) + φ(ξ ) = –
sgn(b)a +

√
a + bc

|b|

–
√

a + bc
|b| csch

[



(
a + bc

b

) 


(x – ct – ξ)
]

; (.)

y(x, t) = φ(ξ ) + φ(ξ ) = –
sgn(b)a –

√
a + bc

|b|

–
√

a + bc
|b| sec

[



(
a + bc

b

) 


(x – ct – ξ)
]

; (.)

y(x, t) = φ(ξ ) + φ(ξ ) = –
sgn(b)a

|b|

–
√

a + bc
|b| sec

[



(
a + bc

b

) 


(x – ct – ξ)
]

; (.)

y(x, t) = φ(ξ ) = –
sgn(b)a +

√
a + bc

|b|

–
√

a + bc
|b| csch

[



(
a + bc

b

) 


(ξ – ξ)
]

; (.)

y(x, t) = φ(ξ ) = –
sgn(b)a –

√
a + bc

|b|

–
√

a + bc
|b| sec

[



(
a + bc

b

) 


(ξ – ξ)
]

; (.)
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y(x, t) = φ(ξ ) + φ(ξ ) = –
sgn(b)a

|b|

–
√

a + bc
|b|

(
csch + sec)

[



(
a + bc

b

) 


(ξ – ξ)
]

(.)

are unbounded solutions of the KdV-Sawada-Kotera-Ramani equation. Note that solu-
tions (.) and (.) are the solutions (.) and (.), respectively.

4 Conclusion and discussion
In this paper, we studied the exact traveling wave solutions to the KdV-Sawada-Kotera-
Ramani equation (.) via the sub-equation in the form (dy/dξ ) = ay + ay + ay + a.
The sub-equation of similar form, namely (dy/dξ ) = Pm(y), where Pm(y) is a polynomial
of y, has been applied to investigate some nonlinear wave equations [–]. In all these
papers, the solutions to the original equations are usually the polynomial functions of
the solutions to the sub-equations. However, by using the new method introduced in this
paper (the sum of two solutions to sub-equations), we obtained many new exact traveling
wave solutions to the KdV-Sawada-Kotera-Ramani equation (.). Especially, some quasi-
periodic wave solutions were derived by using this new method. Furthermore, we obtained
a very general class of exact solutions of the KdV-Sawada-Kotera-Ramani equation (.),
which included the solitary wave solutions, periodic and quasi-periodic traveling wave
solutions and some unbounded traveling solutions as well. Our results are more general
than those obtained previously in the literature. For example, the solutions () and () in
[] actually can be rewritten as our solutions (.) and (.), respectively. Unfortunately,
() and () in [] do not satisfy (.) and hence are not the solutions of (.).

It is well known that not only the exact solutions but also the bifurcations of the dy-
namical systems can be investigated by using the dynamical system theorem [, ]. The
planar dynamical system method has been well applied in studying the traveling wave so-
lutions of various nonlinear wave solutions [, , , –]. However, it is usually very
difficult to study the systems in a higher-dimensional space unless they can be reduced
to a two-dimensional space. Normally, the higher-order differential equations can be re-
duced to a lower-dimensional space provided that their first integrals can be derived [,
, ]. Unfortunately, it is usually intractable to derive their first integrals. In this paper,
we reduced the higher-order ODE into planar dynamical system by finding its lower-order
sub-equation. Whether there are any other kinds of sub-equations possessed by this class
of equations is still an open problem.

The method proposed in this paper can be applied to other nonlinear wave equations,
especially to higher-order nonlinear wave equations. This might pave the way to the study
of the exact traveling wave solutions of higher-order nonlinear wave equations. However,
whether and how this method can be used to investigate the multiple-wave solutions of
higher-order nonlinear wave equations will be the topic of our future study.
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