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Abstract
The aim of this paper is to study the asymptotic properties and oscillation of the nth
order advanced differential equations

(r(t)
[
x(n–1)(t)

]γ
)
′ + q(t)xγ

[
τ (t)

]
= 0.

The results obtained are based on the Riccati transformation.
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1 Introduction
In this paper, we shall study the asymptotic and oscillation behavior of the solutions of the
higher order advanced differential equations

(
r(t)

[
x(n–)(t)

]γ )′ + q(t)xγ
[
τ (t)

]
= . (.)

Throughout the paper, we assume q, τ ∈ C([t,∞)), r ∈ C([t,∞)) and

(H) n is odd, γ is the ratio of two positive odd integers,
(H) r(t) > , r′(t)≥ , q(t) > , τ (t) ≥ t.

Whenever, it is assumed

R(t) =
∫ t

t
r–/γ (s) ds → ∞ as t → ∞. (.)

By a solution of Eq. (.), we mean a function x(t) ∈ Cn–([Tx,∞)), Tx ≥ t, which has
the property r(t)(x(n–)(t))γ ∈ C([Tx,∞)) and satisfies Eq. (.) on [Tx,∞). We consider
only those solutions x(t) of (.) which satisfy sup{|x(t)| : t ≥ T} >  for all T ≥ Tx. We
assume that (.) possesses such a solution. A solution of (.) is called oscillatory if it has
arbitrarily large zeros on [Tx,∞), and otherwise it is called to be nonoscillatory.
The problem of the oscillation of differential equations has been widely studied bymany

authors who have provided many techniques especially for lower order delay differential
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equations. Dong in [] improved and extended the Riccati transformation to obtain new
oscillatory criteria for the second order delay differential equations

[
r(t)

[
x′(t)

]γ ]′ + q(t)xγ
[
τ (t)

]
= .

Grace et al. in [] and the present authors in [–] used the comparison technique for the
third order delay differential equation

[
r(t)

[
x′′(t)

]γ ]′ + q(t)xγ
[
τ (t)

]
= 

that was compared with the oscillation of certain first order differential equation.
On the other hand, there are comparatively less methods established for the advanced

differential equations. The aim of the paper is to fill this gap in the oscillation theory.

Remark  All functional inequalities considered in this paper are assumed to hold even-
tually, that is, they are satisfied for all t large enough.

2 Main results
Our results essentially use the following estimate which is due to Philos and Staikos (see
[] and []).

Lemma A Let z ∈ Cj([t,∞)). Assume that z(j) is of fixed sign and not identically zero on
a subray of [t,∞). If, moreover, z(t) > , z(j–)(t)z(j)(t) ≤ , and limt→∞ z(t) �= , then for
every k ∈ (, ) there exists tk ≥ t such that

z(t) ≥ k
(j – )!

tj–
∣∣z(j–)(t)

∣∣ (.)

holds on [tk ,∞).

The following useful result will be used later in the proofs of our main results.

Lemma  Assume x(t) > , x′(t) > , x′′(t) > , eventually. Then, for arbitrary k ∈ (, ),

x
[
τ (t)

] ≥ k
τ (t)
t

x(t), (.)

eventually.

Proof It follows from the monotonicity of x′(t) that

x
[
τ (t)

]
– x(t) =

∫ τ (t)

t
x′(s) ds≥ x′(t)

(
τ (t) – t

)
.

That is,

x[τ (t)]
x(t)

≥  +
x′(t)
x(t)

(
τ (t) – t

)
. (.)
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On the other hand, since x(t) → ∞ as t → ∞, then for any k ∈ (, ) there exists t large
enough such that

kx(t)≤ x(t) – x(t) =
∫ t

t
x′(s) ds ≤ x′(t)(t – t) ≤ x′(t)t,

or equivalently,

x′(t)
x(t)

≥ k
t
. (.)

Using (.) in (.), we obtain

x[τ (t)]
x(t)

≥  +
k
t

(
τ (t) – t

) ≥ k
τ (t)
t

.

The proof is complete. �

The positive solutions of (.) have the following structure.

Lemma  If x(t) is a positive solution of (.), then r(t)[x(n–)(t)]γ is decreasing, all deriva-
tives x(i)(t),  ≤ i ≤ n – , are of constant signs, and x(t) satisfies either

x′(t) > , x′′(t) > , x(n–)(t) > , x(n)(t) <  (.)

or

(–)ix(i)(t) > , i = , , . . . ,n. (.)

Proof Since x(t) is a positive solution of (.), then it follows from (.) that

(
r(t)

[
x(n–)(t)

]γ )′ = –q(t)xγ
[
τ (t)

]
< .

Thus, r(t)[x(n–)(t)]γ is decreasing, which implies that either x(n–)(t) >  or x(n–)(t) < .
But the case x(n–)(t) <  implies r(t)[x(n–)(t)]γ < –M < . An integration from t to t yields

x(n–)(t) < x(n–)(t) –M/γ
∫ t

t
r–/γ (s) ds,

but in view of (.) x(n–)(t) → –∞ for t → ∞. Repeating this procedure, we obtain
that x(t) → –∞ and this is a contradiction, and we conclude that x(n–)(t) > . More-
over, x(n–)(t) >  implies that either x(n–)(t) >  or x(n–)(t) < , but the first case leads
to x(i)(t) >  for  ≤ i ≤ n – . Repeating these considerations, we verify that x(t) satisfies
either (.) or (.).
On the other hand, since x(n–)(t) > , then using r′(t) >  in

 >
(
r(t)

[
x(n–)(t)

]γ )′ = r′(t)
[
x(n–)(t)

]γ + r(t)γ
[
x(n–)(t)

]γ–x(n)(t),

we conclude that x(n)(t) < . The proof is complete. �
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Now, we offer some criteria for certain asymptotic behavior of all nonoscillatory solu-
tions. For our further references, we set

Q(t) =
∫ ∞

t
q(s)

(
τ (s)
s

)γ

ds

and

P(t) =


r/γ (t)

[∫ ∞

t
q(s) ds

]/γ

.

Theorem  Assume that

lim inf
t→∞


Q(t)

∫ ∞

t

sn–Q+/γ (s)
r/γ (s)

ds >
(n – )!

(γ + )+/γ
(.)

and

∫ ∞

t
sn–P(s) ds = ∞, (.)

then every nonoscillatory solution x(t) of (.) satisfies limt→∞ x(t) = .

Proof Assume that x(t) is an eventually positive solution of (.). First assume that x(t)
satisfies (.). By (.), it is easy to see that there exists some k ∈ (, ) such that

lim inf
t→∞

k+/γ

Q(t)

∫ ∞

t

sn–Q+/γ (s)
r/γ (s)

ds >
(n – )!

(γ + )+/γ
. (.)

We put k = k/γ , then setting (.) into (.), we get

(
r(t)

[
x(n–)(t)

]γ )′ + kq(t)
τ γ (t)
tγ

xγ (t)≤ .

We define

w(t) =
r(t)[x(n–)(t)]γ

xγ (t)
> . (.)

Differentiating w(t), one gets

w′(t) =
[r(t)[x(n–)(t)]γ ]′

xγ (t)
– γ

r(t)[x(n–)(t)]γ

xγ (t)
x′(t)
x(t)

≤ –
kq(t)τ γ (t)

tγ
– γw(t)

x′(t)
x(t)

. (.)

On the other hand, Lemma A implies

x′(t)≥ k
(n – )!

tn–x(n–)(t).
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Setting the last inequality into (.), we obtain

w′(t)≤ –k
[
q(t)

(
τ (t)
t

)γ

+ γw+/γ (t)
tn–

(n – )!r/γ (t)

]
.

Integrating the last inequality from t to ∞, we have

w(t) ≥ k
[
Q(t) +

γ

(n – )!

∫ ∞

t
w+/γ (s)

sn–

r/γ (s)
ds

]
(.)

or

w(t)
kQ(t)

≥  +
γ k+/γ

(n – )!Q(t)

∫ ∞

t

sn–

r/γ (s)
Q+/γ (s)

(
w(s)
kQ(s)

)+/γ

ds,

eventually, let us say t ≥ t. Since w(t) > kQ(t), then

inf
t≥t

w(t)
kQ(t)

= λ ≥ .

Thus,

w(t)
kQ(t)

≥  +
γ (kλ)+/γ

(n – )!Q(t)

∫ ∞

t

sn–

r/γ (s)
Q+/γ (s) ds. (.)

From (.), we see that there exists some positive η such that

k+/γ

(n – )!Q(t)

∫ ∞

t

sn–

r/γ (s)
Q+/γ (s) ds > η > (γ + )–

γ+
γ . (.)

Combining (.) together with (.), we have

w(t)
kQ(t)

≥  + γ λ+/γ η.

Therefore,

λ ≥  + γ λ+/γ η >  + γ λ+/γ (γ + )–
γ+
γ

or equivalently,

 >


γ + 
+

γ

γ + 

(
λ

γ + 

)+/γ

–
λ

γ + 
.

This contradicts the fact that the function

f (α) =


γ + 
+

γ

γ + 
α+/γ – α

is nonnegative for all α > , and we conclude that x(t) cannot satisfy (.).
Now we assume that x(t) satisfies (.). Then there exists a finite limt→∞ x(t) = �. We

claim that � = . Assume that � > . Integrating (.) from t to ∞, we obtain

r(t)
(
x(n–)(t)

)γ ≥
∫ ∞

t
q(s)xγ

[
τ (s)

]
ds ≥ �γ

∫ ∞

t
q(s) ds,
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which implies

x(n–)(t)≥ �P(t).

Integrating the last inequality twice from t to ∞, we get

x(n–)(t)≥ �

∫ ∞

t

∫ ∞

u
P(s) dsdu = �

∫ ∞

t
P(s)(s – t) ds.

Repeating this procedure, we arrive at

–x′(t)≥ �

(n – )!

∫ ∞

t
(s – t)n–P(s) ds.

Now, integrating from t to ∞, we see that

x(t) ≥ �

(n – )!

∫ ∞

t
(s – t)n–P(s) ds ≥ �

n–(n – )!

∫ ∞

t
sn–P(s) ds,

which contradicts (.), and so we have verified that limt→∞ x(t) = . �

Example  Consider the odd order (n≥ ) nonlinear differential equation

(
t
(
x(n–)(t)

))′ +
β

tn–
x(λt) = , β > ,λ > . (.)

Here q(t) = β/tn– and τ (t) = λt, so that

Q(t) =
∫ ∞

t
q(s)

(
τ (s)
s

)

ds =
λβ

(n – )tn–
,

P(t) =


r/(t)

[∫ ∞

t
q(s) ds

]/

=
(

β

n – 

)/ 
tn–

.

Consequently,

∫ ∞

t
sn–P(s) ds =

(
β

n – 

)/ ∫ ∞

t


s
ds = ∞,

i.e., (.) holds; moreover, (.) reduces to

λβ/ >
(
n – 



)/

(n – )!,

which, by Theorem , guarantees that all nonoscillatory solutions of (.) tend to zero at
infinity.

Let {Am(t)}∞m= be a sequence of continuous functions defined as follows,

A(t) = kQ(t), k ∈ (, ) fixed

http://www.boundaryvalueproblems.com/content/2014/1/214
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and

Am+(t) = A(t) +
kγ

(n – )!

∫ ∞

t
A+/γ
m (s)

sn–

r/γ (s)
ds, m = , , . . . . (.)

Then we have the following result.

Theorem  Assume that (.) holds and there exists some Am(t) such that

∫ ∞

t
q(t)

(
τ (t)
t

)γ

exp

(
kγ

(n – )!

∫ t

t
A/γ
m (s)

sn–

r/γ (s)
ds

)
dt = ∞ (.)

for some k ∈ (, ). Then every nonoscillatory solution x(t) of (.) satisfies limt→∞ x(t) = .

Proof Assume that x(t) is an eventually positive solution of (.). By Lemma , x(t) satisfies
either (.) or (.). It follows from the proof of Theorem  that if x(t) satisfies (.), then
(.) insures that it tends to zero at infinity.
Assume that x(t) satisfies (.). It follows from the proof of Theorem  that (.) holds

for every k ∈ (, ).
By induction, using (.), it is easy to see that the sequence {Am(t)}∞m= is nondecreas-

ing and w(t) ≥ Am(t). Thus the sequence {Am(t)}∞m= converges to A(t). By the Lebesgue
monotone convergence theorem and lettingm → ∞ in (.), we get

A(t) = A(t) +
kγ

(n – )!

∫ ∞

t
A+/γ (s)

sn–

r/γ (s)
ds,

which in view of A(t) ≥ Am(t) implies

A′(t) = –kq(t)
(

τ (t)
t

)γ

–
kγ

(n – )!
A+/γ (t)

tn–

r/γ (t)

≤ –kq(t)
(

τ (t)
t

)γ

–
kγ

(n – )!
A(t)A/γ

m (t)
tn–

r/γ (t)
,

eventually, let us say t ≥ t. Therefore,

[
A(t) exp

(
kγ

(n – )!

∫ t

t
A/γ
m (s)

sn–

r/γ (s)
ds

)]′

≤ –kq(t)
(

τ (t)
t

)γ

exp

(
kγ

(n – )!

∫ t

t
A/γ
m (s)

sn–

r/γ (s)
ds

)
.

An integration from t to t yields

 ≤ A(t) exp

(
kγ

(n – )!

∫ t

t
A/γ
m (s)

sn–

r/γ (s)
ds

)

≤ A(t) – k
∫ t

t
q(u)

(
τ (u)
u

)γ

exp

(
kγ

(n – )!

∫ u

t
A/γ
m (s)

sn–

r/γ (s)
ds

)
du.

Letting t → ∞, we obtain a contradiction. The proof is complete. �
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Theorem  Assume that (.) holds and there exist some k ∈ (, ) and Am(t) such that

k lim sup
t→∞

t(n–)γ

r(t)
Am(t) >

(
(n – )!

)γ . (.)

Then every nonoscillatory solution x(t) of (.) satisfies limt→∞ x(t) = .

Proof Assume that x(t) is an eventually positive solution of (.) satisfying (.). It follows
from Lemma A that

x(t)≥ k/γ

(n – )!
tn–x(n–)(t),

eventually, where k ∈ (, ) is the same as in Am(t). Then


w(t)

=


r(t)

(
x(t)

x(n–)(t)

)γ

≥ 
r(t)

k
((n – )!)γ

t(n–)γ ,

or equivalently,

(
(n – )!

)γ ≥ k
t(n–)γ

r(t)
w(t) ≥ k

t(n–)γ

r(t)
Am(t),

which contradicts (.). �

Letting m =  in Theorem , we have the following result.

Corollary  Assume that (.) holds and

lim sup
t→∞

t(n–)γ

r(t)

∫ ∞

t
q(s)

(
τ (s)
s

)γ

ds >
(
(n – )!

)γ . (.)

Then every nonoscillatory solution x(t) of (.) satisfies limt→∞ x(t) = .

Proof It follows from (.) that there exists some k ∈ (, ) such that

k lim sup
t→∞

t(n–)γ

r(t)

∫ ∞

t
q(s)

(
τ (s)
s

)γ

ds >
(
(n – )!

)γ ,

which is equivalent to

k lim sup
t→∞

t(n–)γ

r(t)
A(t) >

(
(n – )!

).

The assertion now follows from Theorem . �

Example  Consider the third order nonlinear differential equation

(
t

(
x(n–)(t)

))′ +
β

tn–
x(λt) = , β > ,λ ≥ , t ≥ . (.)

http://www.boundaryvalueproblems.com/content/2014/1/214
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A simple calculation leads to

Q(t) =
λβ

(n – )tn–
, P(t) =

(
β

n – 

)/ 
tn–

.

Then (.) holds and (.) reduces to

βλ > (n – )
(
(n – )!

),

and thus, by Corollary , every nonoscillatory solution x(t) of (.) tends to zero as
t → ∞.

Our results are based on Lemma , i.e., we essentially utilize the estimate (.). It is easy
to see that for x(t) = t/ and τ (t) = t, estimate (.) does not hold, that is, for

x(t) > , x′(t) > , x′′(t) < , (.)

relationship (.) fails, and so our result here cannot be applied for n even. Hence, it re-
mains an open problem how to obtain the corresponding results also for n even.
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