On quasi-periodic solutions to a higher-order Emden-Fowler type differential equation

Irina Astashova*
In honor of Professor IT Kiguradze

*Correspondence: ast@diffiety.ac.ru
Department of Mechanics and Mathematic, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia Department of Higher Mathematics, Moscow State University of Economics, Statistics and Informatics, Nezhinskaya st., 7, Moscow, 119501, Russia

Abstract

The paper is devoted to the existence of oscillatory and non-oscillatory quasi-periodic, in some sense, solutions to a higher-order Emden-Fowler type differential equation.

Keywords: Emden-Fowler type equation; quasi-periodic solutions; oscillatory and non-oscillatory solutions

1 Introduction

The paper is devoted to the existence of oscillatory and non-oscillatory quasi-periodic, in some sense, solutions to the higher-order Emden-Fowler type differential equation

$$
\begin{equation*}
y^{(n)}+p_{0}|y|^{k} \operatorname{sgn} y=0, \quad n>2, k \in \mathbb{R}, k>1, p_{0} \neq 0 . \tag{1}
\end{equation*}
$$

The fact of the existence of such solutions answers the two questions posed by IT Kiguradze:

Question 1 Can we describe more precisely qualitative properties of oscillatory solutions to (1)?

Question 2 Do all blow-up solutions to this equation (and similarly all Kneser solutions) have the power asymptotic behavior?

A lot of results on the asymptotic behavior of solutions to (1) are described in detail in [1]. In particular (see Ch. IV, §15), the existence of oscillatory solutions to a generalization of this equation was proved (see also [2] Ch. I, §6.1). In [3] a result was formulated on non-extensibility of oscillatory solutions to (1) with odd n and $p_{0}>0$. In the cases $n=3$ and $n=4$ the asymptotic behavior of all oscillatory solutions is described in [4-6]. Some results on the existence of blow-up solutions are in [1] (Ch. IV, §16), [2] (Ch. I, §5), [7, 8]. Some results on the existence of some special solutions to this equation are in $[2,4,5,7$, $9-13]$.

2 On existence of quasi-periodic oscillatory solutions

In this section some results will be obtained on the existence of special oscillatory solutions. The main results of this section were formulated in [14].

[^0]

Figure 1 A quasi-periodic solution for the equation $y^{\prime \prime \prime}+y^{3}=0$.

Theorem 1 For any integer $n>2$ and real $k>1$ there exists a periodic oscillatory function h such that for any $p_{0}>0$ and $x^{*} \in \mathbb{R}$ the function

$$
\begin{equation*}
y(x)=p_{0}^{\frac{1}{k-1}}\left(x^{*}-x\right)^{-\alpha} h\left(\log \left(x^{*}-x\right)\right), \quad-\infty<x<x^{*} \tag{2}
\end{equation*}
$$

with $\alpha=\frac{n}{k-1}$ is a solution to (1). (See Figure 1.)

Proof For any $q=\left(q_{0}, \ldots, q_{n-1}\right) \in \mathbb{R}^{n}$ let $y_{q}(x)$ be the maximally extended solution to the equation

$$
\begin{equation*}
y^{(n)}(x)+|y(x)|^{k}=0 \tag{3}
\end{equation*}
$$

satisfying the initial conditions $y^{(j)}(0)=q_{j}$ with $j=0, \ldots, n-1$.
For $0 \leq j<n$ put $B_{j}=\frac{n k}{n+j(k-1)}>1$ and $\beta_{j}=\frac{1}{B_{j}}$.
Consider the function $N: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by the formula

$$
\begin{equation*}
N\left(q_{0}, \ldots, q_{n-1}\right)=\sum_{j=0}^{n-1}\left|q_{j}\right|^{B_{j}} \tag{4}
\end{equation*}
$$

and the mapping $\tilde{N}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ defined by the formula

$$
\tilde{N}(q)_{j}=N(q)^{-\beta_{j}} q_{j}, \quad j=0, \ldots, n-1
$$

and satisfying the equality $N(\tilde{N}(q))=1$ for all $q \in \mathbb{R}^{n} \backslash\{0\}$.
Next, consider the subset $Q \subset \mathbb{R}^{n}$ consisting of all $q=\left(q_{0}, \ldots, q_{n-1}\right) \in \mathbb{R}^{n}$ satisfying the following conditions:
(1) $q_{0}=0$,
(2) $q_{j} \geq 0$ for all $j \in\{1, \ldots, n-1\}$,
(3) $N(q)=1$.

The restriction of the projection $\left(q_{0}, \ldots, q_{n-1}\right) \mapsto\left(q_{1}, \ldots, q_{n-2}\right)$ to the set Q is a homeomorphism of Q onto the convex compact subset

$$
\left\{\left(q_{1}, \ldots, q_{n-2}\right): \sum_{j=1}^{n-2}\left|q_{j}\right|^{B_{j}} \leq 1 \text { and } q_{j} \geq 0, j=1, \ldots, n-2\right\} \subset \mathbb{R}^{n-2}
$$

Lemma 1 For any $q \in Q$ there exists $a_{q}>0$ such that $y_{q}\left(a_{q}\right)=0$ and $y_{q}^{(j)}\left(a_{q}\right)<0$ for all $j \in\{1, \ldots, n-1\}$.

Proof Put $J=\max \left\{j \in \mathbb{Z}: 0 \leq j<n, q_{j}>0\right\}$. This J exists and is positive due to the definition of Q. On some interval $(0 ; \varepsilon)$ all derivatives $y_{q}^{(j)}(x)$ with $0 \leq j \leq J$ are positive. Those with $J<j \leq n$, due to (3), are negative on the same interval.

While keeping this sign combination, the function y_{q} and its derivatives are bounded, which provides extensibility of $y_{q}(x)$ as the solution to (3) outside the interval $(0 ; \varepsilon)$.

On the other hand, this sign combination cannot take place up to $+\infty$. Indeed, in that case $y_{q}(x)$ would increase providing $y_{q}^{(n)}(x)<-y_{q}(\varepsilon)^{k}<0$ for all $x>\varepsilon$, which is impossible for any positive function on the unbounded interval $(0 ;+\infty)$.

So, $y_{q}(x)$ must change the sign combination of its derivatives. The only possible combination to be the next one corresponds to the positive derivatives $y_{q}^{(j)}(x)$ with $0 \leq j \leq J-1$ and the negative ones with $J \leq j \leq n$.

The same arguments show that the new sign combination must also change and finally, after J changes, we arrive at the case with $y_{q}(x)>0$ and $y_{q}^{(j)}(x)<0$ with $1 \leq j \leq n$. Now, contrary to the previous cases, the function $y_{q}(x)$ does not increase, but its first derivative is negative and decreases (recall that $n>2$). Hence this sign combination also cannot take place on an unbounded interval and therefore it must change to the case with all negative $y_{q}^{(j)}(x), 0 \leq j \leq n$. By the way, the function $y_{q}(x)$ must vanish at some point $a_{q}>0$, which completes the proof of Lemma 1.

Note that a_{q} is not only the first positive zero of $y_{q}(x)$, but the only positive one. Indeed, all $y_{q}^{(j)}(x)$ with $0<j<n$ are negative at a_{q}, whence, according to (3), all $y_{q}^{(j)}(x)$ with $0 \leq j<n$ decrease and are negative for all $x>a_{q}$ in the domain of $y_{q}(x)$.
To continue the proof of Theorem 1, consider the function $\xi: q \mapsto a_{q}$ taking each $q \in Q$ to the first positive zero of the function y_{q}. To prove its continuity, we apply the implicit function theorem. The function $\xi(q)$ can be considered as a local solution $X(q)$ to the equation $S_{0}(q, X)=0$, where

$$
S:(q, x) \mapsto\left(S_{0}(q, x), S_{1}(q, x), \ldots, S_{n-1}(q, x)\right)=\left(y_{q}(x), y_{q}^{\prime}(x), \ldots, y_{q}^{(n-1)}(x)\right)
$$

is the C^{1} 'solution' mapping defined on a domain including $\mathbb{R}^{n} \times\{0\}$. The necessary for the implicit function theorem condition $\frac{\partial S_{0}}{\partial X}\left(q_{0}, \ldots, q_{n-1}, a_{q}\right) \neq 0$ is satisfied since the lefthand side of the last inequality is equal to $y_{q}^{\prime}\left(a_{q}\right)<0$. Besides, any function $X(q)$ implicitly defined near a point $\left(q_{0}, a_{q_{0}}\right)$ must be positive in some its neighborhood. Hence locally $X(q)$ must be equal to $\xi(q)$, but neither to a non-positive zero of $y_{q}(x)$ nor to a non-first positive one, which does not exist. Hence the function $\xi(q)$ is continuous as well as $X(q)$.
Now we can consider the mapping $\tilde{S}: q \mapsto \tilde{N}(-S(q, \xi(q)))$, which maps Q into itself. Since \tilde{S} is continuous and Q is homeomorphic to a convex compact subset of \mathbb{R}^{n-2}, the Brouwer fixed-point theorem can be applied. Thus, there exists $\hat{q} \in Q$ such that $\tilde{S}(\hat{q})=\hat{q}$.

According to the definitions of the functions \tilde{N}, S, and ξ, this yields the result that there exists a non-negative solution $\hat{y}(x)=y_{\hat{q}}(x)$ to (3) defined on a segment $\left[0 ; a_{1}\right]$ with $a_{1}=a_{\hat{q}}$, positive on the open interval ($0 ; a_{1}$), and such that

$$
\begin{equation*}
\lambda^{-\beta_{j}} \hat{y}^{(j)}\left(a_{1}\right)=-\hat{y}^{(j)}(0), \quad j=0, \ldots, n-1 \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda=N(S(\hat{q}, \xi(\hat{q})))=\sum_{j=0}^{n-1}\left|\hat{y}^{(j)}\left(a_{1}\right)\right|^{B_{j}}>0 . \tag{6}
\end{equation*}
$$

Since $\hat{y}(x)$ is non-negative, it is also a solution to the equation

$$
\begin{equation*}
y^{(n)}(x)+|y(x)|^{k} \operatorname{sgn} y(x)=0 . \tag{7}
\end{equation*}
$$

Note that for any solution $y_{1}(x)$ to (7) the function $y_{2}(x)=-b^{\alpha} y_{1}(b x+c)$ with arbitrary constants $b>0$ and c is also a solution to (7). Indeed, we have $\alpha+n=k \alpha$ and $y_{2}^{(j)}(x)=$ $-b^{\alpha+j} y_{1}^{(j)}(b x+c)$ for all $j=0, \ldots, n$, whence

$$
\begin{aligned}
y_{2}^{(n)} & (x)+\left|y_{2}(x)\right|^{k} \operatorname{sgn} y_{2}(x) \\
& =-b^{\alpha+n} y_{1}^{(n)}(b x+c)-b^{k \alpha}\left|y_{1}(b x+c)\right|^{k} \operatorname{sgn} y_{1}(b x+c) \\
& =-b^{k \alpha}\left(y_{1}^{(n)}(b x+c)+\left|y_{1}(b x+c)\right|^{k} \operatorname{sgn} y_{1}(b x+c)\right)=0 .
\end{aligned}
$$

So, the function $z(x)=-b^{\alpha} \hat{y}\left(b x-a_{1} b\right)$ is a solution to (7) and is defined on the segment $\left[a_{1} ; a_{2}\right]$ with $a_{2}=a_{1}+\frac{a_{1}}{b}$.

Put $b=\lambda^{\frac{k-1}{n k}}$ with λ defined by (6). Then

$$
b^{\alpha+j}=\lambda^{\frac{k-1}{n k} \cdot\left(\frac{n}{k-1}+j\right)}=\lambda^{\frac{n+(k-1) j}{n k}}=\lambda^{\beta_{j}},
$$

whence, taking into account (5), we obtain $z^{(j)}\left(a_{1}\right)=-\lambda^{\beta_{j}} \hat{y}^{(j)}(0)=\hat{y}^{(j)}\left(a_{1}\right)$. Thus, $z(x)$ can be used to extend the solution $\hat{y}(x)$ on $\left[0 ; a_{2}\right]$. Since $z(x)$ satisfies the conditions similar to (5), namely,

$$
\lambda^{-\beta_{j}} z^{(j)}\left(a_{2}\right)=-\lambda^{-\beta_{j}} b^{\alpha+j} \hat{y}^{(j)}\left(a_{1}\right)=-z^{(j)}\left(a_{1}\right),
$$

the procedure of extension can be repeated on $\left[0 ; a_{3}\right],\left[0 ; a_{4}\right]$, and so on with $a_{s+1}=a_{s}+$ $\frac{a_{s}-a_{s-1}}{b}$. In the same way the solution $\hat{y}(x)$ can be extended to the left. Its restrictions to the neighboring segments satisfy the following equality:

$$
\begin{equation*}
\hat{y}(x)=-b^{\alpha} \hat{y}\left(b\left(x-a_{s}\right)+a_{s-1}\right) \tag{8}
\end{equation*}
$$

where $x \in\left[a_{s} ; a_{s+1}\right]$ and hence $b\left(x-a_{s}\right)+a_{s-1} \in\left[a_{s-1} ; a_{s}\right]$.
Now we will investigate whether b is greater or less than 1.
Let $a_{j, s}$ be the zero of the derivative $\hat{y}^{(j)}(x)$ belonging to the interval $\left(a_{s-1} ; a_{s}\right)$. Note that according to the above consideration on changing the sign combinations, we have

$$
a_{j+1, s}<a_{j, s}<\cdots<a_{0, s}=a_{s}<a_{n-1, s+1}<a_{n-2, s+1}<\cdots .
$$

Lemma 2 In the above notation the solution $y(x)=\hat{y}(x)$ satisfies the following inequalities:

$$
\begin{align*}
& \left|y\left(a_{1, s}\right)\right|<\left|y\left(a_{n-1, s+1}\right)\right|, \tag{9}\\
& \left|y\left(a_{j+1, s}\right)\right|<\left|y\left(a_{j, s}\right)\right|, \quad 0<j<n-1 . \tag{10}
\end{align*}
$$

Proof Indeed,

$$
\begin{aligned}
& \frac{1}{k+1}\left(\left|y\left(a_{n-1, s+1}\right)\right|^{k+1}-\left|y\left(a_{1, s}\right)\right|^{k+1}\right) \\
& \quad=\int_{a_{1, s}}^{a_{n-1, s+1}} y^{\prime}(x)|y(x)|^{k} \operatorname{sgn} y(x) d x=-\int_{a_{1, s}}^{a_{n-1, s+1}} y^{\prime}(x) y^{(n)}(x) d x \\
& \quad=-\left.y^{\prime}(x) y^{(n-1)}(x)\right|_{a_{1, s}} ^{a_{n-1, s+1}}+\int_{a_{1, s}}^{a_{n-1, s+1}} y^{\prime \prime}(x) y^{(n-1)}(x) d x>0
\end{aligned}
$$

since $y^{\prime}\left(a_{1, s}\right)=y^{(n-1)}\left(a_{n-1, s+1}\right)=0$ and $y^{\prime \prime}(x) y^{(n-1)}(x)>0$ on the interval $\left(a_{1, s} ; a_{n-1, s+1}\right)$, where only $y(x)$ itself changes its sign, while all other $y^{(j)}(x)$ with $0<j<n$ keep the same one. Recall that $n>2$, which makes $y^{\prime \prime}(x)$ to be one of these others. Inequality (9) is proved.
Inequality (10) follows from $y(x) y^{\prime}(x)>0$ on the interval $\left(a_{j+1, s}, a_{j, s}\right)$, where the derivatives $y^{(j)}(x)$ and $y^{(j+1)}(x)$ with $0<j<n-1$ keep different signs, while all lower-order derivatives keep the same sign as $y^{(j)}(x)$.

From the lemma proved it follows that $\left|\hat{y}\left(a_{1, s}\right)\right|<\left|\hat{y}\left(a_{1, s+1}\right)\right|=b^{\alpha}\left|\hat{y}\left(a_{1, s}\right)\right|$, whence it follows that $b>1$ and $a_{s}-a_{s-1}=b\left(a_{s+1}-a_{s}\right)>a_{s+1}-a_{s}$.
Now we see that

$$
\sum_{s=-\infty}^{0}\left(a_{s+1}-a_{s}\right)=a_{1} \sum_{s=0}^{\infty} b^{s}=\infty \quad \text { and } \quad \sum_{s=0}^{\infty}\left(a_{s+1}-a_{s}\right)=a_{1} \sum_{s=0}^{\infty} b^{-s}=a^{*}<\infty .
$$

So, the solution $\hat{y}(x)$ is extended on the half-bounded interval $\left(-\infty ; a^{*}\right)$ and cannot be extended outside it since

$$
\limsup _{x \rightarrow a^{*}}|\hat{y}(x)|=\lim _{s \rightarrow+\infty}\left|\hat{y}\left(a_{1, s}\right)\right|=\left|\hat{y}\left(a_{1,0}\right)\right| \lim _{s \rightarrow+\infty} b^{s \alpha}=+\infty
$$

Now consider the function

$$
\begin{equation*}
h(t)=e^{t \alpha} \hat{y}\left(a^{*}-e^{t}\right) \tag{11}
\end{equation*}
$$

which is periodic. Indeed, if $a_{*}-e^{t} \in\left[a_{s} ; a_{s+1}\right]$ for some $s \in \mathbb{Z}$, then

$$
h(t+\log b)=e^{t \alpha} b^{\alpha} \hat{y}\left(a^{*}-b e^{t}\right)
$$

and, according to (8),

$$
h(t)=e^{\alpha t} \hat{y}\left(a^{*}-e^{t}\right)=-e^{\alpha t} b^{\alpha} \hat{y}\left(b a^{*}-b e^{t}-b a_{s}+a_{s-1}\right) .
$$

The expression in the last parentheses is equal to

$$
b\left(a^{*}-a_{s}\right)-b e^{t}+a_{s-1}=b \cdot \frac{a_{s+1}-a_{s}}{1-b^{-1}}-b e^{t}+a_{s-1}=\frac{a_{s}-a_{s-1}}{1-b^{-1}}+a_{s-1}-b e^{t}=a^{*}-b e^{t} .
$$

So, $h(t+\log b)=-h(t)$ for all $t \in \mathbb{R}$ and hence the function $h(t)$ is periodic with period $2 \log b$.

Now, according to (11), we can express the solution $\hat{y}(x)$ to (7) just as $\hat{y}(x)=\left(a^{*}-\right.$ $x)^{-\alpha} h\left(\log \left(a^{*}-x\right)\right)$. Multiplying it by $p_{0}^{\frac{1}{k-1}}$ we obtain a solution to (3) having the form needed. It still will be a solution to (3) after replacing a^{*} by arbitrary $x^{*} \in \mathbb{R}$.

The substitution $x \mapsto-x$ produces the following.

Corollary 1 For any integer $n>2$ and real $k>1$ there exists a periodic oscillatory function h such that for any $p_{0} \in \mathbb{R}$ satisfying $(-1)^{n} p_{0}>0$ and any $x^{*} \in \mathbb{R}$ the function

$$
y(x)=\left|p_{0}\right|^{\frac{1}{k-1}}\left(x-x^{*}\right)^{-\alpha} h\left(\log \left(x-x^{*}\right)\right), \quad x^{*}<x<\infty,
$$

is a solution to (1).

Note that the following theorem was earlier proved in [4, 5].

Theorem 2 For $n=3$, there exists a constant $B \in(0,1)$ such that any oscillatory solution $y(x)$ to (1) with $p_{0}<0$ satisfies the conditions
(1) $\frac{x_{i+1}-x_{i}}{x_{i}-x_{i-1}}=B^{-1}, \quad i=2,3, \ldots$,
(2) $\frac{y\left(x_{i+1}^{\prime}\right)}{y\left(x_{i}^{\prime}\right)}=-B^{\alpha}, \quad i=1,2,3, \ldots$,
(3) $\frac{y^{\prime}\left(x_{i+1}\right)}{y^{\prime}\left(x_{i}\right)}=-B^{\alpha+1}, \quad i=1,2,3, \ldots$,
(4) $\quad\left|y\left(x_{i}^{\prime}\right)\right|=M\left(x_{i}^{\prime}-x_{*}\right)^{-\alpha}, \quad i=1,2,3, \ldots$,
for some $M>0$ and x_{*}, where $x_{1}<x_{2}<\cdots<x_{i}<\cdots$ and $x_{1}^{\prime}<x_{2}^{\prime}<\cdots<x_{i}^{\prime}<\cdots$ are sequences satisfying $y\left(x_{j}\right)=0, y^{\prime}\left(x_{j}^{\prime}\right)=0, y(x) \neq 0$ if $x \in\left(x_{i}, x_{i+1}\right), y^{\prime}(x) \neq 0$ if $x \in\left(x_{i}^{\prime}, x_{i+1}^{\prime}\right)$.

With the help of this theorem, another one can be proved, namely the following.

Theorem 3 For $n=3$ and any real $k>1$ there exists a periodic oscillatory function h such that the functions $y(x)=p_{0}^{\frac{1}{k-1}}\left|x-x_{*}\right|^{-\alpha} h\left(\log \left|x-x_{*}\right|\right)$ with $\alpha=\frac{n}{k-1}$ and arbitrary x_{*} are solutions, respectively, to (1) with $p_{0}<0$ if defined on $\left(-\infty ; x_{*}\right)$ and to (1) with $p_{0}>0$ if defined on $\left(x_{*} ;+\infty\right)$.

3 On existence of positive solutions with non-power asymptotic behavior

For (1) with $p_{0}=-1$ it was proved [11] that for any N and $K>1$ there exist an integer $n>N$ and $k \in \mathbf{R}$ such that $1<k<K$ and (1) has a solution of the form

$$
\begin{equation*}
y=\left(x^{*}-x\right)^{-\alpha} h\left(\log \left(x^{*}-x\right)\right), \tag{12}
\end{equation*}
$$

where $\alpha=\frac{n}{k-1}$ and h is a positive periodic non-constant function on \mathbf{R}.

A similar result was also proved [11] about Kneser solutions, i.e. those satisfying $y(x) \rightarrow 0$ as $x \rightarrow \infty$ and $(-1)^{j} y^{(j)}(x)>0$ for $0 \leq j<n$. Namely, if $p_{0}=(-1)^{n-1}$, then for any N and $K>1$ there exist an integer $n>N$ and $k \in \mathbf{R}$ such that $1<k<K$ and (1) has a solution of the form

$$
y(x)=\left(x-x_{*}\right)^{-\alpha} h\left(\log \left(x-x_{*}\right)\right),
$$

where h is a positive periodic non-constant function on \mathbf{R}.
Still it was not clear how large n should be for the existence of that type of positive solutions.

Theorem 4 [13] If $12 \leq n \leq 14$, then there exists $k>1$ such that (1) with $p_{0}=-1$ has a solution $y(x)$ such that

$$
y^{(j)}(x)=\left(x^{*}-x\right)^{-\alpha-j} h_{j}\left(\log \left(x^{*}-x\right)\right), \quad j=0,1, \ldots, n-1,
$$

where $\alpha=\frac{n}{k-1}$ and h_{j} are periodic positive non-constant functions on \mathbf{R}.

Remark Computer calculations give approximate values of α. They are, with the corresponding values of k, as follows:

$$
\begin{aligned}
& \text { if } n=12 \text {, then } \alpha \approx 0.56, k \approx 22.4 ; \\
& \text { if } n=13 \text {, then } \alpha \approx 1.44, k \approx 10.0 \\
& \text { if } n=14 \text {, then } \alpha \approx 2.37, k \approx 6.9
\end{aligned}
$$

Corollary 2 If $12 \leq n \leq 14$, then there exists $k>1$ such that (1) with $p_{0}=(-1)^{n-1}$ has a Kneser solution $y(x)$ satisfying

$$
y^{(j)}(x)=\left(x-x_{0}\right)^{-\alpha-j} h_{j}\left(\log \left(x-x_{0}\right)\right), \quad j=0,1, \ldots, n-1,
$$

with periodic positive non-constant functions h_{j} on \mathbf{R}.

4 Conclusions, concluding remarks, and open problems

1. So, we give the negative answer to Question 1 and prove the existence of oscillatory solutions with special qualitative properties for Question 2.
2. It would be interesting to know if positive solutions like (12) exist for $n \geq 15$ and for $5 \leq n \leq 11$.
3. If a positive solution like (12) exists for some $k_{0}>1$, does it follow, for the same n, that such solutions exist for all $k>k_{0}$?

Competing interests

The author declares that she has no competing interests.

Acknowledgements

The research was supported by RFBR (grant 11-01-00989).
Received: 5 February 2014 Accepted: 30 June 2014 Published online: 25 September 2014

References

1. Kiguradze, IT, Chanturia, TA: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordreht (1993)
2. Astashova, IV: Qualitative properties of solutions to quasilinear ordinary differential equations. In: Astashova, IV (ed.) Qualitative Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis: scientific edition, M.: UNITY-DANA, pp. 22-290 (2012) (in Russian)
3. Kondratiev, VA, Samovol, VS: On some asymptotic properties to solutions for the Emden-Fowler type equations. Differ. Uravn. 17(4), 749-750 (1981) (in Russian)
4. Astashova, IV: On the asymptotic behavior of the oscillating solutions for some nonlinear differential equations of the third and fourth order. In: Reports of the Extended Sessions of the I. N. Vekua Institute of Applied Mathematics, 3(3), 9-12, Tbilisi (1988) (in Russian)
5. Astashova, IV: Application of dynamical systems to the study of asymptotic properties of solutions to nonlinear higher-order differential equations. J. Math. Sci. 126(5), 1361-1391 (2005)
6. Astashova, I: On Asymptotic Behavior of Solutions to a Forth Order Nonlinear Differential Equation. In: Mathematical Methods in Finance and Business Administration. Proceedings of the 1st WSEAS International Conference on Pure Mathematics (PUMA '14), Tenerife, Spain, January 10-12, pp. 32-41 (2014). ISBN:978-960-474-360-5
7. Astashova, IV: Asymptotic behavior of solutions of certain nonlinear differential equations. In: Reports of Extended Session of a Seminar of the I. N. Vekua Institute of Applied Mathematics, 1(3), 9-11, Tbilisi (1985) (in Russian)
8. Kiguradze, IT: Blow-up Kneser solutions of nonlinear higher-order differential equations. Differ. Equ. 31(6), 768-777 (2001)
9. Kiguradze, IT: An oscillation criterion for a class of ordinary differential equations. Differ. Equ. 28(2), 180-190 (1992)
10. Kiguradze, IT, Kusano, T: On periodic solutions of even-order ordinary differential equations. Ann. Mat. Pura Appl. 180(3), 285-301 (2001)
11. Kozlov, VA: On Kneser solutions of higher order nonlinear ordinary differential equations. Ark. Mat. 37(2), 305-322 (1999)
12. Kusano, T, Manojlovic, J: Asymptotic behavior of positive solutions of odd order Emden-Fowler type differential equations in the framework of regular variation. Electron. J. Qual. Theory Differ. Equ. 2012, 45 (2012)
13. Astashova, IV: On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations. Adv. Differ. Equ. (2013). doi:10.1186/1687-1847-2013-220
14. Astashova, I: On existence of quasi-periodic solutions to a nonlinear higher-order differential equation. In: Abstracts of International Workshop on the Qualitative Theory of Differential Equations (QUALITDE-2013), Tbilisi, Georgia, December 20-22, pp. 16-18 (2013). http://www.rmi.ge/eng/QUALITDE-2013/Astashova_workshop_2013.pdf
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $\$$ springeropen.com

[^0]: © 2014 Astashova; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

[^1]: doi:10.1186/s13661-014-0174-7
 Cite this article as: Astashova: On quasi-periodic solutions to a higher-order Emden-Fowler type differential equation. Boundary Value Problems 2014 2014:174.

