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in some sense, solutions to a higher-order Emden-Fowler type differential equation.
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1 Introduction
The paper is devoted to the existence of oscillatory and non-oscillatory quasi-periodic, in
some sense, solutions to the higher-order Emden-Fowler type differential equation

y(n) + p|y|k sgn y = , n > ,k ∈R,k > ,p �= . ()

The fact of the existence of such solutions answers the two questions posed by IT Kigu-
radze:

Question  Canwe describe more precisely qualitative properties of oscillatory solutions
to ()?

Question  Do all blow-up solutions to this equation (and similarly all Kneser solutions)
have the power asymptotic behavior?

A lot of results on the asymptotic behavior of solutions to () are described in detail in [].
In particular (see Ch. IV, §), the existence of oscillatory solutions to a generalization
of this equation was proved (see also [] Ch. I, §.). In [] a result was formulated on
non-extensibility of oscillatory solutions to () with odd n and p > . In the cases n = 
and n =  the asymptotic behavior of all oscillatory solutions is described in [–]. Some
results on the existence of blow-up solutions are in [] (Ch. IV, §), [] (Ch. I, §), [, ].
Some results on the existence of some special solutions to this equation are in [, , , ,
–].

2 On existence of quasi-periodic oscillatory solutions
In this section some results will be obtained on the existence of special oscillatory solu-
tions. The main results of this section were formulated in [].
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Figure 1 A quasi-periodic solution for the equation y′′′ + y3 = 0.

Theorem  For any integer n >  and real k >  there exists a periodic oscillatory function
h such that for any p >  and x∗ ∈R the function

y(x) = p


k–


(
x∗ – x

)–αh
(
log

(
x∗ – x

))
, –∞ < x < x∗, ()

with α = n
k– is a solution to (). (See Figure .)

Proof For any q = (q, . . . ,qn–) ∈ R
n let yq(x) be the maximally extended solution to the

equation

y(n)(x) +
∣
∣y(x)

∣
∣k =  ()

satisfying the initial conditions y(j)() = qj with j = , . . . ,n – .
For  ≤ j < n put Bj = nk

n+j(k–) >  and βj = 
Bj
.

Consider the function N :Rn →R defined by the formula

N(q, . . . ,qn–) =
n–∑

j=

|qj|Bj ()

and the mapping Ñ :Rn \ {} →R
n \ {} defined by the formula

Ñ(q)j =N(q)–βj qj, j = , . . . ,n – ,

and satisfying the equality N(Ñ(q)) =  for all q ∈R
n \ {}.

Next, consider the subset Q ⊂ R
n consisting of all q = (q, . . . ,qn–) ∈ R

n satisfying the
following conditions:
() q = ,
() qj ≥  for all j ∈ {, . . . ,n – },
() N(q) = .
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The restriction of the projection (q, . . . ,qn–) 
→ (q, . . . ,qn–) to the set Q is a homeo-
morphism of Q onto the convex compact subset

{

(q, . . . ,qn–) :
n–∑

j=

|qj|Bj ≤  and qj ≥ , j = , . . . ,n – 

}

⊂R
n–.

Lemma  For any q ∈ Q there exists aq >  such that yq(aq) =  and y(j)q (aq) <  for all
j ∈ {, . . . ,n – }.

Proof Put J = max{j ∈ Z :  ≤ j < n,qj > }. This J exists and is positive due to the definition
of Q. On some interval (; ε) all derivatives y(j)q (x) with  ≤ j ≤ J are positive. Those with
J < j ≤ n, due to (), are negative on the same interval.
While keeping this sign combination, the function yq and its derivatives are bounded,

which provides extensibility of yq(x) as the solution to () outside the interval (; ε).
On the other hand, this sign combination cannot take place up to +∞. Indeed, in that

case yq(x) would increase providing y(n)q (x) < –yq(ε)k <  for all x > ε, which is impossible
for any positive function on the unbounded interval (;+∞).
So, yq(x) must change the sign combination of its derivatives. The only possible combi-

nation to be the next one corresponds to the positive derivatives y(j)q (x) with  ≤ j ≤ J – 
and the negative ones with J ≤ j ≤ n.
The same arguments show that the new sign combination must also change and finally,

after J changes, we arrive at the case with yq(x) >  and y(j)q (x) <  with  ≤ j ≤ n. Now,
contrary to the previous cases, the function yq(x) does not increase, but its first derivative
is negative and decreases (recall that n > ). Hence this sign combination also cannot take
place on an unbounded interval and therefore it must change to the case with all negative
y(j)q (x),  ≤ j ≤ n. By the way, the function yq(x) must vanish at some point aq > , which
completes the proof of Lemma . �

Note that aq is not only the first positive zero of yq(x), but the only positive one. Indeed,
all y(j)q (x) with  < j < n are negative at aq, whence, according to (), all y

(j)
q (x) with ≤ j < n

decrease and are negative for all x > aq in the domain of yq(x).
To continue the proof of Theorem , consider the function ξ : q 
→ aq taking each q ∈Q

to the first positive zero of the function yq. To prove its continuity, we apply the implicit
function theorem. The function ξ (q) can be considered as a local solution X(q) to the
equation S(q,X) = , where

S : (q,x) 
→ (
S(q,x),S(q,x), . . . ,Sn–(q,x)

)
=

(
yq(x), y′

q(x), . . . , y
(n–)
q (x)

)

is the C ‘solution’ mapping defined on a domain including R
n × {}. The necessary for

the implicit function theorem condition ∂S
∂X (q, . . . ,qn–,aq) �=  is satisfied since the left-

hand side of the last inequality is equal to y′
q(aq) < . Besides, any function X(q) implicitly

defined near a point (q,aq ) must be positive in some its neighborhood. Hence locally
X(q) must be equal to ξ (q), but neither to a non-positive zero of yq(x) nor to a non-first
positive one, which does not exist. Hence the function ξ (q) is continuous as well as X(q).
Nowwe can consider themapping S̃ : q 
→ Ñ(–S(q, ξ (q))), whichmapsQ into itself. Since

S̃ is continuous andQ is homeomorphic to a convex compact subset ofRn–, the Brouwer
fixed-point theorem can be applied. Thus, there exists q̂ ∈Q such that S̃(q̂) = q̂.

http://www.boundaryvalueproblems.com/content/2014/1/174
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According to the definitions of the functions Ñ , S, and ξ , this yields the result that there
exists a non-negative solution ŷ(x) = yq̂(x) to () defined on a segment [;a] with a = aq̂,
positive on the open interval (;a), and such that

λ–βj ŷ(j)(a) = –ŷ(j)(), j = , . . . ,n – , ()

with

λ =N
(
S
(
q̂, ξ (q̂)

))
=

n–∑

j=

∣∣ŷ(j)(a)
∣∣Bj > . ()

Since ŷ(x) is non-negative, it is also a solution to the equation

y(n)(x) +
∣∣y(x)

∣∣k sgn y(x) = . ()

Note that for any solution y(x) to () the function y(x) = –bαy(bx + c) with arbitrary
constants b >  and c is also a solution to (). Indeed, we have α + n = kα and y(j) (x) =
–bα+jy(j) (bx + c) for all j = , . . . ,n, whence

y(n) (x) +
∣
∣y(x)

∣
∣k sgn y(x)

= –bα+ny(n) (bx + c) – bkα
∣
∣y(bx + c)

∣
∣k sgn y(bx + c)

= –bkα
(
y(n) (bx + c) +

∣∣y(bx + c)
∣∣k sgn y(bx + c)

)
= .

So, the function z(x) = –bα ŷ(bx – ab) is a solution to () and is defined on the segment
[a;a] with a = a + a

b .
Put b = λ

k–
nk with λ defined by (). Then

bα+j = λ
k–
nk ·( n

k– +j) = λ
n+(k–)j

nk = λβj ,

whence, taking into account (), we obtain z(j)(a) = –λβj ŷ(j)() = ŷ(j)(a). Thus, z(x) can be
used to extend the solution ŷ(x) on [;a]. Since z(x) satisfies the conditions similar to (),
namely,

λ–βj z(j)(a) = –λ–βj bα+jŷ(j)(a) = –z(j)(a),

the procedure of extension can be repeated on [;a], [;a], and so on with as+ = as +
as–as–

b . In the same way the solution ŷ(x) can be extended to the left. Its restrictions to the
neighboring segments satisfy the following equality:

ŷ(x) = –bα ŷ
(
b(x – as) + as–

)
, ()

where x ∈ [as;as+] and hence b(x – as) + as– ∈ [as–;as].
Now we will investigate whether b is greater or less than .
Let aj,s be the zero of the derivative ŷ(j)(x) belonging to the interval (as–;as). Note that

according to the above consideration on changing the sign combinations, we have

aj+,s < aj,s < · · · < a,s = as < an–,s+ < an–,s+ < · · · .

http://www.boundaryvalueproblems.com/content/2014/1/174
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Lemma  In the above notation the solution y(x) = ŷ(x) satisfies the following inequalities:

∣
∣y(a,s)

∣
∣ <

∣
∣y(an–,s+)

∣
∣, ()

∣∣y(aj+,s)
∣∣ <

∣∣y(aj,s)
∣∣,  < j < n – . ()

Proof Indeed,


k + 

(∣∣y(an–,s+)
∣∣k+ –

∣∣y(a,s)
∣∣k+)

=
∫ an–,s+

a,s
y′(x)

∣∣y(x)
∣∣k sgn y(x)dx = –

∫ an–,s+

a,s
y′(x)y(n)(x)dx

= –y′(x)y(n–)(x)|an–,s+a,s +
∫ an–,s+

a,s
y′′(x)y(n–)(x)dx > 

since y′(a,s) = y(n–)(an–,s+) =  and y′′(x)y(n–)(x) >  on the interval (a,s;an–,s+), where
only y(x) itself changes its sign, while all other y(j)(x) with  < j < n keep the same one.
Recall that n > , which makes y′′(x) to be one of these others. Inequality () is proved.
Inequality () follows from y(x)y′(x) >  on the interval (aj+,s,aj,s), where the derivatives

y(j)(x) and y(j+)(x) with  < j < n –  keep different signs, while all lower-order derivatives
keep the same sign as y(j)(x). �

From the lemma proved it follows that |ŷ(a,s)| < |ŷ(a,s+)| = bα|ŷ(a,s)|, whence it follows
that b >  and as – as– = b(as+ – as) > as+ – as.
Now we see that

∑

s=–∞
(as+ – as) = a

∞∑

s=

bs = ∞ and
∞∑

s=

(as+ – as) = a
∞∑

s=

b–s = a∗ < ∞.

So, the solution ŷ(x) is extended on the half-bounded interval (–∞;a∗) and cannot be
extended outside it since

lim sup
x→a∗

∣∣ŷ(x)
∣∣ = lim

s→+∞
∣∣ŷ(a,s)

∣∣ =
∣∣ŷ(a,)

∣∣ lim
s→+∞bsα = +∞.

Now consider the function

h(t) = etα ŷ
(
a∗ – et

)
, ()

which is periodic. Indeed, if a∗ – et ∈ [as;as+] for some s ∈ Z, then

h(t + logb) = etαbα ŷ
(
a∗ – bet

)

and, according to (),

h(t) = eαt ŷ
(
a∗ – et

)
= –eαtbα ŷ

(
ba∗ – bet – bas + as–

)
.

The expression in the last parentheses is equal to

b
(
a∗ – as

)
– bet + as– = b · as+ – as

 – b–
– bet + as– =

as – as–
 – b–

+ as– – bet = a∗ – bet .

http://www.boundaryvalueproblems.com/content/2014/1/174
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So, h(t + logb) = –h(t) for all t ∈ R and hence the function h(t) is periodic with period
 logb.
Now, according to (), we can express the solution ŷ(x) to () just as ŷ(x) = (a∗ –

x)–αh(log(a∗ – x)). Multiplying it by p


k–
 we obtain a solution to () having the form

needed. It still will be a solution to () after replacing a∗ by arbitrary x∗ ∈R. �

The substitution x 
→ –x produces the following.

Corollary  For any integer n >  and real k >  there exists a periodic oscillatory function
h such that for any p ∈R satisfying (–)np >  and any x∗ ∈R the function

y(x) = |p| 
k–

(
x – x∗)–αh

(
log

(
x – x∗)), x∗ < x < ∞,

is a solution to ().

Note that the following theorem was earlier proved in [, ].

Theorem  For n = , there exists a constant B ∈ (, ) such that any oscillatory solution
y(x) to () with p <  satisfies the conditions

()
xi+ – xi
xi – xi–

= B–, i = , , . . . ,

()
y(x′

i+)
y(x′

i)
= –Bα , i = , , , . . . ,

()
y′(xi+)
y′(xi)

= –Bα+, i = , , , . . . ,

()
∣∣y

(
x′
i
)∣∣ =M

(
x′
i – x∗

)–α , i = , , , . . . ,

for someM >  and x∗,where x < x < · · · < xi < · · · and x′
 < x′

 < · · · < x′
i < · · · are sequences

satisfying y(xj) = , y′(x′
j) = , y(x) �=  if x ∈ (xi,xi+), y′(x) �=  if x ∈ (x′

i,x′
i+).

With the help of this theorem, another one can be proved, namely the following.

Theorem  For n =  and any real k >  there exists a periodic oscillatory function h such

that the functions y(x) = p


k–
 |x – x∗|–αh(log |x – x∗|) with α = n

k– and arbitrary x∗ are
solutions, respectively, to () with p <  if defined on (–∞;x∗) and to () with p >  if
defined on (x∗; +∞).

3 On existence of positive solutions with non-power asymptotic behavior
For () with p = – it was proved [] that for anyN and K >  there exist an integer n >N
and k ∈ R such that  < k < K and () has a solution of the form

y =
(
x∗ – x

)–αh
(
log

(
x∗ – x

))
, ()

where α = n
k– and h is a positive periodic non-constant function on R.

http://www.boundaryvalueproblems.com/content/2014/1/174
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Asimilar resultwas also proved [] aboutKneser solutions, i.e. those satisfying y(x) → 
as x→ ∞ and (–)jy(j)(x) >  for  ≤ j < n. Namely, if p = (–)n–, then for anyN andK > 
there exist an integer n >N and k ∈ R such that  < k < K and () has a solution of the form

y(x) = (x – x∗)–αh
(
log(x – x∗)

)
,

where h is a positive periodic non-constant function on R.
Still it was not clear how large n should be for the existence of that type of positive

solutions.

Theorem  [] If  ≤ n ≤ , then there exists k >  such that () with p = – has a
solution y(x) such that

y(j)(x) =
(
x∗ – x

)–α–jhj
(
log

(
x∗ – x

))
, j = , , . . . ,n – ,

where α = n
k– and hj are periodic positive non-constant functions on R.

Remark Computer calculations give approximate values of α. They are, with the corre-
sponding values of k, as follows:

if n = , then α ≈ ., k ≈ .;
if n = , then α ≈ ., k ≈ .;
if n = , then α ≈ ., k ≈ ..

Corollary  If  ≤ n ≤ , then there exists k >  such that () with p = (–)n– has a
Kneser solution y(x) satisfying

y(j)(x) = (x – x)–α–jhj
(
log(x – x)

)
, j = , , . . . ,n – ,

with periodic positive non-constant functions hj on R.

4 Conclusions, concluding remarks, and open problems
. So, we give the negative answer to Question  and prove the existence of oscillatory

solutions with special qualitative properties for Question .
. It would be interesting to know if positive solutions like () exist for n≥  and for

≤ n≤ .
. If a positive solution like () exists for some k > , does it follow, for the same n,

that such solutions exist for all k > k?
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