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1 Introduction
The present note is a continuation of [] and deals with a constructive approach to the
investigation of two-point boundary value problems. The approach is numerical-analytic
[, ] in the sense that, although part of the computation is carried out analytically, the fi-
nal stage of the method involves a numerical analysis of certain equations usually referred
to as determining, or bifurcation, equations. This scheme of Lyapunov-Schmidt type [, ]
reminds one of the shooting method on first glance, but there are several essential differ-
ences [].
We consider the periodic boundary value problem

u′(t) = f
(
t,u(t)

)
, t ∈ [,p], ()

u() = u(p), ()

where p ∈ (,∞), f : [,p] × R
n → R

n satisfies the Carathéodory conditions, and a solu-
tion is an absolutely continuous vector function satisfying () almost everywhere on [,p].
Our main assumption till the end of the paper is that there exist a certain matrix K and a
bounded closed set � ⊂ R

n such that f (t, ·) ∈ LipK (�) for a.e. t ∈ [,p]. Here and below,
given a square matrix K with non-negative entries, LipK (�) stands for the set of functions
g :� →R

n satisfying the componentwise Lipschitz condition

∣
∣g(z) – g(z)

∣
∣ ≤ K |z – z| ()

for all z and z from �. In () and all similar relations that will appear below, the symbols
≤ and | · | are understood componentwise.
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In its original form (see, e.g., [, ] for references), the numerical-analytic approach that
we are dealing with suggests one to look for a solution of (), () among the limit functions
of certain n-parametric family of sequences possessing property () (see, e.g., [, ]). Given
an arbitrary vector ξ , consider the sequence of functions defined by the recurrence relation

um(t, ξ ) := ξ +
∫ t


f
(
s,um–(s, ξ )

)
ds –

t
p

∫ p


f
(
s,um–(s, ξ )

)
ds, t ∈ [,p], ()

withm = , , . . . and u(t, ξ ) := ξ , t ∈ [,p]. Clearly, each of functions () satisfies the peri-
odic boundary condition (). If one establishes the existence of the limit

u∞(·, ξ ) := lim
m→∞um(·, ξ ), ξ ∈ �, ()

with a certain � ⊂ D, one finds out that the existence of a solution u(·) of the periodic
problem (), () with the value at zero lying in � is equivalent to the solvability of the
equation

∫ p


f
(
s,u∞(s, ξ )

)
ds = 

with respect to the unknown vector ξ . This leads to a Lyapunov-Schmidt type reduction
of the periodic problem (see [, ] for more details), which is known to be applicable on
the assumption that

f (t, ·) ∈ LipK (D) for a.e. t ∈ [,p], ()

with pK small enough and D satisfying the condition

D
(
T


δD(f )
)

�=∅, ()

where

δD(f ) := max
{
δ[,p/],D(f ), δ[p/,p],D(f )

}
()

and δJ ,V (f ) := max(t,ξ )∈J×V f (t, ξ ) –min(t,ξ )∈J×V f (t, ξ ) for any compact V ⊆D and J ⊆ [,p].
In (), D(�) is the �-core of D defined as

D(�) :=
{
z ∈D : B(z,�) ⊂D

}
()

for any non-negative vector �, where

B(z,�) :=
{
ξ ∈R

n : |z – ξ | ≤ �
}

()

is the (componentwise) �-neighbourhood of z. Note that� involved in () is actually equal
to D(�) in that case. Examples showing how D(�) can look like for different D can be seen
on Figure .
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Figure 1 The set D(�) in examples, � = col(1/12, 1/18).

The main limitation of this approach is that, in order to guarantee the convergence, one
has to assume a certain smallness of the eigenvalues of the matrix pK . It was shown, in
particular, in [] that the method based upon sequence () is applicable provided that

r(K) <


γp
, ()

where

γ :=



. ()

Moreover, as is seen from condition (), the set D where () holds should be wide enough
(in particular, such that diamD ≥ p

δD(f ), with the natural componentwise definition of a
vector-valued diameter of a set).
As the recent paper [] shows, the limitation can be overcome by noticing that the quan-

tity which is assumed be small enough is always proportional to the length of the interval.
A natural interval halving technique then allows one to produce a version of the scheme
where () is replaced by the condition

r(K) <


γp

and, thus, weakened by half. A similar improvement is also achieved in relation to condi-
tion (), which is replaced by the assumption that

D
(
T


δD(f )
)

�=∅. ()

Clearly, the transition to () weakens () by half.
Here, we modify the scheme of [] so that its substantiation is simplified and, in partic-

ular, replace () by an assumption which is more transparent and, generally speaking, less
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restrictive. Indeed, the idea to start from a set D where the nonlinearity is known to be
Lipschitzian and look for its suitable subset D(�) that could potentially contain initial val-
ues of periodic solutions is somewhat unnatural because, in any case, it is the initial values
that are of major interest, the regularity assumptions for the equation being only technical
assumptions induced by the method. Instead of doing so, which used to be the case in []
and in all the previous works, it is, however, more logical to choose a closed bounded set
� ⊂ R

n, where one expects to find initial values of the solution, and to assume that the
nonlinearity is Lipschitzian on a suitable �̃ ⊃ �, with �̃ only as large as the method re-
quires. It is not difficult to see that the argument of [] then leads us to the choice �̃ :=�� ,
where �� is the �-neighbourhood of � in the sense that

�� :=
⋃

ξ∈�

B(ξ ,�), ()

where the symbol B(ξ ,�) stands for the �-neighbourhood of a vector ξ (recall that the
relations in () are componentwise). Besides itsmore natural character, the use of the pair
of sets (��,�) is also advantageous in contrast to (D,D(�)) because, geometrically, D(�)
does not necessarily copy the shape of D (see Figures  and  for examples where D and
the corresponding D(�) with � =

( �
�

)
gradually increasing are represented, respectively,

by the blue and red regions). In fact, the operations of taking �-core and �-neighbourhood
do not commute: the equality in the inclusion

(
D(�)

)
�
⊂D ()

is, in general, not true, whereas one obviously has

��(�) = � ()

Figure 2 The shape of D(�) may differ significantly for various values of �.
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Figure 3 An example of Dwith D(�) disconnected for certain �.

Figure 4 An example of the set D illustrating the strict inclusion in (15).

for any �. The strict inclusion in () holds, in particular, in the example from Figure ,
where the points of the sets D(�), D and (D(�))� for several values of � =

( �
�

)
, � ≤ �,

are plotted in red, blue and cyan, respectively. In that example, by choosing � to be the
red region, one should then widen it for the technical purposes related to the method
up to the cyan one, and not the blue one. A comparison of () and () confirms the
advantage of assuming conditions of type () on �� . Several examples of domains � and
the corresponding sets �� can be seen on Figure .
Using the (��,�) setting, we further reformulate the scheme of the method further by

removing certain unnecessary technicalities so that both the setting and the overall anal-
ysis are simplified. The new formulation, in particular, makes it particularly easy to adopt
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Figure 5 The set �� in examples, � = col(1/8, 1/16).

the approach to problemswith two-point boundary conditions different from the periodic
ones, which technique is also outlined in what follows.

2 Construction of iterations and proof of convergence
Thus, let us fix a closed bounded set � ⊂R

n, where the initial values of solutions of prob-
lem (), () will be looked for. Without loss of generality, we shall choose � to be convex.
Let ξ and η be arbitrary vectors from �. Let us put

x(t, ξ ,η) :=
(
 –

t
p

)
ξ +

t
p

η, t ∈ [,p/], ()

y(t, ξ ,η) := 
(
 –

t
p

)
η +

(
t
p

– 
)

ξ , t ∈ [p/,p], ()

and define the recurrence sequences of functions xm : [,p/] × � → R
n and ym :

[p/,p]× � → R
n,m = , , . . . , according to the formulae

xm(t, ξ ,η) := x(t, ξ ,η) +
∫ t


f
(
s,xm–(s, ξ ,η)

)
ds

–
t
p

∫ p



f
(
s,xm–(s, ξ ,η)

)
ds, t ∈ [,p/], ()

ym(t, ξ ,η) := y(t, ξ ,η) +
∫ t

p


f
(
s, ym–(s, ξ ,η)

)
ds

–
(
t
p

– 
)∫ p

p


f
(
s, ym–(s, ξ ,η)

)
ds, t ∈ [p/,p], ()

where m ≥ . One arrives at formulae (), () directly when choosing x(·, ξ ,η) and
y(·, ξ ,η) as linear functions on the appropriate intervals satisfying the equalities

x(, ξ ,η) = ξ , x
(
p

, ξ ,η

)
= η, ()

http://www.boundaryvalueproblems.com/content/2014/1/164
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y
(
p

, ξ ,η

)
= η, y(p, ξ ,η) = ξ . ()

The considerations in [] concerning the auxiliary parametrised problems (.), (.) and
(.), (.) can be omitted. Clearly, () and () are the simplest choice of functions sat-
isfying () and ().
The form of sequences (), () is motivated by the following proposition.

Proposition  Let (ξ ,η) ∈ � be fixed. If the limits x∞(·, ξ ,η) and y∞(·, ξ ,η) of sequences
() and (), respectively, exist uniformly on [, p] and [ p,p], then:
. The function x∞(·, ξ ,η) has the property

x∞
(
p

, ξ ,η

)
– x∞(, ξ ,η) = η – ξ ()

and is the unique solution of the initial value problem

x′(t) = f
(
t,x(t)

)
+

p
�(ξ ,η), t ∈ [,p/], ()

x() = ξ , ()

where

�(ξ ,η) := η – ξ –
∫ p




f
(
τ ,x∞(τ , ξ ,η)

)
dτ . ()

. The function y∞(·, ξ ,η) has the property

y∞(p, ξ ,η) – y∞
(
p

, ξ ,η

)
= ξ – η ()

and is the unique solution of the initial value problem

y′(t) = f
(
t, y(t)

)
+

p
H(ξ ,η), t ∈ [p/,p], ()

y
(
p


)
= η, ()

where

H(ξ ,η) := ξ – η –
∫ p

p


f
(
τ , y∞(τ , ξ ,η)

)
dτ . ()

The proposition stated above, which is an easy consequence of the definitions of the
functions xm : [,p/]× � → R

n and ym : [p/,p]× � → R
n, m = , , . . . , suggests one

to consider the function u∞(·, ξ ,η) : [,p] →R
n introduced according to the formula

u∞(t, ξ ,η) :=

⎧
⎨

⎩
x∞(t, ξ ,η) if t ∈ [,p/],

y∞(t, ξ ,η) if t ∈ (p/,p]
()

http://www.boundaryvalueproblems.com/content/2014/1/164
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for all ξ and η from � and look for solutions of problem (), () in the form u∞(·, ξ ,η).
Note that, as follows immediately from (), () and (),

x∞
(
p

, ξ ,η

)
= y∞

(
p

, ξ ,η

)

and, therefore, the function u∞(·, ξ ,η) is continuous on [,p] for any (ξ ,η) ∈ �. The use
of this function, however, requires the knowledge of the fact that x∞(·, ξ ,η) and y∞(·, ξ ,η)
are well defined for (ξ ,η) ∈ �.
Introduce the functions

ᾱ(t) :=

p
t(p – t), t ∈ [,p/] ()

and

¯̄α(t) :=

p

(p – t)(t – p), t ∈ [p/,p]. ()

Theorem  If there exists a non-negative vector � with the property

� ≥ p

δ�� (f ) ()

such that f (t, ·) ∈ LipK (��) for a.e. t ∈ [,p] with a certain K and

r(K) <


γp
()

then, for all fixed (ξ ,η) ∈ �, the sequence {xm(·, ξ ,η) :m ≥ } (resp., {ym(·, ξ ,η) :m ≥ })
converges to a limit function x∞(·, ξ ,η) (resp., y∞(·, ξ ,η)) uniformly in t ∈ [,p/] (resp.,
t ∈ [p/,p]), and the following estimates hold:

∣
∣xm(·, ξ ,η) – x∞(t, ξ ,η)

∣
∣ ≤ ᾱ(t)

m+ (γpK)m
(
n –

γp


K
)–

δ[,p/],�� (f ) ()

for all t ∈ [,p/] and

∣
∣ym(·, ξ ,η) – y∞(t, ξ ,η)

∣
∣ ≤ ¯̄α(t)

m+ (γpK)m
(
n –

γp


K
)–

δ[p/,p],�� (f ) ()

for all t ∈ [p/,p] and m ≥ .

In estimates () and (), the symbol n stands for the unitmatrix of dimension n. Recall
also that γ = /, as indicated above. Note that condition () can be slightly improved
by replacing γ by the constant

γ∗ ≈ . ()

(see [, ] for more details). The unpleasant side effect is, however, that estimates () and
() under such a condition are established form sufficiently large only, which puts an ob-
stacle in obtaining efficient solvability conditions in Corollary  below. This circumstance

http://www.boundaryvalueproblems.com/content/2014/1/164
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is not actually of primary importance since the very aim of the interval halving technique
discussed here is to weaken assumption () by half and, in any case, the difference be-
tween the two conditions is quite insignificant because γ – γ∗ ≈ ..

Remark  It follows from [, Lemma .] that estimates () and () can be shown to
hold for all m ≥  if the definition of functions ᾱ and ¯̄α is changed slightly (namely, the
multiplier / is added on the right-hand side of (), ()).

It should bementioned that assumption (), which, by Theorem , ensures the applica-
bility of the iteration scheme based on formulae (), (), is twice as weak as assumption
() for the original sequence (). The same kind of improvement is achieved concerning
the condition on the set D where f is Lipschitzian since, for the scheme without interval
halving, one would require that

∃�: � ≥ p


δ�� (f ), ()

which is twice as strong as (). In contrast to the related assumptions from [] and earlier
works, condition () is easier to verify because in order to do so one has only to find
the value δ�� (f ), which is computed directly by estimating f . In addition, it is possible to
estimate this value in certain cases where some further information on the behaviour of f
is known.
Comparing Theorem  with Theorems . and . of [], where the values in (.) and

(.) are computed over the entire domain where f is Lipschitzian, we see that the values
δ[,p/],�� (f ) and δ[p/,p],�� (f ) in Theorem  are computed over �� only.
The proof of Theorem  is carried out by a suitable modification of that of [, Theo-

rem .] and is based upon the following lemmata.

Lemma  ([, Lemma .]) Let x : [,p/] → R
n and y : [p/,p] → R

n be arbitrary func-
tions such that {x(t) : t ∈ [,p/]} ⊂ � and {y(t) : t ∈ [p/,p]} ⊂ �. Then

∣
∣Pf

(·,x(·))∣∣(t)≤ 

ᾱ(t)δ[,p/],�(f )

≤ p

δ[,p/],�(f ) ()

for t ∈ [,p/] and

∣
∣Pf

(·, y(·))∣∣(t) ≤ 


¯̄α(t)δ[p/,p],�(f )

≤ p

δ[p/,p],�(f ) ()

for t ∈ [p/,p].

In (), (), the mappings P and P are defined by the equality

(Piv)(t) :=
∫ t

i
 p
v(s)ds –

(
t
p

– i
)∫ i+

 p

i
 p

v(s)ds ()

for all t ∈ [ ip,

 (i + )p], i ∈ {, }, and v ∈ C([ ip,


 (i + )p],Rn).

http://www.boundaryvalueproblems.com/content/2014/1/164
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Lemma  Let � be a vector satisfying relation (). Then, for arbitrary m ≥  and (ξ ,η) ∈
�, the inclusions

{
xm(t, ξ ,η) : t ∈ [,p/]

} ⊂ �� ()

and

{
ym(t, ξ ,η) : t ∈ [p/,p]

} ⊂ �� ()

hold.

Proof Let ξ and η be arbitrary vectors from �. It is natural to argue by induction. Since
� is assumed to be convex, it follows from () that x(t, ξ ,η) ∈ � for any t ∈ [,p/] and
y(t, ξ ,η) ∈ � for any t ∈ [p/,p], i.e., () and () are true for m = . Let us assume that
() and () hold for a certainm =m.
Considering relations (), (), (), () and () and using Lemma , we obtain

∣
∣xm+(t, ξ ,η) – x(t, ξ ,η)

∣
∣ =

∣
∣Pf

(·,xm (·, ξ ,η)
)∣∣(t)

≤ p

δ[,p/],�(f )

≤ � ()

for t ∈ [,p/] and

∣
∣ym+(t, ξ ,η) – y(t, ξ ,η)

∣
∣ =

∣
∣Pf

(·, ym (·, ξ ,η)
)∣∣(t)

≤ p

δ[p/,p],�(f )

≤ � ()

for t ∈ [p/,p]. Since () and () are satisfied for m = , we see from (), () that all
the values of xm+(·, ξ ,η) and ym+(·, ξ ,η) are contained in a �-neighbourhood of a point
from �, which means that () and () hold for m =m + . It now remains to use the
arbitrariness ofm. �

The assertion of Theorem  is now obtained by replacing [, Lemma .] by Lemma 
and arguing by analogy to the proof of Theorems . and . from []. Furthermore, sim-
ilarly to [], using Proposition  and Theorem , one arrives at the following.

Theorem  Assume that f (t, ·) ∈ LipK (��) for a.e. t ∈ [,p],where � is a vector with prop-
erty () and K satisfies condition (). Then, for every solution u(·) of problem (), ()with
the property

{
u(t) | t ∈ [,p]

} ⊂ �� and
{
u(),u

(
p


)}
⊂ �, ()

there exists a pair (ξ,η) in� such that u(·) = u∞(·, ξ,η).On the other hand, the function
u∞(·, ξ ,η) is a solution of the periodic boundary value problem (), () if and only if the pair
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(ξ ,η) satisfies the system of n equations

�(ξ ,η) = ,

H(ξ ,η) = .
()

Recall that the functions � :� →R
n and H :� →R

n are defined according to equal-
ities () and (), and the latter equalities make sense in view of Theorem .

3 Constructive solvability analysis
Theorem  provides one a formal reduction of the periodic problem (), () to the system
of n numerical equations () in the sense that the initial data (u(),u(p/)) of any so-
lution of (), () with properties () can be found from (). Thus, under the conditions
assumed, the question on solutions of the periodic boundary value problem (), () can be
replaced that of the system of numerical equations (). A combination of Proposition 
and Theorems ,  then suggests one a scheme of investigation of the periodic boundary
value problem (), (). The practical realisation of the scheme is based upon the so-called
approximate determining functions

�m(ξ ,η) := η – ξ –
∫ p




f
(
τ ,xm(τ , ξ ,η)

)
dτ , ()

Hm(ξ ,η) := ξ – η –
∫ p

p


f
(
τ , ym(τ , ξ ,η)

)
dτ , ()

considered for a fixed value of m and, thus, computable explicitly. Then, as in [], the
function

um(t, ξ ,η) :=

⎧
⎨

⎩
xm(t, ξ ,η) if t ∈ [,p/],

ym(t, ξ ,η) if t ∈ (p/,p],
()

can be used to obtain themth approximation to a solution of problem (), () provided that
we are able to find certain ξ and η satisfying themth approximate determining equations

�m(ξ ,η) = ,

Hm(ξ ,η) = .
()

Furthermore, it turns out that, under natural conditions, the solvability of the periodic
problem (), () can be derived from that of system (). More precisely, putting

�m(ξ ,η) :=

(
η – ξ – 


∫ p
 f (

p–τ

 ,xm( p–τ

 , ξ ,η))dτ

ξ – η – 

∫ p
 f (

p+τ

 , ym( p+τ

 , ξ ,η))dτ

)

()

and

�∞(ξ ,η) :=

(
η – ξ – 


∫ p
 f (

p–τ

 ,x∞( p–τ

 , ξ ,η))dτ

ξ – η – 

∫ p
 f (

p+τ

 , y∞( p+τ

 , ξ ,η))dτ

)

()

for any (ξ ,η) ∈ �, we can state the following.
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Theorem  Let f (t, ·) ∈ LipK (��) for a.e. t ∈ [,p], where � is a vector with property ()
and K satisfies condition ().Moreover, assume that �m satisfies the condition

deg(�m,�) �=  ()

for a certain fixed m ≥  and there exists a continuous mapping Q : [, ]× � which does
not vanish on (, ) × ∂� and is such that Q(, ·) = �m, Q(, ·) = �∞. Then there exists
a pair (ξ ∗,η∗) ∈ � such that the function u := u∞(·, ξ ∗,η∗) is a solution of the periodic
boundary value problem (), () possessing properties ().

It should be noted that the vector field �m is finite-dimensional and, thus, the degree
involved in () is the Brower degree.

Proof We can rely on the argument from the proof of [, Theorem .]. Indeed, a certain
computation based on () shows that

�m(ξ ,η) =

(
�m(ξ ,η)
Hm(ξ ,η)

)

()

for all (ξ ,η) ∈ � and, thus, () is necessary and sufficient for (ξ ,η) to be a singular point
of �m. Similarly to [], the assumptions of the theorem then allow one to construct a non-
degenerate deformation of �m into the vector field

(ξ ,η) � � �→
(

�(ξ ,η)
H(ξ ,η)

)

the singular points of which determine solutions of problem (), () satisfying condition
(), and use the homotopy invariance of the degree. The remaining property in () is a
consequence of Lemma . �

Let the binary relation�S be defined [] for any S ⊂R
n as follows: functions g = (gi)ni= :

R
n → R

n and h = (hi)ni= : Rn → R
n are said to satisfy the relation g �S h if and only if

there exists a function ν : S → {, , . . . , n} such that gν(z)(z) > hν(z)(z) at every point z ∈ S.
Using this relation, one can formulate an efficient condition sufficient for the solvability
of problem (), ().

Corollary  Let f (t, ·) ∈ LipK (��) for a.e. t ∈ [,p], where � satisfies inequality () and
K has property (). Let,moreover,

|�m|�∂�

p


(
Mmδ[,p/],�(f )
Mmδ[p/,p],�(f )

)

()

for a certain fixed m ≥ , where

Mm :=
(

γp


)m+

Km+
(
n –

γp


K
)–

. ()

Then there exists a pair (ξ ∗,η∗) ∈ � such that u := u∞(·, ξ ∗,η∗) is a solution of problem
(), () possessing properties ().
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Proof It is sufficient to apply Theorem  with the linear homotopy

Q(θ , ξ ,η) := ( – θ )�m(ξ ,η) + θ�∞(ξ ,η) ()

for (ξ ,η) ∈ �, θ ∈ [, ], and use estimate (.) from []. �

Recall that γ in () is given by (). It is important to emphasise that conditions of
Corollary  are assumed for a fixed m, and all the values depending on it are evaluated in
finitely many steps.
The next assertion is interesting especially because it is, in fact, based upon properties

of the starting approximation and, thus, shows how a useful information can be obtained
when no iterations have been carried out at all. Note that the zeroth approximation is
very rough indeed in any case: the periodic solution is approximated by a piecewise linear
function (see Figure ).
With the given function f involved in (), we associate the function f # : � → R

n by
putting

f #(ξ ,η) :=

(
η – ξ – 


∫ p
 f (

p–τ

 , τ
p ξ + ( – τ

p )η)dτ

ξ – η – 

∫ p
 f (

p+τ

 , τ
p ξ + ( – τ

p )η)dτ

)

()

for any (ξ ,η) ∈ �. Note that, unlike f , the function f # depends on the phase variables
only.

Corollary  Assume that there is a � with property () and f (t, ·) ∈ LipK (��), t ∈ [,p],
with K satisfying inequality (). Let, furthermore,

deg
(
f #,�

) �=  ()

and

∣∣f #
∣∣�∂�

p



(
K(n – γp

 K)–δ[,  p],D(f )
K(n – γp

 K)–δ[  p,p],D(f )

)

. ()

Then the p-periodic problem (), () has at least one solution u(·) which possesses proper-
ties ().

Proof Equalities (), (), () and () imply that f # = �. It is also easy to verify by
computation that condition () can be rewritten in the form

|�|�∂�

p


(
M̃δ[,p/],�(f )
M̃δ[p/,p],�(f )

)

, ()

where M̃ := (/)M and M is given by (). Arguing similarly to [, Lemma .] and
Corollary  and taking Remark  into account, one can show that () ensures the non-
degeneracy of homotopy (). The required conclusion then follows from Theorem . �
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4 Discussion
Theorems of the kind specified above allow one to study the periodic problem (), () fol-
lowing the lines of [, ]. This analysis is constructive in the sense that the assumptions can
be verified efficiently and the results of computation, regarded at first only as candidates
for approximate solutions, simultaneously open a way to prove the solvability in a rigorous
manner. As regards the computation of iterations themselves, it is helpful to apply suit-
able simplified versions of the algorithm, not discussed here, which are better adopted for
use with computer algebra systems. The use of polynomial approximations under similar
circumstances was considered, in particular, in [].
It is interesting to note that f # involved in Corollary  can be considered as a ‘halved’

analogue of the averaged map

f̄ (ξ ) :=
∫ p


f (s, ξ )ds ()

for x ∈ �, which arises similarly to f # in the situation where no interval halving is carried
out. In the latter case, one has the following statement, which is a reformulation of [,
Corollary .].

Corollary  Let there exist some � with property (). Let

deg(f̄ ,�) �=  ()

and f (t, ·) ∈ LipK (��), t ∈ [,p], with K satisfying inequality (). If

|f̄ |�∂�

p


K(n – γpK)–δ�� (f ), ()

then the p-periodic problem (), () has a solution u(·) with properties ().

Assumption () with f̄ given by () arises frequently in topological continuation the-
orems where the homotopy to the averaged equation is considered (see, e.g., [, ]).
It should also be noted that, as a natural extension of the above said, one can consider

a scheme with multiple interval divisions. Although the addition of intermediate nodes
increases the number of equations to be solved numerically (at k interval halvings, one
ultimately arrives a system of k determining equation with respect to k variables), the
important gain is the ability to apply the method regardless of the value of the Lipschitz
constant.
The construction of such a scheme is based on the appropriatemodification of the initial

approximation, which will then depend on more parameters. Consider, e.g., the transition
from k =  to k = . Renaming the variables as ξ = (ξ–, ξ) in the former case for more
convenience and denoting the initial approximation by u(·, ξ ), we rewrite (), () in the
form

u(, ξ ) = ξ–, u
(
p

, ξ

)
= ξ, u(p, ξ ) = ξ–. ()

Thus, the initial approximation u(·, ξ ) in the corresponding iteration scheme with one
division is the linear function joining the points (, ξ–), ( p , ξ) and (p, ξ–). Extending this
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tree graph like notation to the case of two interval halvings (k = ) and arguing similarly,
we arrive at the following equalities determining u(·, ξ ):

u(, ξ ) = ξ–,–, u
(
p

, ξ

)
= ξ–,, u

(
p

, ξ

)
= ξ,–,

u
(
p

, ξ

)
= ξ,, u(p, ξ ) = ξ–,–.

()

In other words, relations () mean that the function u(·, ξ ) for k =  depends on the
array of parameters ξ = (ξ–,–, ξ–,, ξ,–, ξ,) and is obtained by the linear interpolation
of the points (, ξ–,–), ( p , ξ–,), (

p
 , ξ,–), (

p
 , ξ,–), (

p
 , ξ,) and (p, ξ–,–). For k ≥ , the

structure of u(·, ξ ) is completely analogous, the idea is clear fromTable  and Figure : one
simply draws a broken line joining the corresponding nodes. Once u(·, ξ ) is constructed,
the formulae for the subsequent approximations are derived automatically by rescaling
the projection map to the corresponding subintervals (we do not need the corresponding
explicit formulae here and, therefore, omit the details).
This observation leads one to the following algorithm of investigation of the periodic

problem (), ():

Table 1 Variables involved in the determining equations for the respective number of
interval halvings

k0 Variables in the determining equations

0 ξ

1 ξ–1, ξ1
2 ξ–1,–1, ξ–1,1, ξ1,–1, ξ1,1
3 ξ–1,–1,–1, ξ–1,–1,1, ξ–1,1,–1, ξ–1,1,1, ξ1,–1,–1, ξ1,–1,1, ξ1,1,–1, ξ1,1,1
. . . . . .

Figure 6 The meaning of parameters for the scheme with several interval divisions. In order to
construct the starting approximation with any number of interval halvings, one just draws the broken line
joining the corresponding nodes.
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. Fix a certain k and consider the scheme with k interval divisions. Fix an m and
construct um(·, ξ ) form = , , . . . ,m.

. Solve the mth approximate determining equations for ξ , find a root ξ [m], and put

Um(t) := um
(
t, ξ [m]), t ∈ [,p],m = , , . . . ,m. ()

In the case the equation has multiple roots, () and the related analysis are
repeated for each of them (one can study multiple solutions of the original problem
in this way).

. ‘Check’ the behaviour of the functions U,U, . . . ,Um (the heuristic step). If
promising (i.e., there are some signs of convergence), choose a suitable �

containing the graph of Um , find a � from the condition

� ≥ p
k+

δ�� (f ), ()

compute the Lipschitz matrix K for f in �� , and verify the convergence condition

r(K) <
k
γp

. ()

If not successful with either () or (), increase k appropriately and try again.
. Verify conditions of the existence theorem for � andm. If not satisfied, or if the

precision of Um is insufficient, pass to m =m +  and study Um+. Otherwise the
algorithm stops, and the outcome is:
(a) there is a solution u of (), () and u ≈Um ;
(b) ∃(ξ∗,η∗) ∈ �: u(·) = u∞(·, ξ∗,η∗);
(c) the space localisation of the graph of u is described by properties ().

Note the role of interval divisions in the algorithm: for K not satisfying the smallness
condition () and k =  (i.e., when um is constructed according to () without any interval
divisions), the algorithm would stop at step  without any result. However, it is obvious
that () and () are both satisfied if k is chosen to be large enough.
In relation to the last remark, it is interesting to compare the approach discussed here

with the Cesari method [], which likewise provides one a way to reduce the periodic
problem (), () to a system of finitely many numerical equations. The idea of construction
of the iterations there is based, in the notation of [], on the use of the operator

Hmu := L – PmL ()

in a suitable space of p-periodic functions, where

(Ly)(t) :=
∫ t


y(s)ds –

t
p

∫ p


y(s)ds, t ∈ [,p],

m is fixed, and Pm stands for themth partial sum of the Fourier series of the corresponding
function. There are visible similarities between the two approaches and,most importantly,
the scheme of Cesari is also proved to be applicable regardless on the smallness of the
Lipschitz constant (see []). The number of resulting determining equations therewith
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depends on the Lipschitz constant of f as well (in fact, it grows with m, the convergence
being guaranteed by suitable properties of Hm for m large enough), which reminds us of
Table  in our case. The approach presented in this note, in our opinion, has the advan-
tage that, firstly, the computation of iterations is significantly simpler (apart of the integral
mean, one does not need to compute any higher order terms in the Fourier expansion)
and, secondly, it can be used for other problems as well, whereas, due to the nature of
formula (), the use of Cesari’s scheme is limited to periodic functions.
In particular, the method described above is rather easy to adopt for application to two-

point boundary value problems different from the periodic ones. Indeed, consider the
problem with linear two-point conditions where one of the coefficient matrices is non-
singular. Without loss of generality, we can assume that the problem has the form

u′(t) = f
(
t,u(t)

)
, t ∈ [,p], ()

u(p) –Au() = c, ()

whereA is a squarematrix of dimension n (possibly, singular), c ∈R
n, f : [,p]×R

n →R
n,

and p ∈ (,∞).
The transition from the periodic problem (), () to problem (), () is then surpris-

ingly simple: one does not need but to adjust the functions x(·, ξ ,η) and y(·, ξ ,η) so that
they satisfy the boundary condition (). More precisely, let us fix a suitable � and take
arbitrary ξ and η in it. Introduce the sequences of functions xm : [,p/]× � → R

n and
ym : [p/,p] × � → R

n, m = , , . . . , according to the same recurrence formulae as in
(), (), where, instead of (), (), the functions x(·, ξ ,η) and y(·, ξ ,η) are given by
the equalities

x(t, ξ ,η) :=
(
 –

t
p

)
ξ +

t
p

η, t ∈ [,p/], ()

y(t, ξ ,η) := 
(
 –

t
p

)
η +

(
t
p

– 
)
(Aξ + c), t ∈ [p/,p]. ()

Clearly, x(·, ξ ,η) and y(·, ξ ,η) given by (), () are the linear functions satisfying the
equalities

x(, ξ ,η) = ξ , x
(
p

, ξ ,η

)
= η, ()

y
(
p

, ξ ,η

)
= η, y(p, ξ ,η) = Aξ + c, ()

which reduce to (), () if A is the unit matrix and c = . Then, similarly to Proposition ,
it is not difficult to prove the following.

Proposition  Let (ξ ,η) ∈ � be fixed. If the limits x∞(·, ξ ,η) and y∞(t, ξ ,η) of sequences
() and () exist, then:
. The function x∞(·, ξ ,η) has the property

x∞
(
p

, ξ ,η

)
–Ax∞(, ξ ,η) = η –Aξ ()

and is the unique solution of the initial value problem (), () with � given by ().
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. The function y∞(·, ξ ,η) has the property

y∞(p, ξ ,η) –Ay∞
(
p

, ξ ,η

)
= A(ξ – η) + c ()

and is the unique solution of the initial value problem (), () withH given by ().

We see from Proposition  that properties of sequences xm(·, ξ ,η), ym(·, ξ ,η), m ≥ ,
constructed for problem (), () are rather similar to those for the periodic problem (),
() (in particular, the definition of functions � and H is the same as in Proposition ). In
both cases, the iteration is carried out according to formulae (), (), the only difference
being in equalities (), () for x(·, ξ ,η) and y(·, ξ ,η). As a result, the corresponding
limit functions satisfy the boundary conditions (), ().
Based on Proposition , one can develop essentially the same techniques that have been

indicated above for the periodic problem (), (). The main difference in the proofs is that,
in addition to guaranteeing that the appropriate values ξ should belong to �, we also have
to ensure that Aξ + c ∈ � as well. The convergence of iterations is then guaranteed for all
η from the set � and ξ belonging to its subset SA,c(�) defined by the relation

SA,c(�) := {ξ ∈ � : Aξ + c ∈ �}. ()

Clearly, SA,c(�) is the union of all the subsets of � invariant with respect to the transfor-
mation x �→ Ax + c. For example, if � is a set on the plane (n = ) containing the origin,
then S(  

 
),(�) is the part of � that is symmetric with respect to the diagonal passing

through the first and the third quadrants (see Figure ).

Theorem  Let there exist a non-negative vector � with property () such that f (t, ·) ∈
LipK (��) for a.e. t ∈ [,p] with a certain matrix K satisfying inequality (). Then, for

Figure 7 The sets SA,c(�) and �� in examples, � = col(1/8, 1/16).
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all fixed (ξ ,η) ∈ SA,c(�) × �, the sequences {xm(·, ξ ,η) : m ≥ } and {ym(·, ξ ,η) : m ≥ }
with x(·, ξ ,η), y(·, ξ ,η) defined by () and () converge uniformly on the corresponding
intervals and,moreover, estimates (), () hold.

The same remark as has beenmade above concerningTheorem applies to Theorem :
its assertion remains true if () is replaced by the inequality

r(K) <


γ∗p

with γ∗ given by ().
Theorem  is easily obtained by analogy to Theorem  for the periodic problem. The

verification of the conditions of Theorem  is also pretty much similar to the latter case.
One has to keep in mind that the techniques for the two-point problem (), () are
applicable for the values of parameters lying in SA,c(�) × �, and not in the entire �,
which is the case in Theorem  (unless A is the unit matrix and c = ). This circumstance
has a natural explanation due to () and (), whence one deduces that both ξ and Aξ + c
will eventually belong to one and the same set, which fact is then used in Lemma . If, for
example, c is equal to zero and

A =
√


(
 –
 

)

, ()

then the assertion of Theorem  is true only for the part of � that is invariant under the
rotation by ◦ counter-clockwise. In this way, e.g., Figure  is replaced by Figure  once
the two-point problem (), () with A given by () is considered. Note that all the sets
on Figures  and  contain the origin, and the yellow regions on the latter one indicate the
points from � that cannot be regarded as candidates for initial values of the solution in
question.

Figure 8 The sets SA,c(�) and �� in examples, � = col(1/8, 1/16) and A is given by (82).
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