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Abstract
For the singular in phase variables differential equation

u'=f(tuu),
sufficient conditions are found for the existence of a solution satisfying the conditions
o) =c u(t) > 0, ut)<0 fort>0,

where @ : C([0,al;Ry) — Ry is a continuous nondecreasing functional, ¢ > 0,and a > 0.
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1 Statement of the problem and formulation of the main results
Suppose

D:{(t,x,y):t>0,x>0,y<0}, R, =[0,+00][,
and f : D — R, is a continuous function. Consider the differential equation

u' =f(t,u,u). (1.1)

A continuous function u : R, — R, is said to be the Kneser solution of Eq. (1.1) if it is
twice continuously differentiable in the interval |0, +oo[, and in this interval it satisfies the

inequalities
u(t) >0, u'(t) <0

and the differential equation (1.1).
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In the present paper, we investigate the problem on the existence of a Kneser solution
of Eq. (1.1) satisfying the condition

o) =c, (1.2)

where ¢ : C([0,4]; R,) — R, is a continuous, nondecreasing functional, a > 0, and ¢ > 0.
It is natural to name this problem the nonlinear Kneser problem since it was first studied

by Kneser [1] in the case where Eq. (1.1) and condition (1.2) have the forms

u” = fo(t, u), (1.3)

u(0) =, (1.4)

where fo : R, x R, — R, is a continuous function. Particularly, in [1] it is proved that if
fo is a nondecreasing in the second argument function satisfying the local Lipschitz con-
dition in this argument and f;(¢,0) = 0, then for an arbitrarily fixed ¢ > 0, the differential
equation (1.3) has a unique Kneser solution satisfying condition (1.4).

30 years later since Kneser’s paper was published, in their study of the problem on the
distribution of electrons in a heavy atom, Fermi [2] and Thomas [3] had to investigate the
problem analogous to the Kneser one for the concrete second-order differential equation

ol
e

u' =t2y2, (1.5)
In particular, they have proved that Eq. (1.5) has a unique solution satisfying the boundary

conditions

u(0) =1, lim u(t) =0. (1.6)
t—+00
It is easy to see that a solution of problem (1.5), (1.6) is a Kneser solution of Eq. (1.5) and
vice versa, a Kneser solution of that equation, satisfying the initial condition

u(0) =1, (17)

is a solution of problem (1.5), (1.6). Therefore, problem (1.5), (1.6) is equivalent to the
Kneser problem for Eq. (1.5) with the initial condition (1.7).

After the papers by Fermi and Thomas were published, many mathematicians have been
interested in the Kneser-type problems, and such problems have been investigated in de-
tail for a wide class of differential equations and systems.

Most of the results on the solvability and unique solvability of the Kneser problem
for second-order nonlinear differential equations, obtained until the beginning of 50s of
the last century, are reflected in the monograph by Sansone [4]. From further investi-
gations, first of all the paper by Hartman and Wintner [5], where the Kneser problem
for Eq. (1.1) was studied in the case when f : R, x R?> — R, is a continuous function,
should be noted. Kiguradze [6, 7] studied the same problem in the case when the func-
tion f :]0, +oo[ x R? — R has a nonintegrable singularity in the first argument at the point
t=0.
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The Kneser problem for singular in a time variable higher-order nonlinear differential
equations first was studied by Kiguradze in [8], where the optimal conditions are estab-
lished for the solvability of the above-mentioned problem (see, [9, Sect. 13] as well). Anal-
ogous results were obtained by Kiguradze and Rachinkova [10] for the Kneser problem
with a nonlinear initial condition.

Sufficient conditions for the solvability of the Kneser-type problems for nonlinear dif-
ferential systems were obtained by Chanturia [11], Coffman [12], Hartman and Wintner
[13], Kiguradze and Rachtnkova [14], and Rachtinkova [15, 16].

In all the above-mentioned works, differential equations and systems, not having singu-
larities in phase variables, are considered. The Kneser problem for the differential equa-
tion with a singularity in one of the phase variables first was investigated by Kiguradze [17].
However, in this paper we consider not the general differential equation but the Emden-
Fowler type higher-order differential equation

u™ = p(tyu™.

As for the general differential equation (1.1) with singularities in phase variables, for it
the Kneser problem has been practically unstudied so far. The aim of the present paper is
to fill this gap.

In what follows it is assumed that the function f satisfies the inequality

@) <& ylf(tx,y) < gi(t) 1.8)

in the domain D. Here A and u are nonnegative constants, A + 1 > 0,and g; : ]0, +oo[ — R,
(i = 0,1) are continuous functions, not equal identically to zero in an arbitrary neighbor-
hood of +00, i.e., there exists a sequence of positive numbers ();55 such that

lim & =+00, g(t)>0 (i=0,Lk=12,..). (1.9)

k—+00

Consequently, Eq. (1.1) has singularities in phase variables since either
igr(l)f(tk,x,y) =+00 fory<0(k=12,...)

or
J1/i_r)r(1)f(tk,x,y) =+00 forx>0(k=12,...).

Throughout the paper, the following notation and definitions are used.

142
po 2T E (1.10)
1+p

C([0, a]; R) is the Banach space of continuous functions u : [0,a] — R with the norm

llullc = max{|u(s)| : 0 <t <a},

C([0,al;R,) = {u € C([0,al;R) : u(t) > 0 for 0 < t < a}.


http://www.boundaryvalueproblems.com/content/2014/1/147

Partsvania and PGiza Boundary Value Problems 2014, 2014:147
http://www.boundaryvalueproblems.com/content/2014/1/147

A functional ¢ : C([0,a]; R,) — R, is said to be nondecreasing if for any u € C([0,a]; R,)
and ug € C([0, a]; R,) the inequality ¢(u + up) > ¢(u) holds.

For any x € R,, we put ¢(x) = ¢(u), where u(f) = x.

A Kneser solution u of Eq. (1.1) is called vanishing at infinity if lim,_, ;o u(t) = 0, and it
is called remote from zero if lim;_, , u(t) > 0.

Theorem 1.1 IfEq. (1.1) has a Kneser solution u, then

1
+00 +00 +00 jrm
/ g(s)ds<+oo fort>0, / (/ 2o(s) ds> ' dt < +00, (1.11)
t 0 t
and
u(t) >vo(t;8) fort>0, (1.12)
where
1 1
1 +00 +00 T v
vo(t;8) = [8" +(1+ M)Wv/ (/ Zgo(x) dx) ds] , (1.13)
t s
8= tlim u(t). (1.14)

Corollary 1.1 If condition (1.11) holds and
c< ¢’(Vo('; 0)), (1.15)
then problem (1.1), (1.2) has no Kneser solution.

Theorem 1.2 If

+00 +00 +00 ﬁ
f ga(s)ds<+oo fort>0, / (/ a(s) ds) dt < +00, (1.16)
t 0 t
then for any positive number § Eq. (1.1) has at least one Kneser solution satisfying equality
(1.14).

Theorem 1.3 If along with (1.11) the condition

1
00 +00 +00 T+
/ () ds<+oo fort>0, / (/ 2() ds> " dt < +o00 (1.17)
, 0 t

vg(s;0) vg(s;0)

is satisfied, then Eq. (1.1) has at least one vanishing at infinity Kneser solution.

According to Corollary 1.1, for small ¢ problem (1.1), (1.2) has no Kneser solution. Thus
we can expect the solvability of that problem only for large c.

Suppose that condition (1.16) holds. Then obviously condition (1.11) is satisfied as well.
We introduce the function

1
+00 +00 jeon
n(t:8) = 8 +/ [(1 + M)/ £1(x) dx] "ds fort>0,6>0, (1.18)
t s

vy (x;6)

Page 4 of 17
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and the number
co= inf{<p(v1(~;5)) 18> 0}. (1.19)
Theorem 1.4 Let the function g satisfy condition (1.16), and
lim @(x) = +o0. (1.20)
x—>+00
If, moreover,
¢ > o, (1.21)
then problem (1.1), (1.2) has at least one Kneser solution.
Remark 1.1 In the case, where conditions (1.16) hold and
ce[p(vo(50)),c0],
the question on the existence of a Kneser solution of problem (1.1), (1.2) remains open.
Consider now the case where
&1(t) =Lgo(t), £=const>1, 1.22)
i.e., the case where inequality (1.8) has the form
20(8) < xy"f (8, x,9) < £go(2).
From Theorems 1.1, 1.2, and 1.4 we immediately have the following corollary.

Corollary 1.2 Let the function g satisfy identity (1.22), and let the functional ¢ satisfy
condition (1.20). Then the following assertions are equivalent:
(i) the function gy satisfies conditions (1.11);
(i) Eg. (1.1) has at least one remote from zero Kneser solution;
(iii) for any § > 0, problem (1.1), (1.14) has at least one Kneser solution;
(iv) for any sufficiently large c > 0, problem (1.1), (1.2) has at least one Kneser solution.

The following statement is also valid.

Corollary 1.3 Let the function g satisfy identity (1.22), and the functional ¢ satisfy con-
dition (1.20). Let, moreover, there exist numbers o and B such that

liltnionf(t“go(t)) >0, lim sup(“go (2)) < +00, (1.23)

- t—0

ltirn inf(tPgo(2)) > 0, limsup(t£go(2)) < +o0. (1.24)
—+00 t—+00

Then the following assertions are equivalent:
() a<2+u, B>2+u;
(i) Eq. (1.1) has at least one remote from zero Kneser solution;
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(iii) Egq. (1.1) has at least one vanishing at infinity Kneser solution;
(iv) for any 8§ >0, problem (1.1), (1.14) has at least one Kneser solution;
(v) for any sufficiently large ¢ > 0, problem (1.1), (1.2) has at least one Kneser solution.

Remark 1.2 In Theorem 1.4 and its corollaries it can be assumed, for example, that

(1) = fo ¥ (u(s)) do (s),

where ¢ : R, — R, is a continuous, nondecreasing function, and o : [0,4] — R is a non-

decreasing function such that

lim 4 (x) = +o0, o(a)-ao(0)>0.
X—>+00
Remark 1.3 The above-formulated theorems and their corollaries cover the case, where
the function f has a nonintegrable singularity in a time variable at the point ¢ = 0. Indeed,
if conditions (1.23) hold, where 1 < @ < 2 + u, then

t
/ f(s,x,9)ds=+o00 for (¢,x,y) € D.
0

2 Auxiliary propositions
2.1 Lemmas on a priori estimates
Consider the differential inequalities

|/ ()| " () = go(D)u™ (7 (1)) (2.1)
and
2®u(t@®) < [d @) v () <@@u™(z(2)). (2.2)

Everywhere in this section it is assumed that A and p are nonnegative constants, 7 : R, —
R, is a continuous function such that

(t)>t forteR,, (2.3)

and g; :]0, +oo[ — R, (i = 0,1) are continuous functions, not equal identically to zero in
an arbitrary neighborhood of +00, i.e., there exists a sequence of positive numbers (£;);2;
such that condition (1.9) is satisfied.

A continuous function & : R, — ]0, +00[ is said to be the Kneser solution of the differential
inequality (2.1) (of the differential inequality (2.2)) if it is twice continuously differentiable
in the interval ]0, +oo[ and in this interval along with the inequality #'(£) < O satisfies the
differential inequality (2.1) (the differential inequality (2.2)).

Lemma 2.1 If the differential inequality (2.1) has a Kneser solution u, then the function
Qo satisfies condition (1.11), and u admits estimate (1.12), where vy is the function given by
equality (1.13), and v, § are numbers given by equalities (1.10) and (1.14).
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Proof In view of (2.3) and the fact that « is a Kneser solution, from (2.1) we find
|u/(t)|1+” =1+ ,u)/ u (t () | )| " ()u ™ (1 (x)) dx
t
>[I+ ,u)u_*(t)/ u" (t(x)) ‘u’(x)‘“u”(x) dx> 1+ pL)u_’\(t)/ go(x) dx,
t t

and, consequently,

_u/(t)[u(t)] & > |:(1 + 1) /+Oogo(x) dxi| N for t > 0.

If we integrate this inequality from ¢ to +00, then due to equalities (1.10) and (1.14), we
obtain

[u(t)]v >8V+(1+ M)ljﬂvv/wO(/‘wogo(x)dx)“lﬂ ds fort>0.
t s
Therefore condition (1.11) is satisfied and the function # admits estimate (1.12). a
Let b €]0, +ool, and along with (2.3) let the inequality
t(t)<b forO0<t<b (2.4)

be fulfilled. A continuous function « : [0,b] — ]0, +oo[ is said to be a Kneser solution of

the differential inequality (2.1) (of the differential inequality (2.2)) in the interval [0, b] if

it is continuously differentiable in the interval ]0, 5] and in this interval along with the in-

equality /() < O satisfies the differential inequality (2.1) (the differential inequality (2.2)).
The following lemma can be proved analogously to Lemma 2.1.

Lemma 2.2 Let inequality (2.4) be fulfilled and the differential inequality (2.1) in the in-
terval [0, b] have a Kneser solution u. Then

by pb e
[0</ go(x)dx) ds < +00, (2.5)

and that solution admits the estimate
u(t) >wy(t;8,b) for0<t<b, (2.6)

where § = u(b) and

wo(t;S,b):[6”+(1+,u)1+Mv/ </ go(x)dx> ds:| forO<t<b. (2.7)

Lemma 2.3 Let along with (2.4) the condition

by pb o
/o</ gl(x)dx) ds < +00 (2.8)

Page 7 of 17
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be fulfilled, and let the differential inequality (2.2) in the interval [0, b)] have a Kneser so-
lution u. Then this solution along with (2.6) admits the estimates

u(t) <w(t;8,6,b) for0<t<b, (2.9)

b e
|:81+u + w—l(O;S,s,b)/ 2o(s) ds] ' <-u/(t)
t

<-w\(t6,e,b) forO<t<b, (2.10)
where 8 = u(b), & = |u/(b)|, and
b b o=
)dx T+t
t;8,6,b) = 8 Ly (1 / L] d 2.11
wes,e.b) +/t [‘E RN e ] B 210

for0<t<b.
Proof First note that the validity of condition (2.8) guarantees the validity of condition

(2.5). On the other hand, by Lemma 2.2 the function u# admits estimate (2.6). By virtue of
this estimate and the fact that u is a Kneser solution, (2.2) and (2.11) yield

b
’u’(t)’lm =gl 4 (14 ,u)/ ‘u’(x)‘“u”(x) dx
t
b
> glth 4 / Zox)u™ (r(x)) dx
L
b
> glth 4 u_*(O)/ gox)dx for0<t<b, (2.12)
t
) b
/(O] ™ < e 1+ u)/ a@u(x)dx
t

b
e / S - [w/(68,6,0)] ",
e+ (1+p) L e [-w(5:8,6,b)]

and, consequently,
—u/(t) < -W(t;8,e,b) forO<t<b. (2.13)

Integration of this inequality from ¢ to b results in estimate (2.9).

If along with (2.9) we take into account inequalities (2.12) and (2.13), then the validity of
estimate (2.10) becomes evident. O

2.2 Lemma on the solvability of a nonlinear Kneser problem on a finite interval
Let b > a. Consider the problem on the existence of a Kneser solution of Eq. (1.1) in the
interval [0, b] satisfying condition (1.2).

If condition (2.8) holds, then for any § > 0, ¢ > 0, and ¢ € [0, b], we assume

b b dx T
wi(t;8,6,b) =8 + / |:81+" +(1+ /,L)/ W} ! ds. (2.14)
¢ s Wo(x;8,b)

Page 8 of 17
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Lemma 2.4 Let condition (2.8) be fulfilled and there exist numbers ¢ > 0, 8o > 0, and
8* > 8o such that

<p(8*) >c (2.15)

p(wi(80,8,b)) <c. (2.16)
Then problem (1.1), (1.2) has a Kneser solution u in the interval [0, b] such that
8o < u(b) <46, u'(b) = —¢. (2.17)

Proof For arbitrarily fixed § € [y, *] and natural number k, we consider the Cauchy prob-

lem
u'(t) = | @) " fo (6 u(w®), o (e (®))), (2.18)
ub)=8,  u(b)=-s, (2.19)
where
Jot,x, ) = [yI"f(t,x,), (2.20)
(f) = t+L for0<t<b-21, 21

forb—ﬂ<t§b.

By virtue of conditions (1.8), (2.8) and equalities (2.20), (2.21), problem (2.18), (2.19) has
a unique solution in the interval [0, b], which is a Kneser solution of the differential in-
equality (2.2) as well, where 7(x) = 7¢(x). Denote this solution by u(¢;8). It is clear that
the function (t,8) — ux(¢;8) is continuous on [0, b] x [8g,*], and on ]0, b[ x[8y, 5*] it sat-
isfies the inequalities

ur(t;8) > 6, ur(t;08) < —e. (2.22)

On the other hand, by Lemma 2.3, on ]0, ] X [y, %] this function admits the estimates

ur(t;8) < wy(t;8,¢6,b) <r, (2.23)
—u (£;8) < —wy (8,8, b) < —wyy(2), (2.24)
where
’ aldx
Wlk(t;8:87b):3+/ [ 1+"+(1+,u)/ 7] ds,
t we(ti(%); 8, b)

b b e
wip(t) =8 + / I:sl*“ +(1+ /L)S(j'\/ g1(x) dxi| : ds,
t s

r=wio(0).
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Due to (2.8) and (2.21), the equality
lim Wlk(t; 8; &, b) = Wl(t; 8; &, b)
k—+00

is satisfied uniformly with respect to (¢, 8) € [0, b] x [8o,5*]. Thus from (2.16) it follows the
inequality

<p(w1k(~;80,£,b)) <c fork > ko, (2.25)

where kg is a sufficiently large natural number.
Let k > ko. Suppose

Yi(8) = p(mi(58)) fordp <8 <8

From the continuity of ¢ and u it follows that v is a continuous on [8y,5*] function.
On the other hand, by virtue of estimates (2.22) and (2.23), inequalities (2.15) and (2.25)
yield the inequalities

o)< Y(8) > ¢,

since ¢ is a nondecreasing functional. From these inequalities it follows the existence of a
number 8 € |89, 8*[ such that ¥ (8x) = c. Consequently,

uy (6 8¢) = [ (8800 fo (& ma (ta(8); 81), i (we ()3 8¢))  for 0 <2 < b, (2.26)

o (u(580) = c. (2.27)
In view of estimates (2.22)-(2.24), for every natural k > ko, the inequalities
8o <&k m(;8¢) <7, 0 < uy(0;6x) — ur(t; 8x) < wio(0) — wio(2) (2.28)
hold in the interval [0, ], and the inequalities

& < —up(t;8k) < —wi (),
(2.29)
0 <uj(t;8) < 85" aq(t)

hold in the interval ]0, b]. From these inequalities it follows that the sequence (u4(:; Bk)),tﬁo
is uniformly bounded and equicontinuous on [0, b], and the sequence (4 (-; 8;());2130 is uni-
formly bounded and equicontinuous on every closed interval contained in ]0, b].
According to the Arzela-Ascoli lemma, without loss of generality it can be assumed
that (uk(~;8k)),’;f,f0 is uniformly converging on the interval [0, 5], and (u}((~;6k)),tf§0 is uni-
formly converging on every closed interval contained in ]0, ]. Then, by virtue of notation
(2.20), (2.21) and estimates (2.28), (2.29), from equality (2.26) it follows that the sequence
(i (5 Sk)),’;f,fO is also uniformly converging on every closed interval contained in ]0, 5].

Suppose

u(t) = lim wug(;8;) forO<t<bh.
k—+00
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It is evident that the function u is continuous on [0, 5] and twice continuously differen-
tiable on ]0, b]. Moreover,

u(t) = lim uk(tk(t);Sk) for0 <t <b,
k—+00

W)= lim w (680 = lim g (z(0); &),

u'(t)= lim u)(t8) forO<t<b,
k—+00

and conditions (2.17) are satisfied.

If now we pass to the limit in equalities (2.26) and (2.27) as kK — +00 and take into
account estimates (2.28) and (2.29), then it becomes evident that « is a Kneser solution of
problem (1.1), (1.2) in the interval [0, b]. a

2.3 Lemma on the solvability of the Cauchy problem on a finite interval

Lemma 2.5 Let b > 0 and condition (2.8) be fulfilled. Then, for arbitrarily fixed § > 0 and
€ > 0, problem (1.1), (2.19) has at least one Kneser solution in the interval [0, b] and every
such solution admits the estimates

wo(t;:8,b) < u(t) <w(t;8,6,b) for0<t<b, (2.30)
b T
|:£1+“ + w[k(0;8,£,b)/ 2(s) a’s] <-u/(t)
t
<-wy(t:8,6,b) forO<t<b, (2.31)
where wo and wy are functions given by equalities (2.7) and (2.14).

Proof According to the Peano theorem, the continuity of the function f : D — R, guaran-
tees the local solvability of problem (1.1), (2.19). Let u be any maximally extended solution
of that problem defined on some interval ]y, b]. Then on this interval the inequalities
u(t) > 6, u'(t) < —¢, u'(t) <0 (2.32)
hold. Moreover, either by = 0, or by > 0 and
lim #/(¢t) = —o0. (2.33)
t—bg
By virtue of conditions (1.8) and (2.32), we have
0< u”(t)|u’(t)|“ <87*g(t) forby<t<b.
Hence, in view of (2.19), we find

’u/(t)| <g(t) forby<t<bh, (2.34)

where

b e
g(t) = [g““ +(1+ ,U,)S_A/ a(s) ds] ! forO<t<b,
t
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and, as it follows from (2.8),

b
/ g(s)ds < +oo. (2.35)
0

If we assume that by > 0, then from estimate (2.34) we find
lim |1/ ()] < g(bo) < +00.
t—bg

But this contradicts equality (2.33). The contradiction obtained proves that b, = 0.
Due to (2.34) and (2.35), the function u has a finite right-hand limit at the point 0. If we
put

u(0) = }gl(l) u(t),

then it becomes obvious that u is a Kneser solution of problem (1.1), (2.19) in the interval
[0, b].

According to condition (1.8), the function « is a Kneser solution of the differential in-
equality (2.2) as well, where 7(¢) = ¢. By Lemma 2.3, this solution admits estimates (2.6),
(2.9), (2.10). On the other hand, when 7(t) = ¢, from (2.11) and (2.14) it follows that

W(t18¢ S,b) = Wl(t;sr S,b)'
Therefore estimates (2.30) and (2.31) are valid. O
2.4 Lemma on the existence of a remote from zero Kneser solution of Eq. (1.1)

Lemma 2.6 Let § be a positive number, and let (by); 3}, (8x);27, and (ex);SS be sequences of

positive numbers such that

lim by = +o0, lim §; =6, (2.36)
k—+00 k—+00
1
8kbk < % (k =12,.. .), (2.37)

and for any natural k, the differential equation (1.1) has a Kneser solution uy in the interval

[0, bi] satisfying the conditions
ur(bi) = 8k, uy (bi) = €. (2.38)
Let, moreover, condition (1.16) be satisfied. Then the sequence (uy);2] contains a uniformly

converging on every finite interval of R, subsequence, whose limit is a Kneser solution of
problem (1.1), (1.14).

Proof According to Lemma 2.5 and condition (1.16), for any natural k the inequality

wo(t; 8k, br) < ur(t) < wi(t; 8k, ek, br)
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holds in the interval [0, b«], and the inequality

by o
[8/1(“‘ + WIA(O;gk;Sk’bk)/‘ go(s) ds:| ' < —uy(t) < —wy (& 8k, &x, br)
t

holds in the interval ]0, b«]. Hence, by virtue of conditions (1.8), (1.16), and (2.37), we have

Sr < up(t) < 8 + % + /t+00 h(s)ds <r for0 <t <by, (2.39)

he(®) < —up(t) < % +h(t) for0<t<by, (2.40)

0 <u(t) <8 m " (Og(t) for0<t<by, (2.41)
where

8o =inf{é; :k=1,2,...} >0, r=1+rg+sup{Sx:k=1,2,..},

ro = / h(s)ds < +00,
0

+00 o (2.42)
h(t) = [(1 +M)561/ ails) dS} ,

hie(t) = [ek”‘ + r'K/ 2o(s) ds] .
t

On the other hand, in view of (1.9) and (2.36), it is clear that

klim () = ho(t) >0 for 0 <t < +00, (2.43)
where
1
+00 T+
ho(t) = [r‘x/ 20(s) ds] . (2.44)
t

Let b > 0 and by €]0, b[ be arbitrary numbers, and let ky and b* > b be such large num-
bers that

b*
/ 2o0(s)ds >0, by >Db* fork > k.
b

Then in view of inequalities (2.39)-(2.41), the sequence (uk),ﬁﬁo is uniformly bounded on
[0, b], and the sequences (u}()zflfo and (u}(’)zflfo are uniformly bounded on [y, b]. Hence by
the Arzela-Ascoli lemma and conditions (2.40), (2.42) it follows the existence of a subse-
quence (uy,,);>; of the sequence (uk)zﬁo such that (i)} is uniformly converging on
every finite interval contained in R,, and (; ),,X; is uniformly converging on every finite
closed interval contained in ]0,+oo[. On the other hand, by virtue of conditions (2.39),
(2.40), and (2.43), from the equalities

uy (t) = f (¢ ur,, (£),u; () forO<t<by, (m=1,2,..) (2.45)
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it follows that the sequence (] ), is also uniformly converging on every finite closed
interval contained in ]0, +oo][.
Suppose

u(t)= lim uy,(¢t) forteR,.
m—+00

According to the above said, the function u is continuous on R,, twice continuously dif-
ferentiable on ]0, +oo[, and

u(t)= lim u (), u'(t)= lim wuy (t) for0<t<+o0.
Thus from (2.36), (2.39), (2.40), and (2.45) it follows that u is a Kneser solution of prob-
lem (1.1), (1.14). O

3 Proof of the main results

Proof of Theorem 1.1 Let u be a Kneser solution of Eq. (1.1). Then, by condition (1.8), this
function is a Kneser solution of the differential inequality (2.1) as well, where t(¢) = ¢.

Due to Lemma 2.1, the function gy satisfies condition (1.11), and # admits estimate (1.12).
O

Proof of Corollary 1.1 Assume the contrary that problem (1.1), (1.2) has a Kneser solu-
tion u. Then, by Theorem 1.1, the function # admits estimate (1.12), where § is a number,
given by equality (1.14). Thus (1.2) yields

¢>¢(vo(58)) = (vo(0)).

But this inequality contradicts inequality (1.15). The contradiction obtained proves the
validity of the corollary. O

Proof of Theorem 1.2 Let & =6 (k=1,2,...), and let (br);y and (4);5] be sequences of
positive numbers satisfying conditions (2.36) and (2.37). By Lemma 2.5 and condition
(1.16), for any natural k the differential equation (1.1) has a Kneser solution in the interval
[0, by] satisfying conditions (2.38). Hence, by virtue of Lemma 2.6, it follows the existence
of a Kneser solution of problem (1.1), (1.14). O

Proof of Theorem 1.3 Conditions (1.11) and (1.17) imply condition (1.16), which by Theo-
rem 1.2 guarantees the existence of a Kneser solution of problem (1.1), (1.14) for any § > 0.
Consequently, for any natural k, the differential equation (1.1) has a Kneser solution u
such that

1
lim u(t) = =

t—>+00

On the other hand, by virtue of Theorem 1.1, each u satisfies the estimate

1
ur(t) > vo (t; z) > vo(t;0) fort>0.
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This estimate, due to conditions (1.8), (1.9), (1.17), yields

1
0 <vo(£0) < ur(2) < X +v(t0)<r fort>0, (3.1)
k
0 < ho(8) < —up(£) <y (£0)  fore >0, (3.2)
0 < uj(t) < hy" (t)vy* (£0)g(t) for £ >0, (3.3)

where r =1+ v1(0; 0), while v; and 4 are functions given by equalities (1.18) and (2.44).
By virtue of the Arzela-Ascoli lemma and the equality

ug(t) :fk(t, u(t), u;(t)) fort>0, (3.4)

from estimates (3.1)-(3.3) it follows the existence of a subsequence ()<, of the se-

quence (ux);2] such that (uy,,);X, is uniformly converging on every finite closed interval

+00

contained in R, and (u}% ) hiad)

and (] ),,X; are uniformly converging on every finite closed
interval contained in ]0, +00[.
If we assume

u(t)= lim u,(t) fort=>0,
m—+00
then in view of conditions (3.1), (3.2), (3.4) we find

0 < vo(t;0) < u(t) <wi(t0),

u'(t) >0, u’(t) =f(t, u(t), u/(t)) for ¢t > 0.
Therefore u is a vanishing at infinity Kneser solution of Eq. (1.1). 0

Proof of Theorem 1.4 According to conditions (1.19)-(1.21), there exist numbers §, > 0 and
8* > 8o such that along with (2.15) the inequality

@(n1(580)) < c (3.5)

holds.
Let wy and w; be the functions given by equalities (2.7) and (2.14). Then, by virtue of
(1.16), we have

lim wy(¢; 80,0, b) = vi(t;80)

b—+00

uniformly on [0, a]. Thus from inequality (3.5) it follows the existence of a number by > a
such that

@(w1(580,0,b)) <c  for b> by. (3.6)
Let (b);S; be a sequence of positive numbers such that

br>bo+k (k=1,2,..).

Page 150f 17
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Then due to condition (3.6), there exists a sequence of positive numbers (g¢);2] satisfying
(2.37) and the inequalities

<p(w1(-;80,8k,bk)) <c (k=1,2,...). (3.7)

By Lemma 2.4 and conditions (2.15), (3.7), for any natural k, problem (1.1), (1.2) has a
Kneser solution u; in the interval [0, b;] such that

8o < & <687, u(by) = —ex,

where & = u(by).
Without loss of generality, we can assume that the sequence (8;);%] is converging. Put

5= lim &.

k—+00

By Lemma 2.6, the sequence (u;);5 contains a uniformly converging on every finite
interval from R, subsequence (uy,); >, such that the function, defined by the equality

u(t)= lim uy, (t) fort=>0,

is a Kneser solution of problem (1.1), (1.14). On the other hand, if in the equality ¢(u,,) = ¢
we pass to the limit as m — +00, then it becomes clear that u satisfies condition (1.2) as
well. Thus u is a Kneser solution of problem (1.1), (1.2). O

To convince ourselves that Corollary 1.3 is valid, it suffices to note that if conditions
(1.22)-(1.24) are fulfilled, then each of conditions (1.11), (1.16), (1.17) is satisfied iff &« < 2 +
and 8> 2+ u.
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