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Abstract
The goal of this paper is to demonstrate many explicit computational formulas and
relations involving the Changhee polynomials and numbers and their differential
equations with the help of functional equations and partial derivative equations for
generating functions of these polynomials and numbers. These formulas also include
the Euler polynomials, the Stirling numbers, the Bernoulli numbers and polynomials
of the second kind, the Changhee polynomials of higher order, and the Daehee
polynomials of higher order, which are among the well known polynomial families. By
using PDEs of these generating functions, not only some recurrence relations for
derivative formulas of the Changhee polynomials of higher order, but also two open
problems for partial derivative equations for generating functions are given.
Moreover, by using functional equations of the generating functions, two inequalities
including combinatorial sums, the Changhee numbers of negative order, and the
Stirling numbers of the second kind are provided. Finally, further remarks and
observations for the results of this paper are given.
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1 Introduction
Using generating functions, many kinds of partial differential equations (PDEs), ordi-
nary differential equations (ODEs), and stochastic differential equation (SDEs), including
boundary-value problems, initial-value problem, and discrete boundary-value problems
have been studied and investigated. By using these equations many properties of the gen-
erating functions have been investigated. Recently, generating functions, their functional
equations and their PDEs including special numbers and polynomials have been studied in
many different areas. Because generating functions have many applications in mathemat-
ics, in physics, and in engineering (cf. [1–38]). In this paper, by using generating functions
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with their PDEs and functional functions, we investigate and study many new formulas
and relations involving the Bernoulli numbers and polynomials of the second kind, the
Euler numbers and polynomials, the Stirling numbers, the Peters polynomials, the Boole
polynomials and numbers, the Daehee numbers, and also the Changhee polynomials.

The following notations and definitions are used in this paper:
Let N = {1, 2, 3, . . . } and N0 = N ∪ {0}. Let Z, R, and C denote sets of integer numbers,

real numbers, and complex numbers, respectively.
The falling and rising factorials functions, often used in the theory of the hypergeomet-

ric functions and partition theory, are defined as follows:

(y)c = y(y – 1)(y – 2) · · · (y – c + 1),

(y)0 = 1,

(y)c = c!
(

y
c

)
,

and

(y)c = (–1)c(–y)c = y(y + 1) · · · (y + c – 1)

where c ∈N0 (cf. [1–38]).
We give some generating functions for some special polynomials and numbers as fol-

lows:
The Euler polynomials of order k are defined by means of the following generating func-

tion:

FE(t, x; k) =
(

2
et + 1

)k

etx =
∞∑

n=0

E(k)
n (x)

tn

n!
(1)

(cf. [1–38]). Substituting k = 1 into (1), we have the Euler polynomials:

En(x) = E(1)
n (x).

The derivatives of the Euler polynomials is given as follows:

dn

dxn

{
En(x)

}
= nEn–1(x)

(cf. [1–38]).
He and Ricci [7] gave the following differential equation for the Euler polynomials:

0 =
en–1

(n – 1)!
dn

dxn

{
En(x)

}
+

en–2

(n – 2)!
dn–1

dxn–1

{
En(x)

}

+ · · · +
e1

1!
d2

dx2

{
En(x)

}
+

(
x –

1
2

)
d

dx
{

En(x)
}

– ny,
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where

en = –
n∑

j=0

(
n
j

)
2–jEn–j

(
1
2

)

and n ∈ N.
We note that Lu and Luo [23] gave a differential equation for the generalized Apostol–

Euler polynomials.
The Stirling numbers of the first kind are defined by means of the following generating

function:

FS1 (t, k) =
(log(1 + t))k

k!
=

∞∑
n=0

S1(n, k)
tn

n!
(2)

and

(x)j =
n∑

l=0

S1(n, l)xl (3)

(cf. [3–38]).
The Stirling numbers of the second kind are defined by means of the following generat-

ing function:

FS2 (t, k) =
(et – 1)k

k!
=

∞∑
n=0

S2(n, k)
tn

n!
(4)

(cf. [3–38]).
The Peters polynomials are defined by means of the following generating function:

FP(t, x;λ,μ) =
(1 + t)x

(1 + (1 + t)λ)μ
=

∞∑
n=0

sn(x;λ,μ)
tn

n!
, (5)

where x, t ∈ C (cf. [1–38]).
Considering the work of the second author [32], we give the following relation between

the Euler polynomials and Peters polynomials:
Substituting t = ez – 1 into (5), we have the following functional equation:

FP
(
t, ez – 1;λ,μ

)
=

1
2μ

FE

(
λt,

x
λ

;μ
)

.

Combining this functional equation with (1) and (5), we arrive at the following well-known
result:

sn(x;λ,μ) =
λn

2μ
E(μ)

n

(
x
λ

)
. (6)

Peters polynomials are well known to have generalizations of the following polynomi-
als and numbers: The Boole polynomials and numbers, the Bernoulli polynomials and
numbers, the Euler polynomials and numbers, the Stirling numbers, the Changhee poly-
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nomials and numbers, and other well-known combinatorial polynomials and numbers (cf.
[19, 20, 27–36]). For instance, substituting μ = 1 into (5), we have the Boole polynomials:
ξn(x) = sn(x;λ, 1) (cf. [8], [26, pp. 113–117]).

The Bernoulli polynomials of the second kind are defined by means of the following
generating functions:

Fb2 (t, x) =
t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n!
(7)

and

bn(x) =
∫ x+1

x
(z)n dz (8)

(cf. [26, pp. 113–117]). Substituting x = 0 into (7) or (8), we have the Bernoulli numbers of
the second kind: bn = bn(0) (cf. [3, 4, 8], [26, pp. 113–117]).

The Apostol-type Daehee numbers of higher order defined by means of the following
generating function:

FD(t, k) =
(log(1 + λt))k

(λt)k =
∞∑

n=0

D(k)
n (λ)

tn

n!
(9)

(cf. [29], [30, Eq-(10a)]).
By combining (2) and (9), we have

∞∑
n=0

λkD(k)
n (λ)

tn+k

n!
= k!

∞∑
n=0

S1(n, k)
(λt)n

n!
.

After comparing the coefficients of tn

n! on the both sides of the above equation, a relation
between the Stirling numbers of the first kind and Apostol-type Daehee numbers of higher
order is given as follows:

S1(n, k) =
(

n
k

)
λk–nD(k)

n–k(λ). (10)

Assuming that d is a positive integer. The Changhee polynomials of order d are defined
by means of the following generating function:

F(t, x, d) =
2d(1 + t)x

(2 + t)d =
∞∑

n=0

Ch(d)
n (x)

tn

n!
(11)

(cf. [15, 16]).
Substituting t = ez – 1 into Eq. (11), we get the following functional equation:

F
(
ez – 1, x, d

)
= FE(z, x; d).

By using this equation, we get

∞∑
n=0

Ch(d)
n (x)FS2 (z, n) =

∞∑
m=0

E(d)
m

zm

m!
.
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Combining the above equation with (4), we arrive at the following well-known identity:

E(d)
m =

m∑
j=0

Ch(d)
n S2(m, n) (12)

(cf. [16, Theorem 2.3]).
Combining (6) and (12), we give a relation among the Peters polynomials, Changhee

numbers of order d and the Stirling numbers of the second kind:

sm(0; 1, d) =
1
2d

m∑
j=0

Ch(d)
n S2(m, n).

Substituting d = 1 into (11), we have the Changhee polynomials Chn(x) = Ch(1)
n (x). When

x = 0, we have the Changhee numbers of order d: Ch(d)
n = Ch(d)

n (0) (cf. [15, 16]).
Using Eq. (11), we have the following theorem.

Theorem 1 (cf. [16])

Ch(d)
n (x) =

n∑
j=0

(
n
j

)
(x)j Ch(d)

n–j . (13)

Remark 1 Substituting λ = μ = 1 into (5), we have

Chn(x) = 2sn(x; 1, 1)

(cf. [1, 3, 8, 15, 26]).

The Changhee polynomials of negative order are defined by means of the following gen-
erating function:

H(t, x, –k) =
(1 + t)x(2 + t)k

2k =
∞∑

n=0

Ch(–k)
n (x)

tn

n!
, (14)

where k is a positive integer (cf. [9]).
Substituting x = 0 into (14), we have the Changhee numbers of negative order:

Ch(–k)
n = Ch(–k)

n (0).

By using Eq. (14), we have the following theorem.

Theorem 2 (cf. [9])

Ch(–k)
n (x) =

1
2k

k∑
j=0

n∑
l=0

(
k
j

)(
n
l

)
(j)n–l(x)l. (15)
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We summarize the results of this paper as follows:
In Sect. 2, we gave computation formulas and combinatorial sums for the Changhee

numbers and polynomials of negative order. By using these formulas, some numerical
values of the Changhee numbers and polynomials of negative order are given.

In Sect. 3, we give partial derivative equations for generating functions of the Changhee
polynomials of order d. By using these equations, we derive some derivative formulas,
identities and recurrence relations including the Changhee polynomial, the Daehee num-
bers, the Stirling numbers and also two open problems.

In Sect. 4, we give integral formulas for the Changhee polynomials and the Bernoulli
numbers of the second kind. By using these formulas, we give finite combinatorial sums.

In Sect. 5, by using generating functions and their derivative formulas, we derive some
identities and relations for the Changhee polynomials.

Finally, this paper is completed with the Conclusion.

2 Computation formulas and combinatorial sums for Changhee numbers and
polynomials of negative order

By applying umbral calculus methods to the theory of polynomial sequences of bino-
mial type polynomials and the Sheffer polynomials, involving the falling and rising fac-
torial functions, various interesting and novel identities and relations for the Peters type
polynomials, which are a member of the family of the Sheffer polynomials, have recently
been given (cf. [1–38]). By using the Chu–Vandermonde identity and the falling factorial
functions, we give some computation formulas and combinatorial sums for the Changhee
numbers and polynomials of negative order.

Theorem 3 Let n ∈ N0 and k ∈N. Then we have

Ch(–k)
n =

(k)n

2n . (16)

Proof We set

∞∑
n=0

Ch(–k)
n

tn

n!
=

∞∑
n=0

(k)n
( t

2 )n

n!
.

By combining the binomial series, the Taylor series for the function (1 + t)z, where z ∈ C

and |t| < 1, with the above equation, we get

∞∑
n=0

Ch(–k)
n

tn

n!
=

∞∑
n=0

(
k
n

)(
t
2

)n

=
(

1 +
t
2

)k

.

Combining the final equation with (14), we have

H(t, 0, –k) =
(

1 +
t
2

)k

.

Thus, the proof of the theorem is completed. �
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By combining (16) with the following well-known Chu–Vandermonde identity:

(x + y)n =
n∑

j=0

(
n
j

)
(x)j(y)n–j

we get the following relation:

Ch(–k–l)
n =

1
2n

n∑
j=0

(
n
j

)
(k)j(l)n–j.

After some calculations as in the previous equation, we arrive at the following theorem.

Theorem 4 Let n ∈ N0 and k, l ∈N. Then we have

Ch(–k–l)
n =

n∑
j=0

(
n
j

)
Ch(–k)

j Ch(–l)
n–j . (17)

Note that the proof of assertion (17) of Theorem 4 is also given by Eq. (14). That is, for
x = 0, we have the following functional equation:

H(t, 0, –k – l) = H(t, 0, –k)H(t, 0, –l), (18)

which leads us to the assertion (17) of Theorem 4. Let us briefly give a few steps of the
second proof of assertion (17) of Theorem 4. Combining Eq. (18) with Eq. (14), we obtain

∞∑
n=0

Ch(–k–l)
n (x)

tn

n!
=

∞∑
n=0

Ch(–k)
n (x)

tn

n!

∞∑
n=0

Ch(–l)
n (x)

tn

n!
.

Using the Cauchy rule for the product of series in the previous equation, the following
relation is obtained:

∞∑
n=0

Ch(–k–l)
n (x)

tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
Ch(–k)

j Ch(–l)
n–j

tn

n!
.

If the coefficients of tn

n! on both sides of this last equation are equalized, we arrive at the
proof of assertion (17) of Theorem 4.

By combining (16) with the following well-known identity for the falling factorial func-
tions:

(x)n(x)m =
n∑

j=0

(
n
j

)(
m
j

)
j!(x)m+n–j (19)

we get the following relation:

Ch(–k)
n Ch(–k)

m =
1

2n+m

n∑
j=0

(
n
j

)(
m
j

)
j!(k)m+n–j.

After some calculations in the previous equation, we arrive at the following theorem:
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Theorem 5 Let m, n ∈N0 and k ∈N. Then we have

Ch(–k)
n Ch(–k)

m =
n∑

j=0

(
n
j

)(
m
j

)
j!
2j Ch(–k)

m+n–j .

By using (16), we get the following combinatorial sum:

k∑
n=0

(
k
n

)
2n Ch(–k)

n =
k∑

n=0

((k)n)2

n!
. (20)

Combining (19) with (20), we obtain

k∑
n=0

(
k
n

)
2n Ch(–k)

n =
k∑

n=0

n∑
j=0

(
n
j

)2 j!
n!

(k)2n–j.

Combining the previous equation with (16), we arrive at the following theorem:

Theorem 6 Let n ∈ N0 and k ∈N. Then we have

k∑
n=0

(
k
n

)
2n Ch(–k)

n =
k∑

n=0

n∑
j=0

(
n
j

)2 j!22n–j

n!
Ch(–k)

2n–j .

Combining (20) with (3), we arrive at the following corollary:

Corollary 1 Let n ∈N0 and k ∈N. Then we have

k∑
n=0

(
k
n

)
2n Ch(–k)

n =
k∑

n=0

n∑
j=0

(
k
n

)
S1(n, j)kj,

k∑
n=0

(
k
n

)
2n Ch(–k)

n =
k∑

n=0

(
k
n

)
(k)n,

and

k∑
n=0

(
k
n

)
(k)n =

k∑
n=0

n∑
j=0

(
k
n

)
S1(n, j)kj.

By using (16), some values of the numbers Ch(–k)
n are given as follows:

Ch(–k)
0 = 1,

Ch(–k)
1 =

k
2

,

Ch(–k)
2 =

k2 – k
4

,

Ch(–k)
3 =

k3 – 3k2 + 2k
8

,
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Ch(–k)
4 =

k4 – 6k3 + 11k2 – 6k
16

, . . . .

See also (cf. [9]).
For some special values of k, we have

Ch(–1)
0 = 1, Ch(–1)

1 =
1
2

, Ch(–1)
2 = 0, Ch(–1)

3 = 0, Ch(–1)
4 = 0, . . . ,

Ch(–2)
0 = 1, Ch(–2)

1 = 1, Ch(–2)
2 =

1
2

, Ch(–2)
3 = 0, Ch(–2)

4 = 0, . . . ,

and

Ch(–3)
0 = 1, Ch(–3)

1 =
3
2

, Ch(–3)
2 =

3
2

, Ch(–3)
3 =

3
4

, Ch(–3)
4 = 0, . . . .

It follows from the above computations that

Ch(–k)
n = 0 if n > k.

By using (14), Equation (27) in [9], and (16), we get the following theorem:

Theorem 7 Let n ∈ N0 and k ∈N. Let x ∈ R. Then we have

Ch(–k)
n (x) =

n∑
j=0

(
n
j

)
(k)n–j

2n–j (x)j. (21)

By using (21), some values of the numbers Ch(–k)
n (x) are given as follows:

Ch(–k)
0 (x) = 1,

Ch(–k)
1 (x) = x +

k
2

,

Ch(–k)
2 (x) = x2 + (k – 1)x +

k2 – k
4

,

Ch(–k)
3 (x) = x3 +

3
2

(k – 2)x2 +
3k2 – 9k + 8

4
x +

k3 – 3k2 + 2k
8

,

Ch(–k)
4 (x) = x4 + (2k – 6)x3 +

3k2 – 15k + 22
2

x2

+
k3 – 6k2 + 13k

2
x +

k4 – 6k3 + 11k2 – 6k
16

, . . . .

(cf. [9]).
For some special values of k, we have

Ch(–1)
0 (x) = 1,

Ch(–1)
1 (x) = x +

1
2

,

Ch(–1)
2 (x) = x2,



So and Simsek Journal of Inequalities and Applications        (2020) 2020:149 Page 10 of 22

Ch(–1)
3 (x) = x3 –

3
2

x2 +
1
2

x,

Ch(–1)
4 (x) = x4 – 4x3 + 5x2 + 4x, . . . ,

Ch(–2)
0 (x) = 1,

Ch(–2)
1 (x) = x + 1,

Ch(–2)
2 (x) = x2 + x +

1
2

,

Ch(–2)
3 (x) = x3 +

1
2

x,

Ch(–2)
4 (x) = x4 – 2x3 + 2x2 + 5x, . . . ,

and

Ch(–3)
0 (x) = 1,

Ch(–3)
1 (x) = x +

3
2

,

Ch(–3)
2 (x) = x2 + 2x +

3
2

,

Ch(–3)
3 (x) = x3 +

3
2

x2 + 2x +
3
4

,

Ch(–3)
4 (x) = x4 + 2x2 + 6x, . . . .

3 Partial derivative equations of generating functions for the Changhee
polynomials of higher order

In this section, we give partial derivative equations of Eq. (11). By using these partial
derivative equations, we give derivative formulas, recurrence relations and combinatorial
sums for the Changhee polynomials of higher order. These formulas and relations include
the Changhee polynomials of higher order, the Daehee numbers, the Bernoulli polyno-
mials and numbers of the second kind, and the Stirling numbers of the first kind. We also
give two open problems related to the partial derivative equations and the Changhee poly-
nomials.

3.1 Derivative formulas for the Changhee polynomials of higher order
Here, partial derivative equations of generating functions for the Changhee polynomials
of higher order are given.

Differentiating both sides of Eq. (11) with respect to x, we get the following partial dif-
ferential equations:

∂m

∂xm

{
F(t, x, k)

}
= m!F(t, x, k)FS1 (t, m) (22)

and

∂m

∂xm

{
F(t, x, k)

}
= tmF(t, x, k)FD(t, m). (23)
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Theorem 8 Let m, n ∈N0 with n > m. Then we have

n∑
j=0

(
n
j

)
S1(n – j, m) Ch(k)

j (x) =
(

n
m

) n–m∑
j=0

(
n – m

j

)
D(m)

n–m–j(1) Ch(k)
j (x)

Proof By combining (11) and (2) with (22), using the above equation, we get

∞∑
n=0

∂m

∂xm

{
Ch(k)

n (x)
} tn

n!
= m!

∞∑
n=0

S1(n, m)
tn

n!

∞∑
n=0

Ch(k)
n (x)

tn

n!
.

Therefore

∞∑
n=0

∂m

∂xm

{
Ch(k)

n (x)
} tn

n!
= m!

∞∑
n=0

n∑
j=0

(
n
j

)
S1(n – j, m) Ch(k)

j (x)
tn

n!
.

After some elementary calculations, comparing the coefficients of tn

n! on the both sides of
the above equation, we have

∂m

∂xm

{
Ch(k)

n (x)
}

= m!
n∑

j=0

(
n
j

)
S1(n – j, m) Ch(k)

j (x). (24)

Similarly, by combining (11) and (9) with (23), we get

∞∑
n=0

∂m

∂xm

{
Ch(k)

n (x)
} tn

n!
= tm

∞∑
n=0

D(m)
n (1)

tn

n!

∞∑
n=0

Ch(k)
n (x)

tn

n!
.

Therefore

∞∑
n=0

∂m

∂xm

{
Ch(k)

n (x)
} tn

n!
=

∞∑
n=0

(n)m

n–m∑
j=0

(
n – m

j

)
D(m)

n–k–j(1) Ch(k)
n (x)

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the above equation, we get the fol-
lowing derivative formula for the Changhee polynomials:

∂m

∂xm

{
Ch(k)

n (x)
}

= (n)m

n–m∑
j=0

(
n – m

j

)
D(m)

n–m–j(1) Ch(k)
j (x). (25)

Combining (24) and (25), we arrive at the desired result. �

3.2 Recurrence relations for the Changhee polynomials of higher order and
partial derivative equations for generating functions

Here, we give partial derivative equations of generating functions for the Changhee poly-
nomials of higher order. By using these equations, we also give some new formulas of the
Changhee polynomials of higher order.

Differentiating both sides of Eq. (11) with respect to t, we get the following partial dif-
ferential equations:

∂

∂t
{

F(t, x, k)
}

= –
(k)1

2
F(t, x, k + 1) + xF(t, x – 1, k), (26)
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∂2

∂t2

{
F(t, x, k)

}
=

(k)2

22 F(t, x, k + 2) – (k)1(x)1F(t, x – 1, k + 1)

+ (x)2(t, x – 2, k), (27)

∂3

∂t3

{
F(t, x, k)

}
= –

(k)3

23 F(t, x, k + 3) +
3
22 (k)2(x)1F(t, x – 1, k + 2)

–
3
2

(k)1(x)2F(t, x – 2, k + 1)

+ (x)3F(t, x – 3, k), (28)

and

∂4

∂t4

{
F(t, x, k)

}
=

(k)4

24 F(t, x, k + 4) –
1
2

(k)3(x)1F(t, x – 1, k + 3)

+
3
2

(k)2(x)2F(t, x – 2, k + 2)

– 2(k)1(x)3F(t, x – 3, k + 1) + (x)4F(t, x – 4, k). (29)

If we continue to take m times derivative similar to the above way, we come up with the
following problem.

Problem 1 Let k ∈ N0. Let αj ∈ Q numbers with j ∈ {1, 2, 3, . . . , m}. Then, ∂m

∂tm {F(t, x, k)}
has the possible following forms:

If m is an even positive integer, we have

∂m

∂tm

{
F(t, x, k)

}
=

m∑
j=0

(–1)jαj(k)m–j(x)jF(t, x – j, k + m – j). (30)

If m is an odd positive integer, we have

∂m

∂tm

{
F(t, x, k)

}
=

m∑
j=0

(–1)j+1αj(k)m–j(x)jF(t, x – j, k + m – j). (31)

The previous question also arises how to find the coefficients αj in the given equations
(30) and (31).

Partial differential equations in the problem 1 have many important applications. By
using special values of these equations, we obtain the explicit computational formulas
involving recurrence relations for the Changhee polynomials of higher order. Therefore,
we present the following claim:

Using (30) and (31), we obtain the following formulas:
If m is an even positive integer, we have

Chn+m(x) =
m∑

j=0

(–1)jαj(k)m–j(x)j Ch(k+m–j)
n (x – j), (32)

and if m is an odd positive integer, we have

Ch(k)
n+m(x) =

m∑
j=0

(–1)j+1αj(k)m–j(x)j Ch(k+m–j)
n (x – j), (33)



So and Simsek Journal of Inequalities and Applications        (2020) 2020:149 Page 13 of 22

where Ch(a+b)
n (x) means that

Ch(a+b)
n (x) =

n∑
j=0

(
n
j

)
Ch(b)

n–j Ch(a)
j (x), (34)

Note that Eq. (34), easily obtained from Eq. (11), is a well-known formula for the Changhee
polynomials of order a + b.

3.3 Some special values for Problem 1
Here, we give some special values of the partial differential equations and recurrence re-
lations for the Changhee polynomials of higher order.

For k = 1, (26)–(29) reduce to the following partial differential equations, respectively:

∂

∂t
{

F(t, x, 1)
}

= –
1
2

F(t, x, 2) + xF(t, x – 1, 1), (35)

∂2

∂t2

{
F(t, x, 1)

}
=

1
2

F(t, x, 3) – xF(t, x – 1, 2) + x(x – 1)F(t, x – 2, 1), (36)

∂3

∂t3

{
F(t, x, 1)

}
= –

3
4

F(t, x, 4) +
3
2

xF(t, x – 1, 3)

–
3
2

x(x – 1)F(t, x – 2, 2) + x(x – 1)(x – 2)F(t, x – 3, 1), (37)

and

∂4

∂t4

{
F(t, x, 1)

}
=

3
2

F(t, x, 5) – 3xF(t, x – 1, 4) + 3x(x – 1)F(t, x – 2, 3)

– 2x(x – 1)(x – 2)F(t, x – 3, 2)

+ x(x – 1)(x – 2)(x – 3)F(t, x – 4, 1). (38)

Therefore, by using Problem 1, we get the following results.

Problem 2 Let m ∈ N0. Let αj ∈ Q with j ∈ {1, 2, 3, . . . , m}. Then ∂m

∂tm {F(t, x)} has the pos-
sible following forms:

If m is an even positive integer, we have

∂m

∂tm

{
F(t, x, 1)

}
=

m∑
j=0

(–1)jαj(m – j)!(x)jF(t, x – j, m + 1 – j). (39)

If m is an odd positive integer, we have

∂k

∂tk

{
F(t, x, 1)

}
=

k∑
j=0

(–1)j+1αj(m – j)!(x)jF(t, x – j, k + 1 – j). (40)

As with Problem 1, the following similar results can be given for Problem 2:
Problem 2 also arises how to find the coefficients αj in the given equations (39) and (40).
By using Problem 2, we deduce the following results:
Using (39) and (40), we obtain the following relations:
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If m is an even positive integer, we have

Chn+m(x) =
m∑

j=0

(–1)jαj(m – j)!(x)j Ch(m+1–j)
n (x – j). (41)

If m is an odd positive integer, we have

Chn+m(x) =
m∑

j=0

(–1)j+1αj(m – j)!(x)j Ch(m+1–j)
n (x – j). (42)

We set

βj = αj(m – j)!,

where j ∈ {0, 1, 2, . . . , m}.
We compute few values of βj, j ∈ {0, 1, 2, . . . , m} as follows:
Substituting m = 1 into (40), we have

∂

∂t
{

F(t, x, 1)
}

= –β0F(t, x, 2) + β1xF(t, x – 1, 1).

By using the above equation, we get

∞∑
n=0

Chn+1(x)
tn

n!
= –β0

∞∑
n=0

Ch(2)
n (x)

tn

n!
+ β1x

∞∑
n=0

Chn(x – 1)
tn

n!
.

Comparing coefficients of the above equation with (35) and (42), since β0 = 1
2 and β1 = 1,

we obtain the following recurrence formula:

Theorem 9 Let n ∈ N0. Then we have

Chn+1(x) = –
1
2

Ch(2)
n (x) + xChn(x – 1).

Substituting m = 2 into (39), we have

∂2

∂t2

{
F(t, x, 1)

}
= β0F(t, x, 3) – β1xF(t, x – 1, 2) + β2x(x – 1)F(t, x – 2, 1).

By using the above equation, we get

∞∑
n=0

Chn+2(x)
tn

n!
= β0

∞∑
n=0

Ch(3)
n (x)

tn

n!
– β1x

∞∑
n=0

Ch(2)
n (x – 1)

tn

n!

+ β2x(x – 1)
∞∑

n=0

Chn(x – 2)
tn

n!
.

Comparing coefficients of the above equation with (36) and (41), since β0 = 1
2 , β1 = 1 and

β2 = 1, we obtain the following recurrence formula:
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Theorem 10 Let n ∈N0. Then we have

Chn+2(x) =
1
2

Ch(3)
n (x) – xCh(2)

n (x – 1) + x(x – 1) Chn(x – 2).

Substituting m = 3 into (40), we have

∂3

∂t3

{
F(t, x, 1)

}
= –β0F(t, x, 4) + β1xF(t, x – 1, 3)

– β2x(x – 1)F(t, x – 2, 2) + β3x(x – 1)(x – 2)F(t, x – 3, 1).

By using the above equation, we get

∞∑
n=0

Chn+3(x)
tn

n!
= –β0

∞∑
n=0

Ch(4)
n (x)

tn

n!
+ β1x

∞∑
n=0

Ch(3)
n (x – 1)

tn

n!

– β2x(x – 1)
∞∑

n=0

Ch(2)
n (x – 2)

tn

n!

+ β3x(x – 1)(x – 2)
∞∑

n=0

Chn(x – 3)
tn

n!
.

Comparing coefficients of the above equation with (37) and (42), since β0 = 3
4 , β1 = 3

2 ,
β2 = 3

2 and β3 = 1, we obtain the following recurrence formula:

Theorem 11 Let n ∈N0. Then we have

Chn+3(x) = –
3
4

Ch(4)
n (x) +

3
2

xCh(3)
n (x – 1)

–
3
2

x(x – 1) Ch(2)
n (x – 2) + x(x – 1)(x – 2) Chn(x – 3).

Substituting m = 4 into (39), we get

∂4

∂t4

{
F(t, x, 1)

}
= β0F(t, x, 5) – β1xF(t, x – 1, 4)

+ β2x(x – 1)F(t, x – 2, 3) – β3x(x – 1)(x – 2)F(t, x – 3, 2)

+ β4x(x – 1)(x – 2)(x – 3)F(t, x – 4, 1).

Comparing coefficients of the above equation with (38) and (41), since β0 = 3
2 , β1 = 3,

β2 = 3, β3 = 2 and β4 = 1, we obtain the following recurrence formula.

Theorem 12 Let n ∈N0. Then we have

Chn+4(x) =
3
2

Ch(5)
n (x) – 3xCh(4)

n (x – 1) + 3x(x – 1) Ch(3)
n (x – 2)

– 2x(x – 1)(x – 2) Ch(2)
n (x – 3)

+ x(x – 1)(x – 2)(x – 3) Chn(x – 4).
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4 Integrals formulas for the Changhee polynomials
In this section, we give integral equations and integral formulas of Eq. (11) and the
Changhee polynomials of higher order. By using these formulas, we derive and combi-
natorial sums including the Changhee polynomials, the Daehee numbers, the Bernoulli
polynomials and numbers of the second kind and the Stirling numbers of the first kind.

Integrating Eq. (11) from z to z + 1 with respect to x, we have

∫ z+1

z
F(t, x, 1) dx =

F(t, z + 1, 1) – F(t, z, 1)
t

Fb2 (t, 0).

By using the above integral equation, we get

∞∑
n=0

∫ z+1

z
Chn(x)

tn

n!
dx =

∞∑
n=0

n∑
j=0

(
n
j

)(
Chj(z + 1) – Chj(z)

j + 1

)
bn–j(0)

tn

n!
.

By comparing the coefficients of tn

n! on the both sides of the above equation, we arrive at
the following theorem.

Theorem 13 Let n ∈N0. Then we have

∫ z+1

z
Chn(x) dx =

n∑
j=0

(
n
j

)(
Chj(z + 1) – Chj(z)

j + 1

)
bn–j(0). (43)

Theorem 14 Let n ∈N0. Then we have

n∑
j=0

(
n
j

)
Ch(d)

n–j bj(z) =
n∑

j=0

(
n
j

)
bn–j(0)

(
Chj(z + 1) – Chj(z)

j + 1

)
.

Proof Substituting d = 1 into (11), after that integrating this equation from z to z + 1 with
respect to x, we get

∫ z+1

z
Chn(x) dx =

n∑
j=0

(
n
j

)
Chn–j

∫ z+1

z
(x)j dx.

Combining the above equation with (8), we get

∫ z+1

z
Chn(x) dx =

n∑
j=0

(
n
j

)
Chn–j bj(z). (44)

Combining (44) with (43), we arrive at the desired result. �

5 Identities, formulas and combinatorial sums including special numbers and
polynomials

In this section, by using Eq. (11) with its functional equations, we derive recurrence rela-
tions and combinatorial sums including the Changhee polynomials, the Daehee numbers,
the Bernoulli polynomials and numbers of the second kind, and the Stirling numbers of
the first kind.
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By using (11), we get

F(t, x + 1, d) =
∞∑

n=0

Ch(d)
n (x + 1)

tn

n!
.

From the above equation, we have

∞∑
n=0

Ch(d)
n (x + 1)

tn

n!
=

∞∑
n=0

(
x + 1

n

)
tn

∞∑
n=0

Ch(d)
n

tn

n!
.

Therefore

∞∑
n=0

Ch(d)
n (x + 1)

tn

n!
=

∞∑
n=0

n∑
j=0

(
x + 1

j

)
Ch(d)

n–j
tn

(n – j)!
.

By comparing the coefficients of tn on the both sides of the above equation, we obtain the
following identity:

Ch(d)
n (x + 1) =

n∑
j=0

Ch(d)
n–j

n!
(n – j)!

(
x + 1

j

)
. (45)

By using (11), we also have

2d
∞∑

n=0

(x + 1)n
tn

n!
=

∞∑
n=0

d∑
j=0

(
d
j

)
2d–j(n)j Ch(d)

n–j(x + 1)
tn

n!
.

By comparing the coefficients of tn on the both sides of the above equation, we obtain the
following recurrence relation for the Changhee polynomials of order d:

Theorem 15 Let n ∈N0. Then we have

(x + 1)n =
d∑

j=0

2–j
(

d
j

)
(n)j Ch(d)

n–j(x + 1). (46)

Substituting d = 1 and x = z – 1 into (46), we have the following recurrence relation for
the Changhee polynomials:

Chn(z) +
n
2

Chn–1(z) = (z)n (47)

(cf. [8, 30]).
Combining (45) and (46) with the following well-known identity:

(
x + 1

n

)
=

(
x

n – 1

)
+

(
x
n

)
,

we arrive at the following theorem.
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Theorem 16 Let n ∈N. Then we have

d∑
j=0

2–j
(

d
j

)
(n)j Ch(d)

n–j(x + 1)

=
d∑

j=0

2–j
(

d
j

)(
(n – 1)j Ch(d)

n–1–j(x) + (n)j Ch(d)
n–j(x)

)
.

Theorem 17 Let k be a positive integers. Then we have

Ch(d1+d2+···+dk )
n (x1 + x2 + · · · + xk)

=
∑

n1+n2+···+nk =n

(
n

n1, n2, . . . nk–1, n – n1 – n2 – · · · – nk–1

) k∏
j=1

Ch
(dj)
nj (xj), (48)

where

(
n

n1, n2, . . . nk–1, n – n1 – n2 – · · · – nk–1

)

=
n!

n1!n2! · · ·nk–1!(n – n1 – n2 – · · · – nk–1)!

and

∑
n1+n2+···+nk =n

=
n∑

n1=0

k–n1∑
n2=0

· · ·
n–n1–n2–···–nk–1∑

nk =0

.

Proof We set the following equation:

F(t, x1 + x2 + · · · + xk , d1 + d2 + · · · + dk) =
k∏

j=0

F(t, xj, dj).

Combining the above eq*uation with Eq. (11), we get

∞∑
n=0

Ch(d1+d2+···+dk )
n (x1 + x2 + · · · + xk)

tn

n!
=

k∏
j=1

∞∑
nj=0

Ch
(dj)
nj (xj)

tnj

nj!
.

By using Cauchy product rule in the right side of the above equation, we get

∞∑
n=0

Ch(d1+d2+···+dk )
n (x1 + x2 + · · · + xk)

tn

n!

=
∞∑

n=0

∑
n1+n2+···+nk =n

(
n

n1, n2, . . . nk–1, n – n1 – n2 – · · · – nk–1

)

×
k∏

j=1

Ch
(dj)
nj (xj)

tn

n!
.
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By comparing the coefficients of tn

n! on the both sides of the above equation, we get the
desired result. �

Note that Substituting k = 2 into (48), we arrive at equation (34). That is, we also have

Ch(d1+d2)
n (x1 + x2) =

n∑
j=0

(
n
j

)
(x2)n–j Ch(d1+d2)

j (x1).

If x1 = 0, the above equation reduces to Theorem 2.8 in the work of Kim et al. [16].
Substituting x = 0 into (48), we arrive at Eq. (2.6) of the work of Kim et al. [16].

6 Inequalities related to the Changhee numbers of negative order and the
Stirling numbers of the second kind

In this section, by using functional equation of the generating functions, we give combi-
natorial sums and two inequalities involving the Changhee numbers of negative order and
the Stirling numbers of the second kind.

The lower bound for the Stirling numbers of the second kind was given by Comtet [3],
as follows:

S2(m, k) ≥ km–k (49)

(see also [36, 39]).
The upper bound for the Stirling numbers of the second kind was given by Comtet as

follows:

S2(m, k) ≤ km–k
(

m – 1
k – 1

)
(50)

(see also [36, 39]).

Theorem 18 Let m, k ∈N. Then we have

m∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!2n+k–j Ch(–k)

n S2(m, j) ≤ k!km–k
(

m – 1
k – 1

)
.

Proof We set the following functional equation:

k!H
(
et – 3, 0, –k

)
= 2k

∞∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!FS2 (t, j).

Combining the above equation wit (4) and (14), we obtain

k!
∞∑

n=0

S2(m, k)
tm

m!

∞∑
m=0

m∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!2n+k–j Ch(–k)

n S2(m, j)
tm

m!
.
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By comparing the coefficients of tm

m! on the both sides of the above equation, we obtain the
following identity:

S2(m, k) =
1
k!

m∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!2n+k–j Ch(–k)

n S2(m, j). (51)

Combining (50) with (51), we get

1
k!

m∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!2n+k–j Ch(–k)

n S2(m, j) ≤ km–k
(

m – 1
k – 1

)
.

Thus, the proof of the theorem is completed. �

Theorem 19 Let m, k ∈N. Then we have

m∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!2n+k–j Ch(–k)

j S2(m, j) ≥ k!km–k .

Proof Combining (49) with (51), we get

1
k!

m∑
n=0

n∑
j=0

(–1)j
(

n
j

)
j!2n+k–j Ch(–k)

n S2(m, j) ≥ km–k .

Thus, the proof of the theorem is completed. �

7 Conclusions
As we emphasized in the introduction, generating functions for special numbers and poly-
nomials with their derivative equations (PDEs, ODEs, and SDEs) and functional equations
are the most important fields of quantum physics, mathematical physics, engineering and
other applied sciences, especially mathematics. By using generating functions for special
numbers and polynomials with their derivative equations (PDEs and ODEs) and func-
tional equations, we give computations of many new formulas, relations, identities, and
combinatorial sums involving the Bernoulli numbers and polynomials of the second kind,
the Euler numbers and polynomials, the Stirling numbers, the Peters polynomials, the
Boole polynomials and numbers, the Daehee numbers, and also the Changhee polynomi-
als. By using partial derivative equations for generating functions of the Changhee poly-
nomials, we give two open questions. Some special values of these questions are given.
We also give some recurrence relations including the Changhee polynomial, the Dae-
hee numbers, the Stirling numbers. Integral representations and integral formulas for
the Changhee polynomials are given. Two inequalities including combinatorial sums, the
Changhee numbers of negative order, and the Stirling numbers of the second kind are
given. The interesting and new results given in this paper have the potential to be used in
the main areas mentioned above, especially in mathematics.
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