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Abstract
Let G be a simple graph and S2(G) be the sum of the two largest Laplacian
eigenvalues of G. Guan et al. (J. Inequal. Appl. 2014:242, 2014) determined the largest
value for S2(T ) among all trees of order n. They also conjectured that among all
connected graphs of order n withm (n ≤m ≤ 2n – 3) edges, Gm,n is the unique graph
which has maximal value of S2(G), where Gm,n is a graph of order n withm edges
which hasm – n + 1 triangles with a common edge and 2n –m – 3 pendent edges
incident with one end vertex of the common edge. In this paper, we confirm the
conjecture withm = n.
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1 Introduction
Let G = (V , E) be a simple connected graph with vertex set V (G) and edge set E(G). Its
order is |V (G)|, denoted by n(G) (or n for short), and its size is |E(G)|, denoted by m(G)
(or m for short). For a vertex v ∈ V (G), let N(v) be the set of all neighbors of v in G and
let d(v) = |N(v)| be the degree of v. Particularly, denote by �(G) the maximum degree
of G. A pendent vertex is a vertex with degree one. The diameter of a connected graph G,
denoted by d(G), is the maximum distance among all pairs of vertices in G. Let Sn and Pn

be the star and the path of order n, respectively. Let Sk
a,b be the tree of order n obtained

from two stars Sa+, Sb+ by joining a path of length k between their central vertices (see
Figure ). For all other notions and definitions, not given here, see, for example, [] or []
(for graph spectra).

Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of vertex degrees of
G, respectively. The matrix L(G) = D(G)–A(G) is called Laplacian matrix of G. The Lapla-
cian matrix is an important topic in the theory of graph spectra. We use the notation In

for the identity matrix of order n and denote by φ(G, x) = det(xIn – L(G)) the Laplacian
characteristic polynomial of G. It is well known that L(G) is positive semidefinite sym-
metric and singular. Denote its eigenvalues by μ(G) ≥ μ(G) ≥ · · · ≥ μn(G) (or simply
μ ≥ μ ≥ · · · ≥ μn sometimes for convenience) which are always enumerated in non-
increasing order and repeated according to their multiplicity. Note that each row sum of
L(G) is  and, therefore, μn(G) = . Fiedler [] showed that the second smallest eigenvalue
μn–(G) of L(G) is  if and only if G is disconnected. Thus the second smallest eigenvalue
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Figure 1 Gn+1,n . Gm,n is a graph of order n withm edges which hasm – n + 1
triangles with a common edge and 2n –m – 3 pendent edges incident with
one end vertex of the common edge.

of L(G) is popularly known as the algebraic connectivity of G. The largest eigenvalue μ(G)
of L(G) is usually called the Laplacian spectral radius of the graph G. Recently, some of
the research has been focused on μ, μ or un– (see [–]).

Let Sk(G) =
∑i=k

i= μi(G) be the sum of the k largest Laplacian eigenvalues of G. Brouwer
conjectured that Sk(G) ≤ m(G) +

(k+


)
for k = , , . . . , n. The conjecture is still open, but

some advances on the conjecture have been achieved (see [–]). Specially, for k = ,
Haemers et al. [] proved that S(G) ≤ m(G) +  for any graph G. When G is a tree,
Fritscher et al. [] improved this bound by giving S(T) ≤ m(T) +  – 

n(T) , which im-
plies that Haemers’ bound is always not attainable for trees. Therefore, it is interesting
to determine which tree has maximal value of S(T) among all trees of order n. Guan et
al. [] proved that S(T) ≤ S(T 

� n–
 �,� n–

 �) for any tree of order n ≥ , and the equality
holds if and only if T ∼= T 

� n–
 �,� n–

 �. For any graph G of order n with m edges, note that
μ(G) ≤ n(G). Then Haemers’ bound is clearly not attainable when n(G) < m(G) + . For
m(G) +  ≤ n(G), Guan et al. [] showed that S(Gm,n) = m(Gm,n) + , where Gm,n is a
graph of order n size m which has m – n +  triangles with a common edge and n – m – 
pendent edges incident with one end vertex of the common edge (Gn+,n is illustrated
in Figure ). This indicates that Haemers’ bound is always sharp for connected graphs
(m ≤ n – ) other than trees. The following conjecture on the uniqueness of the extremal
graph is also presented in [].

Conjecture . [] Among all connected graphs of order n with m edges (n ≤ m ≤ n – ),
Gm,n is the unique graph with maximal value of S(G), that is, S(Gm,n) = m(Gm,n) + .

In this paper, we confirm Conjecture . with m = n.

2 Preliminaries
In this section, we present some lemmas which will be useful in the subsequent sections.
For μ(G), the following results are well known.

Lemma . Let G be a connected graph of order n, di = d(vi) and mi =
∑

vj∈N(vi) dj/di. Then
() [] μ(G) ≤ n(G) with equality if and only if the complement of G is disconnected;
() [] μ(G) ≤ max{di + mi|vi ∈ V (G)}.

Lemma . [] Let G be a connected graph of order n ≥  with m edges. Then

μ(G) < max

{

�(G), m –
n – 



}

+ .

Lemma . [] Let T be a tree of order n with d(T) ≥ . Then μ(T) < n – ..

Lemma . Let T be a tree of order n with d(T) ≥ . Then μ(T) < n – .
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Proof For any tree T of order n with d(T) ≥ , it follows that n ≥  and �(T) ≤ n – .
That is, �(T) +  ≤ n –  and m – n–

 +  = n–
 +  ≤ n – . Then the result follows from

Lemma .. �

The following theorem from matrix theory plays a key role in our proofs. We denote the
eigenvalues of a symmetric matrix M of order n by λ(M) ≥ λ(M) ≥ · · · ≥ λn(M).

Theorem . [] Let A and B be two real symmetric matrices of size n. Then, for any
 ≤ k ≤ n,

k∑

i=

λi(A + B) ≤
k∑

i=

λi(A) +
k∑

i=

λi(B).

From Theorem ., the following lemma is immediate.

Lemma . Let G, . . . , Gr be some edge disjoint graphs. Then, for any k,

Sk(G ∪ · · · ∪ Gr) ≤
r∑

i=

Sk(Gi).

The following lemma can be found in [] and is well known as the interlacing theorem
of Laplacian eigenvalues.

Lemma . [] Let G be a graph of order n and let G′ be the graph obtained from G by
inserting a new edge into G. Then the Laplacian eigenvalues of G and G′ interlace, that is,

μ
(
G′) ≥ μ(G) ≥ · · ·μn

(
G′) ≥ μn(G) = .

Lemma . [] Let A be a symmetric matrix of order n with eigenvalues λ ≥ λ ≥ · · · ≥ λn

and B be a principal submatrix of A of order m with eigenvalues μ ≥ μ ≥ · · · ≥ μm. Then
the eigenvalues of B interlace the eigenvalues of A, that is, λi ≥ μi ≥ λn–m+i for i = , . . . , m.
Specially, for v ∈ V (G), let Lv(G) be the principal submatrix of L(G) formed by deleting
the row and column corresponding to vertex v, then the eigenvalues of Lv(G) interlace the
eigenvalues of L(G).

Lemma . For any tree T of order n, if there exists an edge e ∈ E(T) such that
min{e(T), e(T)} ≥  and min{d(T), d(T)} ≥  or max{d(T), d(T)} ≥ , then S(T) <
n(T) + , where T, T are the two components of T – e.

Proof Let T – e = T ∪ T. By Lemma ., it suffices to show that S(T ∪ T) < n(T) – . If
μ(T) = μ(T) and μ(T) = μ(T) (or μ(T) = μ(T) and μ(T) = μ(T)), then the result
follows since S(T ∪T) = S(Ti) < m(Ti) +  ≤ m(T) = n(T) –  for i = , . In what follows,
we assume that S(T ∪ T) = μ(T) + μ(T). If min{d(T), d(T)} ≥ , then Lemma .
implies that S(T ∪ T) < (n(T) – .) + (n(T) – .) = n(T) – . If max{d(T), d(T)} ≥ ,
say d(T) ≥ , then Lemmas . and . imply that S(T ∪ T) < n(T) + (n(T) – ) =
n(T) – . This completes the proof. �

Lemma . For any tree T of order n with d(T) = , S(T) < n(T) + .
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Figure 2 Two trees of order n.

Proof Without loss of generality, we assume that vvvvvv is a path of length  in T .
We now consider the following three cases.

Case . min{d(v), d(v)} ≥ .
Let T, T be the two components of T – vv. Then the result follows from Lemma ..
Case . d(v) = d(v) = .
Note that d(T) = . Then T is isomorphic to S

a,b (see Figure ), where a, b ≥  and a +
b +  = n. By an elementary calculation, we have φ(S

a,b,λ) = λ(λ – )n–f(λ), where f(λ) =
λ – (n + )λ + (n + ab – )λ – (n + ab – )λ + n. Denoted by λ ≥ λ ≥ λ ≥ λ > 
are the four roots of f(λ) = . Then we have λ + λ + λ + λ = n +  since

∑i=n
i= μi = m.

Note that S
a,b contains P as a subgraph. Then Lemma . implies that λ ≥ μ(P) = .

Thus, S(T) = λ + λ = n +  – (λ + λ) < n +  – λ < n – , as desired.
Case . d(v) ≥  and d(v) =  (or d(v) ≥  and d(v) = ).
Without loss of generality, we assume that d(v) ≥  and d(v) = . If d(v) ≥ , let T –

vv = T ∪ T; if there is P = uvv attached to v, let T – vv = T ∪ T, where u, v �=
vi (i = , , . . . , ). Then the result follows from Lemma .. We now assume that d(v) =
d(v) =  and all the neighbors of v except for v and v are pendent vertices. That is,
T is isomorphic to Ha,b, where Ha,b (see Figure ) is the tree of order n obtained from
vvvvvv by attaching a and b –  pendent vertices to v and v, respectively, where
a, b ≥  and a + b +  = n. Note that the matrix  · In – L(Ha,b) has a and b different identical
rows. Then the multiplicity of eigenvalue  is at least n – . Let λ ≥ λ ≥ λ ≥ λ ≥ λ ≥
λ > λ =  be the other seven eigenvalues. Then λ +λ +λ +λ +λ +λ +λ = n +  since
∑i=n

i= μi = m. For a, b ≥ , Ha,b contains H, as a subgraph. Then by Lemma . we have
λ ≥ μ(H,) = . and λ ≥ μ(H,) = .. Therefore, S(T) = λ + λ < n +  – (λ +
λ) < n+, as required. If a = , then by Lemmas . and . we have μ(H,b) ≤ (n–)+ n–

n–
and μ(H,b) ≤ μ(Lv (H,b)) = .. That is, S(T) = S(H,b) = μ(H,b)+μ(H,b) < n+, as
required. Similarly, if b = , then by Lemmas . and . we have μ(Ha,) ≤ (n–)+ n–

n– and
μ(Ha,) ≤ μ(Lv (Ha,)) = .. It follows that S(T) = S(Ha,) = μ(Ha,) + μ(Ha,) < n + ,
as required.

From the discussion above, the proof is completed. �

Lemma . Let T be a tree of order n with d(T) ≥ . Then S(T) < n(T) + .

Proof We now consider the following two cases.
Case . d(T) ≥ .
Let vvvvvvvv be a path of length  in T and T – vv = T ∪ T. Then the result

follows from Lemma ..
Case . d(T) = .
If T = P, then the result follows since S(P) < . If T �= P, let vvvvvvv be a path of

length  in T . If d(v) ≥ , let T – vv = T ∪ T; if d(v) ≥  (or d(v) ≥ ), let T – vv =
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Figure 3 An example of firefly graph.

T ∪ T (or T – vv = T ∪ T); if d(v) ≥  (or d(v) ≥ ), let T – vv = T ∪ T (or
T – vv = T ∪ T). In each of the above cases, by Lemma ., we have S(T) < n(T) + .
This completes the proof. �

A firefly graph Fs,t,n–s–t– (s ≥ , t ≥  and n – s – t –  ≥ ) is a graph with n vertices
that consists of s triangles, t pendent paths of length  and n – s – t –  pendent edges,
sharing a common vertex. An example of a firefly graph F,, is illustrated in Figure .
Clearly F,,n– ∼= Sn and F,,n– ∼= Gn,n.

Lemma . [] The second largest Laplacian eigenvalue of F,t,n–t– satisfies
μ(F,t,n–t–) = .

Note that for t ≥ , the complement of F,t,n–t– is connected. Hence Lemma . im-
plies that μ(F,t,n–t–) < n(F,t,n–t–). This together with Lemma . implies the follow-
ing lemma.

Lemma . For t ≥ , S(F,t,n–t–) < n(F,t,n–t–) + .

3 Main result
A unicyclic graph is a connected graph whose number of edges m is equal to the number
of vertices n. It is easy to see that each unicyclic graph can be obtained by attaching rooted
trees to the vertices of a cycle Ck for some k. Thus if R, . . . , Rk are k rooted trees (of orders
n, . . . , nk , say), then we adopt the notation U(R, . . . , Rk) to denote the unicyclic graph G
(of order n = n + · · · + nk) obtained by attaching the rooted tree Ri to the vertex vi of a
cycle Ck = vv · · · vkv (i.e., by identifying the root of Ri with the vertex vi for i = , . . . , k).
Denote by e(vi) the maximum distance between vi and any vertex of Ri. In the special case
when Ri is a rooted star K,ai with the center of the star as its root (that is, e(vi) = ), we
will simplify the notation by replacing Ri by the number ai.

The following lemma is immediate from Lemmas ., . and ..

Lemma . For any unicyclic graph G of order n with m edges, if there exists an edge e ∈
E(G) such that G – e is a tree with d(G – e) ≥ , then S(G) < m(G) + .

Let uvwu be a triangle and Ta,b,c be the graph obtained by attaching a, b, c pendent
vertices to u, v, w, respectively, where a+b+c = n– and a ≥ b ≥ c ≥ . Note that Tn–,, ∼=
Gn,n. Denote by Qa,b the graph obtained by attaching a and b pendent vertices to two non-
adjacent vertices of a quadrangle, respectively, where a + b = n –  and a ≥ b ≥ . Ta,b,c

and Qa,b are illustrated in Figure .

Lemma . For Ta,b,c, S(Ta,b,c) ≤ m(Ta,b,c) +  with equality if and only if a = n –  (that
is, Ta,b,c ∼= Gn,n).
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Figure 4 Two unicyclic graphs of order n. Ta,b,c is a unicyclic graph of order n obtained by attaching a, b, c
pendent vertices to three vertices of a triangle uvw, respectively, and Qa,b is a unicyclic graph of order n
obtained by attaching a and b pendent vertices to two non-adjacent vertices of a quadrangle, respectively.

Proof Note that the matrix  · In – L(Ta,b,c) has a, b and c different identical rows. So
the multiplicity of eigenvalue  is at least n – . Let λ ≥ λ ≥ λ ≥ λ ≥ λ > λ =  be
the other six eigenvalues of L(Ta,b,c). Then we have λ + λ + λ + λ + λ = n +  since
∑i=n

i= μi = m(G). For c ≥ , Ta,b,c contains T,, as a subgraph. Then by Lemma . we
have λ ≥ μ(T,,) = .. Therefore, S(Ta,b,c) = λ +λ = n+–(λ +λ +λ) < n+–λ ≤
n +  = m(Ta,b,c) + , as required. For c =  and b ≥ , Ta,b,c contains T,, as a subgraph.
Then by Lemma . we have λ ≥ μ(T,,) = .. That is, S(Ta,b,) = n+–(λ +λ +λ) <
n +  – λ ≤ n +  = m(Ta,b,c) + , as required. If c =  and b = , then by Lemmas . and
., we have μ(Ta,,) ≤ n –  + 

n– and μ(Ta,,) ≤ μ(Lu(Ta,,)) = .. It follows that
S(Ta,,) = μ(Ta,,) +μ(Ta,,) < m(Ta,,) + , as required. If c =  and b = , then by Lem-
mas . and ., we have μ(Ta,,) ≤ n –  + 

n– and μ(Ta,,) ≤ μ(Lu(Ta,,)) = .. That
is, S(Ta,,) = μ(Ta,,) + μ(Ta,,) < m(Ta,,) +  for n ≥  (that is, a ≥ ), as required.
A direct calculation shows that S(T,,) < m(T,,) +  (or S(T,,) < m(T,,) + ). Sim-
ilarly, if c =  and b = , then by Lemmas . and ., we have μ(Ta,,) ≤ n –  + 

n– and
μ(Ta,,) ≤ μ(Lu(Ta,,)) = .. That is, S(Ta,,) = μ(Ta,,)+μ(Ta,,) < m(Ta,,)+, for
n ≥  (that is, a ≥ ), as required. A direct calculation shows that S(T,,) < m(T,,) + 
(or S(T,,) < m(T,,) +  or S(T,,) < m(T,,) + ). Next, we assume c = . By an ele-
mentary calculation, we have φ(Ta,b,,λ) = λ(λ – )n–f(λ), where f(λ) = λ – (n + )λ +
(n + ab + )λ – (n + ab + )λ + n. Let x ≥ x ≥ x ≥ x be the roots of f(λ) = . Then

x + x + x + x = n + , (.)

xx + xx + xx + xx + xx + xx = n + ab + , (.)

xxx + xxx + xxx + xxx = n + ab + . (.)

If

x + x = n + , (.)

then, by (.), we have

x + x = . (.)

From (.)-(.) it follows that

xx + xx = n + ab + , (.)
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(n + )xx + xx = n + ab + . (.)

By (.) and (.), we have

xx = . (.)

Combining (.) and (.), we have

x = x = . (.)

Then f() = –ab = , which implies that b = . Therefore, if b ≥ , then S(Ta,b,) <
m(Ta,b,) + . A direct calculation shows that S(Tn–,,) = m(Tn–,,) + . This completes
the proof. �

Lemma . For Qa,b, S(Qa,b) < m(Qa,b) + .

Proof By a direct calculation, we have φ(Qa,b,λ) = λ(λ – )n–f(λ), where f(λ) = (λ –
)(λ – (n + )λ + (n + ab + )λ – (n + ab – )λ + n). Let λ ≥ λ ≥ λ ≥ λ ≥ λ >  be
the five roots of f(λ) = . Then we have λ +λ +λ +λ +λ = n +  since

∑i=n
i= μi = m(G).

For b ≥ , Qa,b contains Q, as a subgraph. Then by Lemma . we have λ ≥ μ(Q,) = 
and λ ≥ μ(Q,) = .. Therefore, S(Qa,b) = λ +λ = n +  –λ –λ –λ < n + . In what
follows, we assume b = . Since f() = , we can rewrite φ(Qa,,λ) = λ(λ– )n–f(λ), where
f(λ) = (λ – )f(λ). Let λ′

 ≥ λ′
 ≥ λ′

 ≥ λ′
 >  be the four roots of f(λ) = . Then we have

λ′
 + λ′

 + λ′
 + λ′

 = n +  since
∑i=n

i= μi = m(G). For a ≥ , Qa, contains Q, as a subgraph.
Then by Lemma . we have λ′

 ≥ μ(Q,) = . Thus, S(Qa,b) = λ′
 + λ′

 = n +  – λ′
 – λ′

 <
n + . If a = , then S(Qa,b) = S(C) < m(C) +  by a straight calculation. This completes
the proof. �

Now, we come to the main results of this paper.

Theorem . For any unicyclic graph G, S(G) ≤ m(G) +  with equality if and only if
G ∼= T(n – , , ).

Proof For any unicyclic graph G, we assume that Ck = vv · · · vkv is the unique cycle
in G (for some k) and G has the form U(R, . . . , Rk). For k ≥ , G – vv is a tree with
d(G – vv) ≥ . Then by Lemma . we have S(G) < m(G) + . We now consider the fol-
lowing two cases.

Case . k = .
Let C = vvvvv be the unique cycle in G. If there exist e(vi) ≥ , say e(v) ≥ , then

G – vv is a tree with d(G – vv) ≥ ; if there are two adjacent vertices in C = vvvvv,
say v and v, such that e(v) ≥  and e(v) ≥ , then G – vv is a tree with d(G – vv) ≥ .
Then by Lemma . we have S(G) < m(G) + . We now assume G ∼= Qa,b (see Figure ).
Then the result follows from Lemma ..

Case . k = .
If max{e(v), e(v), e(v)} ≥ , say e(v) ≥ , then G – vv is a tree with d(G – vv) ≥ ;

if there are two vertices in C = vvvv, say v and v, such that e(v) =  and e(v) ≥ ,
then G – vv is a tree with d(G – vv) ≥ . Therefore, Lemma . implies that S(G) <
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m(G) + . We now assume G ∼= F,t,n–t– (t ≥ ) or G ∼= Ta,b,c. Then the result follows from
Lemma . or Lemma ..

This completes the proof. �
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