
Liu et al. Journal of Inequalities and Applications  (2015) 2015:149 
DOI 10.1186/s13660-015-0672-x

R E S E A R C H Open Access

On the meromorphic solutions of certain
class of nonlinear differential equations
Nana Liu1, Weiran Lü1* and Chungchun Yang2

Dedicated to Professor George Csordas on the occasion of his retirement.

*Correspondence: luwr@upc.edu.cn
1Department of Mathematics, China
University of Petroleum, Qingdao,
266580, P.R. China
Full list of author information is
available at the end of the article

Abstract
Let α be an entire function, an–1, . . . ,a1,a0, R be small functions of f , and let n ≥ 2 be
an integer. Then, for any positive integer k, the differential equation
f nf (k) + an–1f n–1 + · · · + a1f + a0 = Reα has transcendental meromorphic solutions
under appropriate conditions on the coefficients. In addition, for n = 1 and k = 1, we
have extended some well-known and relevant results obtained by others, by using
different arguments.
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1 Introduction and main results
In this paper, a meromorphic function means meromorphic in the whole complex plane.
We shall adopt the standard notations in Nevanlinna’s value distribution theory of mero-
morphic functions (see, e.g., [, ]).

Given a meromorphic function f , recall that α �≡ ,∞ is a small function with respect
to f , if T(r,α) = S(r, f ), where S(r, f ) denotes any quantity satisfying S(r, f ) = o{T(r, f )} as
r → ∞, possibly outside a set of r of finite linear measure.

Theorem A Let f be a transcendental meromorphic function, n (≥ ) be an integer. Then
F = f nf ′ assumes all finite values, except possibly zero, infinitely many times.

The above theorem was derived by Hayman [] in . Later, he conjectured [] that
Theorem A remains valid even if n =  or n = . Mues [] proved the result for n =  and
the case n =  was proved by Bergweiler and Eremenko [] and independently by Chen
and Fang []. For entire functions and difference polynomials, similar results have been
obtained by others earlier (see, e.g., [–]).

Theorem B ([]) If f is a transcendental meromorphic function of finite order and a ( �≡ )
is a polynomial, then ff ′ – a has infinitely many zeros.

Wang [] obtained the following result.
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Theorem C Let f be a transcendental entire function and n, k be positive integers, and
let c(z) ( �≡ ) be a small function with respect to f . If T(r, f ) �= τN)(r, /f ) + S(r, f ), then
f n(z)f (k)(z) – c(z) has infinitely many zeros, where τ =  if n ≥  or k = ; τ =  otherwise.

In this paper, by using methods different from that were used by others (see, e.g., [, ]
and []), we shall extend and generalize the above results with f nf (k) being replaced by a
differential polynomial Pn+(f ). Specifically, our main results can be stated as follows.

Theorem . Let α be an entire function, R and ai (i = , , . . . , n – ) be small functions of f
with a �≡ . If, for n ≥ , a transcendental meromorphic function f satisfies the differential
equation

f nf (k) + an–f n– + · · · + af + a = Reα , (.)

then, for any positive integer k, we have f = g exp(α/(n + )) – (n + ) a
a

with gn+ =
[ (n+)a

a
]n+ R

a
, and ( a

a
)(k) + n

n+ ( 
n+

a
a

)na ≡ .

Remark . Let a and a be non-zero constants in Theorem .. Then (.) has no tran-
scendental meromorphic solutions.

A meromorphic solution f of (.) is called admissible, if T(r,αj) = S(r, f ) holds for all
coefficients αj (j = , . . . , n – ) and T(r, R) = S(r, f ).

Remark . If a ≡  and n ≥ , k ≥ , then the other coefficients a, . . . , an– must be
identically zero. In this case, (.) becomes f nf (k) = Reα and f has the form f = u exp(α/(n +
)) as the only possible admissible solution of (.), where u is a small function of f .

We have the following corollary by Theorem ..

Corollary . Let f be a transcendental meromorphic function with N(r, f ) = S(r, f ), n ≥ 
be an integer. If ( a

a
)(k) + n

n+ ( 
n+

a
a

)na �≡ , then F = f nf (k) + an–f n– + · · · + af + a has
infinitely many zeros, where ai (i = , , . . . , n – ) are small functions of f such that a �≡ .

Note that in Theorem ., it is assumed that n ≥  and k ≥ . However, for n =  and
k = , we can derive the following result.

Theorem . Let p, q, and R be non-zero polynomials, α be an entire function. Then the
differential equation pff ′ – q = Reα has no transcendental meromorphic solutions, where p,
q, and R are small functions of f with pq �≡ .

Remark . From the proof of Theorem ., we see that the restriction in Theorem .
to p, q, and R may extend to small functions. In fact, it is easy to find that the conclusion
is valid provided that p, q, and R are non-vanishing small functions of f . The following
corollary arises directly from an immediate consequence of Theorem ..

Corollary . Let f be a transcendental meromorphic function with N(r, f ) = S(r, f ), p and
q be non-vanishing small functions of f . Then F = pff ′ – q has infinitely many zeros.
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2 Some lemmas and proofs of theorems
In order to prove our conclusions, we need some lemmas. The following lemma is funda-
mental to Clunie’s theorem [].

Lemma . ([, ]) Let f be a transcendental meromorphic solution of

f nP(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are polynomials in f and its derivatives with meromorphic coef-
ficients {aλ|λ ∈ I} such that m(r, aλ) = S(r, f ) for all r ∈ I . If the total degree of Q(z, f ) as a
polynomial in f and its derivatives is less than or equal to n, then m(r, P(r, f )) = S(r, f ).

The following lemma is crucial to the proof of our theorems.

Lemma . ([, ]) Let f be a meromorphic solution of an algebraic equation

P
(
z, f , f ′, . . . , f (n)) = , (.)

where P is a polynomial in f , f ′, . . . , f (n) with meromorphic coefficients small with respect
to f . If a complex constant c does not satisfy (.), then

m
(

r,


f – c

)
= S(r, f ).

Proof of Theorem . Let f be a transcendental meromorphic function that satisfies (.).
Then two cases are to be treated, namely case : N(r, f ) �= S(r, f ), and case : N(r, f ) = S(r, f ).
For case , it is impossible as α is an entire function and R, a, . . . , an are small functions
of f .

To prove Theorem ., we now suppose that N(r, f ) = S(r, f ).
Denoting φ := f nf (k) + an–f n– + · · · + af , and assuming that T(r,φ) = S(r, f ), then by

Lemma ., we get m(r, f (k)) = S(r, f ) and then T(r, f (k)) = S(r, f ), since N(r, f ) = S(r, f ) by
the assumption. The contradiction T(r, f ) = S(r, f ) now follows by the theorem in []
and combining it with the proof of Proposition E in []. Thus, for any transcendental
meromorphic function f under the condition: N(r, f ) = S(r, f ),

T
(
r, f nf (k) + an–f n– + · · · + af

) �= S(r, f ). (.)

From (.) and the result of Milloux (see, e.g., [], Theorem .), one can easily show that

T
(
r, eα

) ≤ (n + )T(r, f ) + S(r, f ),

which leads to T(r,α) + T(r,α′) = S(r, f ).
By taking the logarithmic derivative on both sides of (.), we have

nf n–f ′f (k) + f nf (k+) + a′
n–f n– + · · · + a′

f + af ′ + a′


f nf (k) + an–f n– + · · · + af + a
=

R′

R
+ α′. (.)
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It follows by (.) that

–
(

R′

R
+ α′

)
f nf (k) + nf n–f ′f (k) + f nf (k+) +

{
a′

n– –
(

R′

R
+ α′

)
an–

}
f n–

+ (n – )an–f n–f ′ + · · · +
{

a′
 –

(
R′

R
+ α′

)
a

}
f + af ′ =

(
R′

R
+ α′

)
a – a′

. (.)

If ( R′
R + α′)a – a′

 ≡ , then Aa = Reα , where A is a non-zero constant. From (.), we get

f nf (k) + an–f n– + · · · + af = (A – )a. (.)

If A = , then from (.), we obtain

f nf (k) + an–f n– + · · · + af ≡ ,

which contradicts (.). However, if A �= , then again from (.), we would derive

T
(
r, f nf (k) + an–f n– + · · · + af

)
= S(r, f ),

a contradiction.
Thus

(
R′

R
+ α′

)
a – a′

 := ϕ �≡ .

In this case, from (.), we have

N(

(
r,


f

)
≤ N

(
r,


ϕ

)
+ S(r, f ) ≤ T(r,ϕ) + S(r, f ) = S(r, f ),

where N((r, 
f ), as usually, denotes the counting function of zeros of f whose multiplicities

are not less than , which implies that the zeros of f are mainly simple zeros. Again, from
(.), the fact that α′ is a small function of f and Lemma . (where c =  is used), we
conclude m(r, 

f ) = S(r, f ). This together with Nevanlinna’s first theorem will result in

T(r, f ) = N
(

r,

f

)
+ S(r, f ) = N)

(
r,


f

)
+ S(r, f ), (.)

where in N)(r, /f ) only the simple zeros of f are to be considered.
Assume that a ≡ . It follows by (.) and n ≥  that N)(r, /f ) = S(r, f ), which contra-

dicts (.). Thus a �≡ . Let z be a simple zero of f , and z be not a pole of one of the
coefficients ai, ( R′

R + α′)ai – a′
i (i = , , . . . , n – ). From (.), we see that z is a zero of

af ′ + a′
 – ( R′

R + α′)a. Set

h =
af ′ + a′

 – ( R′
R + α′)a

f
. (.)

Then (.) gives T(r, h) = S(r, f ). We have

f ′ =

a

{
hf – a′

 +
(

R′

R
+ α′

)
a

}
:= μf + ν. (.)
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Clearly, it follows from (.) and T(r,μ) + T(r,ν) = S(r, f ) that μν �≡ . By (.), we
obtain

f n–ψ = Pn–(f ), (.)

where ψ = –( R′
R + α′)ff (k) + nf ′f (k) + ff (k+), Pn–(f ) = ( R′

R + α′)(an–f n– + · · · + af + a) –
(an–f n– + · · · + af + a)′. It follows by (.) that Pn–(f ) �≡ . Thus ψ �≡ . Moreover, by
applying Lemma . to (.), we get m(r,ψ) = S(r, f ). It is easy to see by N(r, f ) = S(r, f )
that T(r,ψ) = S(r, f ).

From (.) and induction, we have f ′′ = (μ′
 + μ

 )f + μν + ν ′
 := μf + ν, and

f (k) = μkf + νk , (.)

where μk , νk are small functions of f . By the expression of ψ and (.), we get νk �≡ . If
μk ≡ , then (.) gives T(r, f (k)) = S(r, f ), which is impossible. Therefore, μk �≡ .

By (.), (.) becomes

μkf n+ + νkf n + an–f n– + · · · + af + a = Reα . (.)

By applying the Tumura-Clunie lemma (see, e.g., [], Theorem .) to the left-hand side of
(.), we have μk[f + νk

(n+)μk
]n+ = Reα and f = geα/(n+) – νk

(n+)μk
with gn+ = R

μk
.

In view of (.), we have

μkf n+ + νkf n + an–f n– + · · · + af + a = μk

[
f +

νk

(n + )μk

]n+

.

Thus, we have


n + 

νk

μk
= (n + )

a

a
and μk =

(


n + 
a

a

)n+

a. (.)

By (.), we obtain νk = (n + )( 
n+

a
a

)na and gn+ = [ (n+)a
a

]n+ R
a

.
Set (n + )γ = α. It follows by (.) and f = geγ – (n + ) a

a
that

f (k) =
(


n + 

a

a

)n+

a

[
geγ – (n + )

a

a

]
+ (n + )

(


n + 
a

a

)n

a. (.)

In addition, by f = geγ – (n + ) a
a

we get

f (k) = Q
(
g, g ′, . . . , g(k))eγ – (n + )

(
a

a

)(k)

, (.)

where Q(g, g ′, . . . , g(k)) is a differential polynomial of g .
Thus, (.) and (.) imply

Q
(
g, g ′, . . . , g(k)) =

(


n + 
a

a

)n+

ag
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and

(n + )
(

a

a

)(k)

=
(


n + 

a

a

)n+

a(n + )
a

a
– (n + )

(


n + 
a

a

)n

a. (.)

It follows by (.) that

(
a

a

)(k)

+
n

n + 

(


n + 
a

a

)n

a = .

This completes the proof of Theorem .. �

Proof of Remark . Let f be a transcendental meromorphic solution of (.). Since a ≡ ,
we have N(r, /f ) ≤ N(r, /R) + S(r, f ) = S(r, f ). Obviously, N(r, f ) = S(r, f ). In this case,
there exist a meromorphic function u and an entire function v such that f = uev, and
N(r, /u)+N(r, u) = S(r, f ). Clearly, from the expressions of f and the Borel lemma (see, e.g.,
[], Theorem .), all the aj (j = , , . . . , n – ) must be identically zero. Thus, Remark .
follows. �

Proof of Theorem . Now we proceed to prove the theorem by contradiction. Let f be
a transcendental meromorphic function that satisfies pff ′ – q = Reα . Then two cases are
to be retreated, namely N(r, f ) �= S(r, f ) and N(r, f ) = S(r, f ). For N(r, f ) �= S(r, f ), this is
impossible as α is an entire function and R, p, q are non-zero polynomials.

To prove Theorem ., we now suppose that N(r, f ) = S(r, f ). We differentiate pff ′ – q =
Reα and eliminate eα ,

tff ′ + p
(
f ′) + pff ′′ = t, (.)

where t = p′ – ( R′
R + α′)p, t = q′ – ( R′

R + α′)q.
If t ≡ , then, by integrating the definition of t, α must be a constant, hence ff ′ is

rational, and then, by Lemma ., m(r, f ′) = S(r, f ). Hence T(r, f ′) = S(r, f ). This is a con-
tradiction by Proposition E in []. Thus, t �≡ , and then by (.), we get (.). By dif-
ferentiating both sides of (.), we have

t′
ff ′ +

(
t + p′)(f ′) +

(
t + p′)ff ′′ + pf ′f ′′ + pff ′′′ = t′

. (.)

Letting z be a simple zero of f , (.) and (.) imply

(
p
(
f ′) – t

)
(z) =  (.)

and

{(
t + p′)(f ′) + pf ′f ′′ – t′


}

(z) = . (.)

Let

g =
ptf ′′ + [t(t + p′) – t′

p]f ′

f
. (.)
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From (.), (.), and (.), we get

T(r, g) = S(r, f ).

By (.), we obtain

f ′′ = αf + βf ′, (.)

where

α =
g

pt
, β =

t′
p – t(t + p′)

pt

and

T(r,α) = S(r, f ), T(r,β) = S(r, f ).

Substituting (.) into (.) yields

(t + pβ)ff ′ + p
(
f ′) + αpf  = t. (.)

On the other hand, from (.), we have

f ′′′ = αf + βf ′, (.)

where α = α′
 + αβ, β = α + β ′

 + β
 , and

T(r,α) = S(r, f ), T(r,β) = S(r, f ).

Substituting (.) into (.), we have

[
t′
 +β

(
t + p′)+ pα + pβ

]
ff ′ +

(
t + p′ + pβ

)(
f ′) +

[
α

(
t + p′)+αp

]
f  = t′

. (.)

It follows by (.) and (.) that

{
p
[
t′
 + β

(
t + p′) + pα + pβ

]
–

(
t + p′ + pβ

)
(t + pβ)

}
ff ′

+
{

p
[
α

(
t + p′) + αp

]
– αp

(
t + p′ + pβ

)}
f  = t′

p – t
(
t + p′ + pβ

)
. (.)

From the definition of β, we now claim t′
p – t(t + p′ + pβ) ≡ . To show this, we

assume the contrary, that is, t′
p – t(t + p′ + pβ) �≡ . Then from the fact that t′

p –
t(t + p′ + pβ) is a small function of f and (.), we get

N)

(
r,


f

)
≤ N

(
r,


t′
p – t(t + p′ + pβ)

)

≤ T
(
r, t′

p – t
(
t + p′ + pβ

))
+ S(r, f ) = S(r, f ),
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and from this and (.) we deduce T(r, f ) = S(r, f ), a contradiction. Thus, we have

t′
p – t

(
t + p′ + pβ

) ≡ . (.)

Now, (.) and (.) lead to

p
[
α

(
t + p′) + αp

]
– αp

(
t + p′ + pβ

) ≡ . (.)

From the definition of α and (.), we deduce

α′
 ≡ αβ. (.)

It follows from (.) and the definitions of t, β that

α
 p ≡ t

eα .

In the beginning of the proof it was already shown that t �≡ . Hence, the contradiction
here is immediate.

This also completes the proof of Theorem .. �

3 Remarks and a conjecture
Remark . Corollary . or Corollary . can be strengthened to

N
(

r,

F

)
�= S(r, f ).

Remark . What can be said if ‘pff ′ – q’ is replaced by ‘pff (k) – q’, for any integer k ≥ ,
in Theorem .?

Remark . Taking f (z) = ez , we have

N
(

r,


ff (k) – a

)
∼ T(r, f ) + S(r, f ),

where k is a positive integer, and a is a non-zero constant.

Finally, we present the following more general and quantitative conjecture.

Conjecture . Let f be a transcendental entire function. Then for any integer k ≥ , and
any small function a ( �≡ ),

N
(

r,


ff (k) – a

)
∼ T(r, f ) + S(r, f ).
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