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Abstract
For star bodies, the Lp harmonic radial combinations were defined and studied in
several papers. In this paper, we study the mean chord of Lp harmonic radial
combinations of star bodies and get an upper bound for dual mixed volumes of Lp
harmonic radial combination of star bodies and their polar bodies. Furthermore, we
obtain a dual Urysohn type inequality and a dual Bieberbach type inequality.
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1 Introduction
The classical Brunn-Minkowski theory originated with Minkowski when he combined
his concept of mixed volume with the Brunn-Minkowski inequality, which is the core of
convex geometric analysis. This theory was developed from a few basic concepts such as
support function, vector addition, and volume. Since Firey introduced his new Lp addition
in s (see []), the new Lp Brunn-Minkowski theory was born in Lutwak’s papers [, ]
and it has witnessed a rapid growth (see, e.g., [–]).

In the s, Lutwak introduced the dual mixed volume and hence developed the dual
Brunn-Minkowski theory, which helped achieving a major breakthrough in the solution of
the Busemann-Petty problem in the s. The Lp harmonic radial combination of convex
bodies was first investigated by Firey (see [, ]). Then, the Lp harmonic radial combi-
nation was extended to star bodies by Lutwak [], and it plays a key role in the dual Lp

Brunn-Minkowski theory.
For star bodies, the Lp harmonic radial combination was introduced and studied in sev-

eral papers (see, e.g., [, , –]). The aim of this paper is to study them further, that is,
we mainly investigate the mean chord of Lp harmonic radial combination of star bodies.

Let K n denote the set of convex bodies (compact, convex subsets with nonempty inte-
riors) in R

n and K n
o denote the subset of K n consisting of all convex bodies that contain

the origin in their interiors. Let S n
o denote the set of star bodies (star-shaped, continuous

radial functions) in R
n containing the origin in their interiors. The unit ball in R

n and its
surface will be denoted by B and Sn–, respectively. The volume of B will be denoted by ωn,
the (n – )-dimensional volume αn– of Sn– is αn– = nωn.
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The Minkowski addition of two convex bodies K and L is defined as

K + L = {x + y : x ∈ K , y ∈ L}.

The scalar multiplication αK of K , where α ≥ , is defined as

αK = {αx : x ∈ K}.

For each direction u ∈ Sn–, the support function h(K , u) of the convex body K can be
defined by h(K , u) = max{u ·x : x ∈ K}, where u ·x denotes the usual inner product of x and
u in R

n. The radial function ρ(K , u) of the star body K is ρ(K , u) = sup{λ >  : λu ∈ K} for
u ∈ Sn–. Usually, we note ρK (u) = ρ(K , u). The polar body of a convex body K , denoted
by K∗, is another convex body defined by K∗ = {y : x · y ≤  for all x ∈ K}. For K ∈ K n

o , the
polar body has the well-known property that

h
(
K∗, u

)
=


ρ(K , u)

, ρ
(
K∗, u

)
=


h(K , u)

.

For real p ≥ , K , L ∈ K n
o , and α,β ≥  (not both zero), the Firey linear combination,

α · K +p β · L ∈ K n
o , was defined by (see [, ])

h(α · K +p β · L, u)p = αh(K , u)p + βh(L, u)p, u ∈ Sn–. (.)

In [], the mean width of the Firey linear combinations of convex bodies was studied,
and the lower bound of the mean width of the Firey linear combinations of convex body
and its polar body was given.

For real p ≥ , K , L ∈ S n
o , and α,β ≥  (not both zero), the Lp harmonic radial combi-

nation, α · K +̂pβ · L ∈ S n
o , was defined by (see [])

ρ(α · K +̂pβ · L, u)–p = αρ(K , u)–p + βρ(L, u)–p, u ∈ Sn–. (.)

In this paper, we give some good properties of Lp harmonic radial combination of star
bodies from the definition directly. Besides these properties, we also establish an upper
bound for dual mixed volumes Ṽi(·, ·) of Lp harmonic radial combination of star bodies
and their polar bodies as follows.

Theorem . Let K ∈ K n
o , real p ≥ , and α,β ≥ , then for n is even

Ṽ n


(
α · K +̂pβ · K∗,α · K∗+̂pβ · K

) ≤ ωn,

with equality if and only if K is a unit ball centered at the origin.

In [], Hadwiger defined the mean width b(K) of K ∈ K n
o . Here we prove the following.

Theorem . (Dual Urysohn type inequality) Let K , L ∈ K n
o , real p ≥ , and α,β ≥  (not

both zero), then

nωnb(α · K +̂pβ · L)–n ≤ V
(
α · K∗ +p β · L∗),

the equality holds if and only if α · K +̂pβ · L is an ellipsoid.
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This immediately yields the following inequality.

Theorem . (Dual Bieberbach type inequality) Let K , L ∈ K n
o , real p ≥ , and α,β ≥ 

(not both zero), then

nωnD(α · K +̂pβ · L)–n ≤ V
(
α · K∗ +p β · L∗),

where D(K) denotes the diameter of K and the equality holds if and only if α · K +̂pβ · L is
an ellipsoid.

2 Preliminaries
2.1 Mixed volumes and mean width
Let K, . . . , Km be compact convex sets in R

n and λ, . . . ,λm ≥ . The volume of λK + · · · +
λmKm is a homogeneous nth degree polynomial in λ, . . . ,λm,

V (λK + · · · + λmKm) =
m∑

i,...,in=

V (Ki , . . . , Kin )λi · · ·λin .

The coefficients V (Ki , . . . , Kin ) are nonnegative, symmetric in the indices, and are called
mixed volumes of Ki , . . . , Kin .

If K, . . . , Kn ∈ K n, the mixed surface area measure S(K, . . . , Kn–; ·) is the unique finite
Borel measure on Sn– such that for all K ∈ K n,

V (K , K, . . . , Kn–) =

n

∫

Sn–
h(K , u) dS(K, . . . , Kn–; u).

Let

Vi(K , L) = V (K , . . . , K︸ ︷︷ ︸
n–i

, L, . . . , L︸ ︷︷ ︸
i

).

If L is the unit ball B, then the mixed volumes V (K , . . . , K︸ ︷︷ ︸
n–i

, B, . . . , B︸ ︷︷ ︸
i

) = Vi(K , B) are called the

quermassintegrals of K and denoted by Wi(K). The quermassintegrals are generalizations
of the surface area and the volume. Indeed, it can be shown that

W(K) = V (K), nW(K) = S(K), Wn(K) = ωn,

ωn

Wn–(K) = b(K). (.)

Here b(K) is the mean width of K ∈ K n
o , defined by Hadwiger (see []),

b(K) =


nωn

∫

Sn–
h(K , u) dσ (u),

where dσ is the (n – )-dimensional volume element on Sn–, i.e., the area element on
Sn–. Furthermore, the mixed width-integrals, A(K, . . . , Kn), of K, . . . , Kn ∈ K n was also
defined by Lutwak (see [])

A(K, K, . . . , Kn) =

n

∫

Sn–
b(K, u)b(K, u) · · ·b(Kn, u) dσ (u), (.)

where b(K , u) = h(K ,u)+h(K ,–u)
 is half the width of K in the direction u.



Shen and Zhu Journal of Inequalities and Applications  (2015) 2015:134 Page 4 of 9

2.2 Dual mixed volumes and mean chord
Let Li ∈ S n

o , for  ≤ i ≤ n, the dual mixed volumes Ṽ (L, L, . . . , Ln) were defined by (see
[, ])

Ṽ (L, L, . . . , Ln) =

n

∫

Sn–
ρL (u)ρL (u) · · ·ρLn (u) dσ .

Let

Ṽi(K , L) = Ṽ (K , . . . , K︸ ︷︷ ︸
n–i

, L, . . . , L︸ ︷︷ ︸
i

),

then

Ṽi(K , L) =

n

∫

Sn–
ρn–i

K (u)ρ i
L(u) dσ . (.)

We shall also introduce the dual concept of the mean width of a convex body: for L ∈ S n
o ,

the mean chord of L, d̃(L), can be defined by

d̃(L) =


nωn

∫

Sn–
ρ(L, u) dσ (u). (.)

Furthermore, the mixed chord-integrals B(L, . . . , Ln) of L, . . . , Ln ∈ S n
o were defined by

Lu (see [])

B(L, . . . , Ln) =

n

∫

Sn–
d(L, u) · · ·d(Ln, u) dσ (u), (.)

where d(L, u) = ρ(L,u)+ρ(L,–u)
 is half the chord of L in the direction u.

3 Main results and proofs
In the following, we obtain some good properties and inequalities for the Lp harmonic
radial combinations of star bodies from the definitions directly.

Theorem . Let K , L ∈ S n
o , real p ≥ , α,β ≥ , and α + β = . Then

d̃(α · K +̂pβ · L) ≤ αd̃(K) + βd̃(L).

Proof According to the definition of Lp harmonic radial combination of star bodies (.)
and the fact that f (x) = x– 

p is convex, we have

ρ(α · K +̂pβ · L, u) ≤ αρ(K , u) + βρ(L, u), α + β = . (.)

So, using the definition of mean chord (.), we have

d̃(α · K +̂pβ · L) =


nωn

∫

Sn–
ρ(α · K +̂pβ · L, u) dσ (u) ≤ 

nωn

∫

Sn–
αρ(K , u) dσ (u)

+


nωn

∫

Sn–
βρ(L, u) dσ (u) = αd̃(K) + βd̃(L).

This completes the proof. �
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Theorem . (Positive multisublinear) Let K , L ∈ K n
o , real p ≥ , α,β ≥ , and α + β = .

Then for any K, . . . , Kn ∈ K n,

A(α · K +p β · L, K, . . . , Kn) ≥ αA(K , K, . . . , Kn) + βA(L, K, . . . , Kn). (.)

Proof According to the definition of Firey linear combination of convex bodies (.) and
the fact that f (x) = x


p is concave, we have

h(α · K +p β · L, u) ≥ αh(K , u) + βh(L, u), α + β = .

Then

b(α · K +p β · L, u) =
h(α · K +p β · L, u) + h(α · K +p β · L, –u)



≥ 

(
αh(K , u) + βh(L, u)

)
+



(
αh(K , –u) + βh(L, –u)

)

= αb(K , u) + βb(L, u).

So using definition (.), we can get

A(α · K +p β · L, K, . . . , Kn) =

n

∫

Sn–
b(α · K +p β · L, u)b(K, u) · · ·b(Kn, u) dσ (u)

≥ 
n

∫

Sn–
αb(K , u)b(K, u) · · ·b(Kn, u) dσ (u)

+

n

∫

Sn–
βb(L, u)b(K, u) · · ·b(Kn, u) dσ (u)

= αA(K , K, . . . , Kn) + βA(L, K, . . . , Kn).

This completes the proof. �

Just like Theorem ., we have one more general property than that of Theorem . as
follows. It is also the dual of inequality (.).

Theorem . (Positive multisublinear) Let K , L ∈ S n
o , p ≥ , α,β ≥ , and α +β = . Then

for any K, . . . , Kn ∈ S n
o ,

B(α · K +̂pβ · L, K, . . . , Kn) ≤ αB(K , K, . . . , Kn) + βB(L, K, . . . , Kn).

Proof As in the proof of Theorem ., by (.) we have

d(α · K +̂pβ · L, u) =
ρ(α · K +̂pβ · L, u) + ρ(α · K +̂pβ · L, –u)



≤ 

(
αρ(K , u) + βρ(L, u)

)

+


(
αρ(K , –u) + βρ(L, –u)

)

= αd(K , u) + βd(L, u).
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From definition (.) we have

B(α · K +̂pβ · L, K, . . . , Kn)

=

n

∫

Sn–
d(α · K +̂pβ · L, u) d(K, u) · · ·d(Kn, u) dσ (u)

≤ 
n

∫

Sn–
α d(K , u) d(K, u) · · ·d(Kn, u) dσ (u)

+

n

∫

Sn–
β d(L, u) d(K, u) · · ·d(Kn, u) dσ (u)

= αB(K , K, . . . , Kn) + βB(L, K, . . . , Kn).

This completes the proof. �

Next, we give the proof of Theorem . which was illustrated in Section . We shall prove
a generalized form of an upper bound for the dual mixed volume.

Theorem . Let K ∈ K n
o , p ≥ , and α,β ≥ , then

Ṽi
(
α · K +̂pβ · K∗,α · K∗+̂pβ · K

) ≤ Rn–iωn

with equality if and only if K is the unit ball centered at the origin, where R = max{ρ(α ·
K +̂pβ · K∗, u), u ∈ Sn–}.

Proof From the arithmetic-geometric mean inequality, we have

ρ(α · K +̂pβ · L, u)–p = αρ(K , u)–p + βρ(L, u)–p ≥ ρ(K , u)–αpρ(L, u)–βp,

that is,

ρ(α · K +̂pβ · L, u) ≤ ρ(K , u)αρ(L, u)β ,

where the equality holds if and only if ρ(K , u) = ρ(L, u).
If we let L = K∗ and use h(K∗, u) = 

ρ(K ,u) , then we have

ρ
(
α · K +̂pβ · K∗, u

) ≤ ρ(K , u)αρ
(
K∗, u

)β

=
ρ(K , u)α

h(K , u)β
≤ h(K , u)α

h(K , u)β
.

The second inequality follows since ρ(K , u) ≤ h(K , u).
In the same manner, we have

ρ
(
α · K∗+̂pβ · K , u

) ≤ h(K , u)β

h(K , u)α
.

Then

ρ
(
α · K +̂pβ · K∗, u

)
ρ
(
α · K∗+̂pβ · K , u

) ≤ .
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Using definition (.) of dual mixed volume, we have

Ṽi
(
α · K +̂pβ · K∗,α · K∗+̂pβ · K

)

=

n

∫

Sn–
ρ
(
α · K +̂pβ · K∗, u

)n–i
ρ
(
α · K∗+̂pβ · K , u

)i du

≤ 
n

∫

Sn–
max

u∈Sn–
ρ
(
α · K +̂pβ · K∗, u

)n–i du

= Rn–iωn.

From the equality conditions of the arithmetic-geometric mean inequality and h(K , u) =
ρ(K , u), the equality holds if and only if K is the unit ball centered at the origin. This
completes the proof. �

Remark . Theorem . is just the case i = n
 of Theorem ., and we complete the proof

of Theorem ..

In the following, we will obtain a dual Urysohn type inequality and a dual Bieberbach
type inequality.

Lemma . (see []) Let K ∈ K n
o , then

ωn–i+
n W i–n

n–(K) ≤ Wi
(
K∗),

where the equality holds if and only if K is an n-ball centered at the origin.

Theorem . Let K , L ∈ K n
o , p ≥ , and α,β ≥ , then

ωn–i+
n W i–n

n–(α · K +̂pβ · L) ≤ Wi
(
α · K∗ +p β · L∗),

where the equality holds if and only if α · K +̂pβ · L is an ellipsoid.

Proof From the definitions of Firey linear combinations and Lp harmonic radial combina-
tions, adding the relation h(K∗, u) = 

ρ(K ,u) , we have

hp((α · K +̂pβ · L)∗, u
)

=


ρ
p
α·K +̂pβ·L(u)

= ρ
–p
α·K +̂pβ·L(u)

= αρ–p(K , u) + βρ–p(L, u)

= αhp(K∗, u
)

+ βhp(L∗, u
)

= hp(α · K∗ +p β · L∗, u
)
.

Thus

(α · K +̂pβ · L)∗ = α · K∗ +p β · L∗.
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By Lemma ., we have

ωn–i+
n W i–n

n–(α · K +̂pβ · L) ≤ Wi
(
α · K∗ +p β · L∗),

the condition for the equality to hold can be obtained from Lemma . directly. �

If we let i =  in Theorem ., then we have the following.

Corollary . Let K , L ∈ K n
o , p ≥ , and α,β ≥ . Then

ωn+
n W –n

n–(α · K +̂pβ · L) ≤ V
(
α · K∗ +p β · L∗),

where the equality holds if and only if α · K +̂pβ · L is an ellipsoid.

At the same time, by the last equation in (.) we can obtain the dual Urysohn type
inequality (see [] for the dual Urysohn inequality):

Corollary . (Theorem .) Let K , L ∈ K n
o , p ≥ , and α,β ≥ . Then

nωnb(α · K +̂pβ · L)–n ≤ V
(
α · K∗ +p β · L∗),

the equality holds if and only if α · K +̂pβ · L is an ellipsoid.

This immediately yields the dual Bieberbach type inequality (see [] for the dual
Bieberbach inequality):

Corollary . (Theorem .) Let K , L ∈ K n
o , p ≥ , and α,β ≥ . Then

nωnD(α · K +̂pβ · L)–n ≤ V
(
α · K∗ +p β · L∗),

where D(K) denotes the diameter of K and the equality holds if and only if α · K +̂pβ · L is
an ellipsoid.
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