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Abstract
Let H(D) denote the space of all analytic functions on the unit disc D of the complex
plane C, ψ1,ψ2 ∈ H(D), and ϕ be an analytic self-map of D. In this paper, we
characterize the boundedness and compactness of a Stević-Sharma operator Tψ1,ψ2,ϕ

from Hardy spaces Hp (with 1≤ p <∞) to the logarithmic Bloch spaces Blog.
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1 Introduction
We begin with a brief review of relevant concepts and results in one complex variable. Let
D = {z ∈ C : |z| < } be the open unit disc in the complex plane C, H(D) the class of all
analytic functions on the unit disc.

For  ≤ r < , f ∈ H(D), we set

Mp(f , r) =
(


π

∫ π



∣∣f (reiθ )∣∣p dθ

)/p

,  < p < ∞,

M∞(f , r) = max
≤θ≤π

∣∣f (reiθ )∣∣.

For  < p < ∞, the classical Hardy space Hp is the space of all analytic functions f on the
unit disk D such that

‖f ‖Hp = sup
<r<

Mp(f , r) < ∞. (.)

It is well known that with the norm (.) the Hp space is a Banach space if  ≤ p < ∞, for
 < p < , Hp space is a nonlocally convex topological vector space, and d(f , g) = ‖f – g‖p

Hp

is a complete metric for it. Let H∞ denote the space of all f ∈ H(D) for which ‖f ‖∞ =
supz∈D |f (z)| < ∞. For more information about the Hp space, one may see, for example,
[, ].

The logarithmic Bloch space is defined as follows [, ]:

Blog =
{

f ∈ H(D) : ‖f ‖ = sup
z∈D

(
 – |z|) log


 – |z|

∣∣f ′(z)
∣∣ < ∞

}
.
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The space Blog is a Banach space under the norm ‖f ‖Blog = |f ()| + ‖f ‖. Let Blog, denote
the subspace of Blog consisting of those f ∈ Blog such that

lim|z|→

(
 – |z|) log


 – |z|

∣∣f ′(z)
∣∣ = .

It is obvious that there are unbounded Blog functions. For example, consider the function
f (z) = log log e

–z . There are also bounded function that they do not belong to Blog. Partic-
ularly consider the inner function S(z) = eγ

z+η
z–η , where γ ∈ (, ) and η ∈ ∂D. Then

∣∣S′(z)
∣∣( – |z|) log


 – |z| = γ e–γ

–|z|
|z–η| e

γ Re(zη)
|z–η|  – |z|

|z – η| log


 – |z| .

If let z → η on the horocycle –|z|
|z–η| = c, we get S /∈ Blog. Actually this is not the only bounded

function which does not belong to Blog. Consider an interpolating Blaschke product. That
is a product

∏
k≥

zk –z
–zk z := B(z), where {zk} ⊂ D such that

∑
k≥( – |zk|) < ∞ and sat-

isfies the following property. There exists δ ∈ (, ) such that
∏

k 
=j | zk –zj
–zk zj

| ≥ δ, for each
j ∈ {, , . . .}. Then we observe that for each j,

∣∣B′(zj)
∣∣( – |zj|

)
log


 – |zj| =

∏
k 
=j

∣∣∣∣ zk – zj

 – zkzj

∣∣∣∣ log


 – |zj| ≥ δ log


 – |zj| .

So, it is obvious that the interpolating Blaschke products do not belong to Blog but to H∞

[, Theorem .]. It is easily proved that for  < α < , Bα
 � Blog, � B and Bα

� Blog �

B, here Bα
 is the little α-Bloch space and Bα is the α-Bloch space.

The space Blog arises in connection to the study of certain operators with symbol. Arazy
in [] proved that the multiplication operator Mψ is bounded on the Bloch space if and
only if ψ ∈ H∞ ∩ Blog. In [], Brown and Shields extended this result to the little Bloch
space. Li and Stević in [, Theorem .] proved that Ig : Z → Z is bounded if and only if
g ∈ H∞ ∩Blog, here Ig f (z) =

∫ z
 f ′(ξ )g(ξ ) dξ .

The space Blog appeared in the study of the boundedness of the Hankel operators on the
Bergman space. Attele in [] proved that for f ∈ L

a(D), the Hankel operator Hf : L
a(D) →

L(D) is bounded if and only if ‖f ‖Blog < ∞, thus giving one reason, and not the only reason,
why log-Bloch-type spaces are of interest. Ye in [] proved that Blog, is a closed subspace
of Blog. For some recent papers on some operators on Blog, see, for example, [, –].

The composition, multiplication, and differentiation operator on H(D) are defined as
follows:

(Cϕ f )(z) = (f ◦ ϕ)(z) = f
(
ϕ(z)

)
, z ∈D;

(Mψ f )(z) = ψ(z)f (z), z ∈D;

Df (z) = f ′(z), z ∈D.

The differentiation operator is typically unbounded on many analytic function spaces.
For ψ,ψ ∈ H(D), let

Tψ,ψ,ϕ f (z) = ψ(z)f
(
ϕ(z)

)
+ ψ(z)f ′(ϕ(z)

)
, f ∈ H(D).
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The operator Tψ,ψ,ϕ was studied by Stević and co-workers for the first time in [, ],
also see []. This operator is related to the various products of multiplication, composi-
tion, and differentiation operators. It is clear that all products of composition, multipli-
cation, and differentiation operator in the following six ways can be obtained from the
operator Tψ,ψ,ϕ by fixing ψ, ψ. More specifically we have

MψCϕD = T,ψ ,ϕ ; MψDCϕ = T,ψϕ′ ,ϕ ; CϕMψD = T,ψ◦ϕ,ϕ ;

DMψCϕ = Tψ ′ ,ψϕ,ϕ ; CϕDMψ = Tψ ′◦ϕ,ψϕ,ϕ ; DCϕMψ = Tψ ′◦ϕϕ′ ,(ψ◦ϕ)ϕ′ ,ϕ .

Product-type operators on some spaces of analytic functions on the unit disk have been
the object of study for several recent years (see, for example, [–] and also related refer-
ences therein). Ohno in [] devoted most of the paper to finding necessary and sufficient
conditions for CϕD to be bounded as well as for CϕD to be compact on the Hardy space
H. The operator DCϕ was studied for the first time in [], where the boundedness and
compactness of DCϕ between Bergman and Hardy spaces are investigated. Li and Stević in
[, , , ] studied the boundedness and compactness of the operator DCϕ between
Bloch-type spaces, weighted Bergman spaces Ap

α and Bα , mixed-norm space and Bα as
well as the space of bounded analytic functions and the Bloch-type space. Liu and Yu in
[] studied the boundedness and compactness of the operator DCϕ from H∞ and Bloch
spaces to Zygmund spaces. Yang in [] studied the same problems for operators CϕD and
DCϕ from QK (p, q) space to Bμ and Bμ,. Stević in [] studied the boundedness and com-
pactness of the products of differentiation and multiplication operators DMψ from mixed-
norm spaces to weighted-type spaces. Liu and Yu in [] studied the operators DMψ from
H∞

μ to Zygmund spaces. Yu and Liu in [] investigated the same problems for operators
DMψ from mixed-norm spaces to Bloch-type spaces. Zhu in [] completely character-
ized the boundedness and compactness of linear operators which are obtained by taking
products of differentiation, composition and multiplication operators, and which act from
Bergman-type spaces to Bers spaces. Kumar and Singh in [] investigated the same prob-
lem for operators DCϕMψ acting on Ap

α and used the Carleson-type conditions. They also
found the essential norm estimates of MψDCϕ in the spirit of the work by Čučkovič and
Zhao in []. Liang and Zhou in [] investigated boundedness and compactness of the
operators CϕDm between Bα and Bβ and formulas for the essential norms were derived.
Liang and Zhou in [] found a new estimate of essential norm of composition followed
by differentiation between Bloch-type spaces. Ye in [] estimated the norm and the es-
sential norm of composition followed by differentiation from logarithmic Bloch spaces to
H∞. Hyvärinen and Nieminen in [] investigated the behavior of DuCϕ : Bα → Bβ , that
is, the product of a weighted composition operator uCϕ and the differentiation operator D,
between Bloch-type spaces with standard weights. Further information on some related
product-type operators on spaces of holomorphic functions on the unit ball are treated,
for example, in [–].

Inspired by the above results, the purpose of the paper is to study the boundedness and
compactness of the operator Tψ,ψ,ϕ from Hardy spaces Hp (with  ≤ p < ∞) to the loga-
rithmic Bloch spaces Blog. Throughout the paper, the letter C denotes a positive constant
which may vary at each occurrence, but it is independent of the essential variables.

The paper is organized as follows. Section  contains lemmas needed to prove Theo-
rem ., Corollary ., Corollary ., Theorem ., Corollary ., Corollary ., Theo-
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rem ., Corollary ., Corollary ., Theorem ., Corollary ., and Corollary .. Sec-
tion  considers the boundedness of the operator Tψ,ψ,ϕ : Hp → Blog(Blog,). Section 
considers the compactness of the operator Tψ,ψ,ϕ : Hp → Blog(Blog,).

2 Auxiliary results
For a better understanding, in this section we list up the following four auxiliary results
that are needed to prove our main results. The following lemma is folklore (see, e.g., [, ]).

Lemma . Assume that p ∈ (,∞) and f ∈ Hp. Then for each n ∈ N, there is a positive
constant C independent of f such that

∣∣f (n)(z)
∣∣ ≤ C‖f ‖Hp

( – |z|)n+/p , z ∈ D.

The following lemma in [, p.] plays an important role in characterizing the bound-
edness and the compactness of the operators under consideration in this paper.

Lemma . Assume that p > , Then there is a positive constant C(p) independent of f
such that

∫ π



dθ

| – z|p ≤ C(p)
( – |z|)p– , z ∈D.

The following criterion for the compactness follows by standard arguments (see, e.g.,
the proofs of the corresponding lemmas in [, Proposition .] or [, Lemma .]).
The details will not be pursued here.

Lemma . Let ψ,ψ ∈ H(D), ϕ denotes an analytic self-map of D. Then Tψ,ψ,ϕ : Hp →
Blog is compact if and only if Tψ,ψ,ϕ : Hp → Blog is bounded and for every bounded se-
quence {fn} in Hp which converges to zero uniformly on compact subsets of D as n → ∞, we
have ‖Tψ,ψ,ϕ fn‖Blog →  as n → ∞.

The following lemma can be proved similar to Lemma  in [] (see, also []). The
details are omitted.

Lemma . A closed set K in Blog, is compact if and only if it is bounded and satisfies

lim|z|→
sup
f ∈K

(
 – |z|) log


 – |z|

∣∣f ′(z)
∣∣ = .

3 The boundedness of the operator Tψ1,ψ2,ϕ : Hp →Blog(Blog,0)
First we consider the boundedness of the operator Tψ,ψ,ϕ : Hp → Blog.

Theorem . Let ψ,ψ ∈ H(D), ϕ denote an analytic self-map of D. Then the following
statements are equivalent.

(a) Tψ,ψ,ϕ : Hp → Blog is bounded;
(b)

sup
z∈D

( – |z|) log 
–|z| |ψ ′

(z)|
( – |ϕ(z)|)/p < ∞, (.)
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sup
z∈D

( – |z|) log 
–|z| |ψ(z)ϕ′(z) + ψ ′

(z)|
( – |ϕ(z)|)+/p < ∞ (.)

and

sup
z∈D

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p < ∞. (.)

Proof (b) ⇒ (a). First assume that (.), (.), and (.) hold. Then for every z ∈ D, f ∈ Hp,
by Lemmas . and ., we have

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ f )′(z)
∣∣

=
(
 – |z|) log


 – |z|

∣∣ψ ′
(z)f

(
ϕ(z)

)

+
(
ψ(z)ϕ′(z) + ψ ′

(z)
)
f ′(ϕ(z)

)
+ ψ(z)ϕ′(z)f ′′(ϕ(z)

)∣∣
≤ (

 – |z|) log


 – |z|
∣∣ψ ′

(z)
∣∣∣∣f (ϕ(z)

)∣∣

+
(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣∣∣f ′(ϕ(z)
)∣∣

+
(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)f ′′(ϕ(z)
)∣∣

≤ C‖f ‖Hp
( – |z|) log 

–|z| |ψ ′
(z)|

( – |ϕ(z)|)/p + C‖f ‖Hp
( – |z|) log 

–|z| |ψ(z)ϕ′(z) + ψ ′
(z)|

( – |ϕ(z)|)+/p

+ C‖f ‖Hp
( – |z|) log 

–|z| |ψ(z)ϕ′(z)|
( – |ϕ(z)|)+/p

≤ C‖f ‖Hp . (.)

On the other hand, by Lemma . we have
∣∣(Tψ,ψ,ϕ f )()

∣∣ =
∣∣ψ()f

(
ϕ()

)
+ ψ()f ′(ϕ()

)∣∣
≤ C

( |ψ()|
( – |ϕ()|)/p +

|ψ()|
( – |ϕ()|)+/p

)
‖f ‖Hp . (.)

Applying conditions (.) and (.), we deduce that the operator Tψ,ψ,ϕ : Hp → Blog is
bounded.

(a) ⇒ (b). Now assume that Tψ,ψ,ϕ : Hp → Blog is bounded. That means that there exists
a constant C such that

‖Tψ,ψ,ϕ f ‖Blog ≤ C‖f ‖Hp ,

for all f ∈ Hp. For f (z) =  ∈ Hp, we have

K := sup
z∈D

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣ < ∞. (.)

For f (z) = z ∈ Hp, we have

sup
z∈D

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)ϕ(z) + ψ(z)ϕ′(z) + ψ ′

(z)
∣∣ < ∞. (.)
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By (.), (.), the triangle inequality, and the fact that ‖ϕ‖∞ ≤ , we obtain

K := sup
z∈D

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣ < ∞. (.)

For f (z) = z ∈ Hp, we get

sup
z∈D

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

(
ϕ(z)

)

+ 
(
ψ(z)ϕ′(z) + ψ ′

(z)
)
ϕ(z) + ψ(z)ϕ′(z)

∣∣ < ∞. (.)

From (.), (.), (.), the triangle inequality, and the boundedness of the function ϕ(z),
we have

K := sup
z∈D

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣ < ∞. (.)

For a fixed w ∈ D and constants a, b, we consider the following test functions:

fw(z) =
a( – |w|)

( – wz)+/p –
( – |w|)

( – wz)+/p +
b( – |w|)

( – wz)+/p . (.)

By the elementary inequality (s + t)p ≤ C(sp + tp) (s > , t > ) and Lemma ., one has

Mp
p(fw, r) =


π

∫ π



∣∣fw
(
reiθ )∣∣p dθ

≤ C
∫ π



( |a|p( – |w|)p

| – wreiθ |+p +
( – |w|)p

| – wreiθ |+p +
|b|p( – |w|)p

| – wreiθ |+p

)
dθ

≤ C
( |a|p( – |w|)p

( – |w|r)p +
( – |w|)p

( – |w|r)p +
|b|p( – |w|)p

( – |w|r)p

)
,

hence fw ∈ Hp and

sup
w∈D

‖fw‖Hp ≤ C. (.)

A straightforward calculation shows that

f ′
w(z) = w

(
aA,p( – |w|)
( – wz)+/p –

A,p( – |w|)

( – wz)+/p +
bA,p( – |w|)

( – wz)+/p

)
(.)

and

f ′′
w (z) = (w)

(
aA,pA,p( – |w|)

( – wz)+/p –
A,pA,p( – |w|)

( – wz)+/p

)

+ (w)
(

bA,pA,p( – |w|)

( – wz)+/p

)
, (.)

where Aj,p = j + /p, j = , , , .
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If taking a = A,p
A,p

, b = A,p
A,p

in (.), then we have f ′
w(w) = f ′′

w (w) = ,

fw(w) =
C(p)

( – |w|)/p ,

where C(p) = a + b –  
= . Thus for w ∈D, we have

C ≥ ‖Tψ,ψ,ϕ fϕ(w)‖Hp

≥ sup
z∈D

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ fϕ(w))′(z)
∣∣

= sup
z∈D

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)fϕ(w)

(
ϕ(z)

)
+

(
ψ(z)ϕ′(z) + ψ ′

(z)
)
f ′
w
(
ϕ(z)

)

+ ψ(z)ϕ′(z)f ′′
ϕ(w)

(
ϕ(z)

)∣∣
≥ (

 – |w|)
(

log


 – |w|
)∣∣ψ ′

(w)fϕ(w)
(
ϕ(w)

)
+

(
ψ(w)ϕ′(w) + ψ ′

(w)
)
f ′
ϕ(w)

(
ϕ(w)

)

+ ψ(w)ϕ′(w)f ′′
ϕ(w)

(
ϕ(w)

)∣∣

=
|C(p)|( – |w|)(log 

–|w| )|ψ ′
(w)|

( – |ϕ(w)|)/p , (.)

from which we get (.).
For a fixed w ∈D, set

gw(z) = –
( – |w|)

( – wz)+/p +
c( – |w|)

( – wz)+/p +
d( – |w|)

( – wz)+/p . (.)

It is easy to see that

g ′
w(z) = w

(
–A,p( – |w|)

( – wz)+/p +
cA,p( – |w|)

( – wz)+/p +
dA,p( – |w|)

( – wz)+/p

)
, (.)

g ′′
w(z) = (w)

(
–A,pA,p( – |w|)

( – wz)+/p +
cA,pA,p( – |w|)

( – wz)+/p

)

+ (w)
(

dA,pA,p( – |w|)

( – wz)+/p

)
. (.)

By using the same argument in the above, we also have gw ∈ Hp and supw∈D ‖gw‖Hp ≤ C
with a direct calculation. We can take two constants c and d in (.) such that gw(w) =
g ′′

w(w) = , then

g ′
w(w) =

C(p)w
( – |w|)+/p .

Hence, for w ∈ D,

C ≥ ‖Tψ,ψ,ϕgϕ(w)‖Hp

≥ ( – |w|)(log 
–|w| )|ψ(w)ϕ′(w) + ψ ′

(w)||ϕ(w)|
( – |ϕ(w)|)+/p . (.)
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Using (.) we have

sup

 <|ϕ(w)|<

( – |w|)(log 
–|w| )|ψ(w)ϕ′(w) + ψ ′

(w)|
( – |ϕ(w)|)+/p

≤  sup

 <|ϕ(w)|<

( – |w|)(log 
–|w| )|ψ(w)ϕ′(w) + ψ ′

(w)||ϕ(w)|
( – |ϕ(w)|)+/p

≤  sup
w∈D

( – |w|)(log 
–|w| )|ψ(w)ϕ′(w) + ψ ′

(w)||ϕ(w)|
( – |ϕ(w)|)+/p

≤ C < ∞. (.)

According to (.), one has

sup
|ϕ(w)|≤ 



( – |w|)(log 
–|w| )|ψ(w)ϕ′(w) + ψ ′

(w)|
( – |ϕ(w)|)+/p

≤
(




)+/p

sup
|ϕ(w)|≤ 



(
 – |w|)

(
log


 – |w|

)∣∣ψ(w)ϕ′(w) + ψ ′
(w)

∣∣

≤
(




)+/p

K < ∞. (.)

Thus combining (.) and (.) we get the condition (.).
Next, we prove that (.). To see this, for a fixed w ∈D, put

hw(z) =
e( – |w|)

( – wz)+/p +
f ( – |w|)

( – wz)+/p –
( – |w|)

( – wz)+/p ; (.)

then

h′
w(z) = w

(
eA,p( – |w|)
( – wz)+/p +

fA,p( – |w|)

( – wz)+/p –
A,p( – |w|)

( – wz)+/p

)
(.)

and

h′′
w(z) = (w)

(
eA,pA,p( – |w|)

( – wz)+/p +
fA,pA,p( – |w|)

( – wz)+/p

)

– (w)
(

A,pA,p( – |w|)

( – wz)+/p

)
. (.)

We have hw ∈ Hp and supw∈D ‖hw‖Hp ≤ C. We can take two constants e and f in (.)
such that hw(w) = h′

w(w) = , then

h′′
w(w) =

C(p)(w)

( – |w|)+/p .

Thus for w ∈D, we have

C ≥ ‖Tψ,ψ,ϕhϕ(w)‖Blog

≥ ( – |w|)(log 
–|w| )|ψ(w)ϕ′(w)||ϕ(w)|

( – |ϕ(w)|)+/p . (.)
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By (.), we have

sup

 <|ϕ(w)|<

( – |w|)(log 
–|w| )|ψ(w)ϕ′(w)|

( – |ϕ(w)|)+/p

≤ sup

 <|ϕ(w)|<

( – |w|)(log 
–|w| )|ψ(w)ϕ′(w)||ϕ(w)|

( – |ϕ(w)|)+/p

≤  sup
w∈D

( – |w|)(log 
–|w| )|ψ(w)ϕ′(w)||ϕ(w)|

( – |ϕ(w)|)+/p

≤ C < ∞, (.)

sup
|ϕ(w)|≤ 



( – |w|)(log 
–|w| )|ψ(w)ϕ′(w)|

( – |ϕ(w)|)+/p

≤
(




)+/p

sup
|ϕ(w)|≤ 



(
 – |w|)

(
log


 – |w|

)∣∣ψ(w)ϕ′(w)
∣∣

≤
(




)+/p

sup
w∈D

(
 – |w|)

(
log


 – |w|

)∣∣ψ(w)ϕ′(w)
∣∣

≤ CK < ∞. (.)

Combining (.) with (.) we get (.). That ends the proof of Theorem .. �

The following corollary follows by setting ψ(z) = ψ(z) and ψ(z) =  in Theorem . at
once.

Corollary . ([, Theorem .]) Let ψ ∈ H(D), ϕ denote an analytic self-map of D, then
the weighted composition operator Wψ ,ϕ : Hp → Blog is a bounded operator if and only if

xψ ,ϕ = sup
z∈D

( – |z|) log 
–|z| |ψ ′(z)|

( – |ϕ(z)|)/p < ∞

and

yψ ,ϕ = sup
z∈D

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p < ∞.

The following corollary follows by setting ψ(z) = ψ ′(z) and ψ(z) = ψ(z)ϕ(z) in Theo-
rem . at once.

Corollary . Let ψ ∈ H(D), ϕ denote an analytic self-map of D, then the weighted com-
position followed by differentiation DWψ ,ϕ : Hp → Blog is a bounded operator if and only
if

sup
z∈D

( – |z|) log 
–|z| |ψ ′′(z)|

( – |ϕ(z)|)/p < ∞,

sup
z∈D

( – |z|) log 
–|z| |ψ ′(z)(ϕ′(z) + ϕ(z)) + ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p < ∞
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and

sup
z∈D

( – |z|) log 
–|z| |ψ(z)ϕ(z)ϕ′(z)|

( – |ϕ(z)|)+/p < ∞.

By using the density of the set of all polynomials in Hp, we can characterize the bound-
edness of Tψ,ψ,ϕ : Hp → Blog,.

Theorem . Let ψ,ψ ∈ H(D), ϕ denote an analytic self-map of D, then Tψ,ψ,ϕ : Hp →
Blog, is a bounded operator if and only if Tψ,ψ,ϕ : Hp → Blog is a bounded operator and

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣ = , (.)

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣ = , (.)

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣ = . (.)

Proof For the first half of the theorem we may assume that Tψ,ψ,ϕ : Hp → Blog, is
bounded, it is clear that Tψ,ψ,ϕ : Hp → Blog is bounded. For f ∈ Hp, Tψ,ψ,ϕ f ∈ Blog,.
Taking f (z) =  ∈ Hp, we have

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣ = ,

that is, (.) holds. Taking f (z) = z ∈ Hp, we get

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)ϕ(z) + ψ(z)ϕ′(z) + ψ ′

(z)
∣∣ = . (.)

By (.), (.), the triangle inequality, and ‖ϕ‖∞ ≤ , we have

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣ = ,

that is, (.) holds. Taking f (z) = z ∈ Hp, one has

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

(
ϕ(z)

)

+ 
(
ψ(z)ϕ′(z) + ψ ′

(z)
)
ϕ(z) + ψ(z)ϕ′(z)

∣∣ = . (.)

Using (.), (.), (.), the triangle inequality, and the boundedness of the function
ϕ(z) we have

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣ = .

Hence (.) follows. The proof of the first half of Theorem . is thus complete.
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As for the proof of the second half, we let Tψ,ψ,ϕ : Hp → Blog be bounded and (.),
(.), and (.) hold. Then for each polynomial L, one has

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕL)′(z)
∣∣

=
(
 – |z|) log


 – |z|

∣∣ψ ′
(z)L

(
ϕ(z)

)
+

(
ψ(z)ϕ′(z) + ψ ′

(z)
)
L′(ϕ(z)

)

+ ψ(z)ϕ′(z)L′′(ϕ(z)
)∣∣

≤ (
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣∣∣L(
ϕ(z)

)∣∣

+
(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣∣∣L′(ϕ(z)
)∣∣

+
(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣∣∣L′′(ϕ(z)

)∣∣

≤ (
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣‖L‖∞

+
(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣∥∥L′∥∥∞

+
(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣∥∥L′′∥∥∞

→  as |z| → ,

from which it follows that Tψ,ψ,ϕL ∈ Blog,. Since the set of all polynomials is dense in Hp,
thus for each f ∈ Hp, there is a sequence of polynomials {Lk}k∈N, such that

lim
k→∞

‖Lk – f ‖Hp = ,

so

‖Tψ,ψ,ϕLk – Tψ,ψ,ϕ f ‖Blog ≤ ‖Tψ,ψ,ϕ‖‖Lk – f ‖Hp →  as k → ∞.

Since Blog, is the closed subset of Blog, we see that Tψ,ψ,ϕ f ∈ Blog,, and consequently
Tψ,ψ,ϕ(Hp) � Blog,, the boundedness of the operator Tψ,ψ,ϕ : Hp → Blog implies that
Tψ,ψ,ϕ : Hp → Blog, is bounded. This ends the proof of Theorem .. �

According to Theorem . we immediately get the following.

Corollary . ([, Theorem .]) Let ψ ∈ H(D), ϕ denotes an analytic self-map of D,
then the weighted composition operator Wψ ,ϕ : Hp → Blog, is bounded if and only if Wψ ,ϕ :
Hp → Blog is bounded, ψ ∈ Blog,, and

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣ = .

Corollary . Let ψ ∈ H(D), ϕ denotes an analytic self-map of D, then the weighted com-
position followed by differentiation DWψ ,ϕ : Hp → Blog, is a bounded operator if and only
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if DWψ ,ϕ : Hp → Blog is bounded and

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ ′′(z)
∣∣ = ,

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ ′(z)
(
ϕ′(z) + ϕ(z)

)
+ ψ(z)ϕ′(z)

∣∣ = ,

lim|z|→

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ(z)ϕ′(z)
∣∣ = .

4 The compactness of the operator Tψ1,ψ2,ϕ : Hp →Blog(Blog,0)
Now we are in a position to prove compactness.

Theorem . Let ψ,ψ ∈ H(D), ϕ denote an analytic self-map of D, then the following
statements are equivalent.

(a) Tψ,ψ,ϕ : Hp → Blog is compact;
(b) Tψ,ψ,ϕ : Hp → Blog is bounded and

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ ′

(z)|
( – |ϕ(z)|)/p = , (.)

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z) + ψ ′

(z)|
( – |ϕ(z)|)+/p = , (.)

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = . (.)

Proof (b) ⇒ (a). Suppose that Tψ,ψ,ϕ : Hp → Blog is bounded, (.), (.), and (.) hold.
To prove that Tψ,ψ,ϕ : Hp → Blog is compact, for any bounded sequence {fk} in Hp with
fk →  uniformly on compact subsets of D, let ‖fk‖Hp ≤ , it suffices, in view of Lemma .,
to show that

‖Tψ,ψ,ϕ fk‖Blog →  as k → ∞.

By (.), (.), and (.), we have for any ε > , there exists ρ ∈ (, ) such that

( – |z|) log 
–|z| |ψ ′

(z)|
( – |ϕ(z)|)/p < ε, (.)

( – |z|) log 
–|z| |ψ(z)ϕ′(z) + ψ ′

(z)|
( – |ϕ(z)|)+/p < ε (.)

and

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p < ε, (.)

for ρ < |ϕ(z)| < . From the boundedness of the operator Tψ,ψ,ϕ : Hp → Blog and the proof
of Theorem ., (.), (.), and (.) hold. Since fk →  uniformly on compact subsets
of D, Cauchy’s estimate shows that f ′

k and f ′′
k converge to  uniformly on compact subsets
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of D, there exists a K ∈N such that k > K implies that

∣∣(Tψ,ψ,ϕ fk)()
∣∣ + sup

|ϕ(z)|≤ρ

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ fk)′(z)
∣∣

≤ ∣∣ψ()fk
(
ϕ()

)
+ ψ()f ′

k
(
ϕ()

)∣∣
+ sup

|ϕ(z)|≤ρ

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣∣∣fk
(
ϕ(z)

)∣∣

+ sup
|ϕ(z)|≤ρ

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣∣∣f ′
k
(
ϕ(z)

)∣∣

+ sup
|ϕ(z)|≤ρ

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣∣∣f ′′

k
(
ϕ(z)

)∣∣

≤ ∣∣ψ()
∣∣∣∣fk

(
ϕ()

)∣∣ +
∣∣ψ()f ′

k
(
ϕ()

)∣∣
+ K sup

|ϕ(z)|≤ρ

∣∣fk
(
ϕ(z)

)∣∣ + K sup
|ϕ(z)|≤ρ

∣∣f ′
k
(
ϕ(z)

)∣∣ + K sup
|ϕ(z)|≤ρ

∣∣f ′′
k
(
ϕ(z)

)∣∣

< Cε. (.)

When k > K, from (.), (.), (.), (.), Lemmas . and ., one has

‖Tψ,ψ,ϕ fk‖Blog

=
∣∣(Tψ,ψ,ϕ fk)()

∣∣ + sup
z∈D

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ fk)′(z)
∣∣

≤
(∣∣(Tψ,ψ,ϕ fk)()

∣∣ + sup
|ϕ(z)|≤ρ

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ fk)′(z)
∣∣)

+ sup
ρ<|ϕ(z)|<

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ fk)′(z)
∣∣

< Cε + C sup
ρ<|ϕ(z)|<

( – |z|) log 
–|z| |ψ ′

(z)|
( – |ϕ(z)|)/p ‖fk‖Hp

+ C sup
ρ<|ϕ(z)|<

( – |z|) log 
–|z| |ψ(z)ϕ′(z) + ψ ′

(z)|
( – |ϕ(z)|)+/p ‖fk‖Hp

+ C sup
ρ<|ϕ(z)|<

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p ‖fk‖Hp

< Cε,

it follows that the operator Tψ,ψ,ϕ : Blog → Blog is compact.
(a) ⇒ (b). It is clear that the compactness of Tψ,ψ,ϕ : Hp → Blog implies the bounded-

ness of Tψ,ψ,ϕ : Hp → Blog. If ‖ϕ‖∞ < , it is clear that the limit in (.), (.), and (.)
is vacuously equal to zero. Hence, assume that ‖ϕ‖∞ = , let {zk} be a sequence in D such
that |ϕ(zk)| →  as k → ∞. We can use the test functions

fk(z) = fϕ(zk )(z),

fw here is defined in (.). Equations (.), (.), and (.) tell us that

sup
k∈N

‖fk‖Hp ≤ C
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and

fk
(
ϕ(zk)

)
=

C(p)
( – |ϕ(zk)|)/p , f ′

k
(
ϕ(zk)

)
= f ′′

k
(
ϕ(zk)

)
= .

We see that fk converges to  uniformly on D, hence fk converges to  uniformly on com-
pact subsets of D. Then fk is a bounded sequence in Hp which converges to  uniformly
on compact subsets of D. By Lemma ., we obtain

lim
k→∞

‖Tψ,ψ,ϕ fk‖Blog = .

From (.) and the compactness of Tψ,ψ,ϕ : Hp → Blog, we get

|C(p)|( – |zk|)(log 
–|zk | )|ψ ′

(zk)|
( – |ϕ(zk)|)/p

≤ ‖Tψ,ψ,ϕ fk‖Blog →  as k → ∞.

This proves (.).
Next, let

gk(z) = gϕ(zk )(z),

where gw is defined in (.). By a direct calculation, we find that gk converges to  uni-
formly on compact subsets of D, gk ∈ Hp, and supk∈N ‖gk‖Hp ≤ C. By Lemma ., we have

lim
k→∞

‖Tψ,ψ,ϕgk‖Blog = .

Note that from (.), (.), and (.), one has gk(ϕ(zk)) = g ′
k(ϕ(zk)) = ,

g ′
k
(
ϕ(zk)

)
=

C(p)ϕ(zk)
( – |ϕ(zk)|)+/p .

From (.) and using the compactness of the operator Tψ,ψ,ϕ : Hp → Blog, we get that

|C(p)|( – |zk|)(log 
–|zk | )|ψ(zk)ϕ′(zk) + ψ ′

(zk)||ϕ(zk)|
( – |ϕ(zk)|)+/p

≤ ‖Tψ,ψ,ϕgk‖Blog →  as k → ∞. (.)

By (.) and |ϕ(zk)| → , we have

lim
k→∞

( – |zk|)(log 
–|zk | )|ψ(zk)ϕ′(zk) + ψ ′

(zk)|
( – |ϕ(zk)|)+/p = ,

it implies that (.) holds.
Analogously, (.) can be proved by choosing the test function hk(z) = hϕ(zk )(z), hw here

is defined in (.), and that proves Theorem .. �
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From Theorem . we can get the characterization of the compactness of the weighted
composition operator Wψ ,ϕ : Hp → Blog and the operator DWψ ,ϕ : Hp → Blog.

Corollary . ([, Theorem .]) Let ψ ∈ H(D), ϕ denote an analytic self-map of D, then
the weighted composition operator Wψ ,ϕ : Hp → Blog is compact if and only if Wψ ,ϕ : Hp →
Blog is bounded and

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ ′(z)|

( – |ϕ(z)|)/p = ,

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = .

Corollary . Let ψ ∈ H(D), ϕ denote an analytic self-map of D, then the weighted com-
position followed by differentiation DWψ ,ϕ : Hp → Blog is a compact operator if and only if
DWψ ,ϕ : Hp → Blog is bounded and

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ ′′(z)|

( – |ϕ(z)|)/p = ,

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ ′(z)(ϕ′(z) + ϕ(z)) + ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = ,

lim
|ϕ(z)|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = .

Next we consider the compactness of Tψ,ψ,ϕ : Hp → Blog,. The compactness of opera-
tors of which the range is in Blog, has a close relation with Lemma ..

Theorem . Let ψ,ψ ∈ H(D), ϕ denote an analytic self-map of D, then the following
statements are equivalent.

(a) Tψ,ψ,ϕ : Hp → Blog, is compact;
(b)

lim|z|→

( – |z|) log 
–|z| |ψ ′

(z)|
( – |ϕ(z)|)/p = , (.)

lim|z|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z) + ψ ′

(z)|
( – |ϕ(z)|)+/p =  (.)

and

lim|z|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = . (.)

Proof (b) ⇒ (a). Suppose that (.), (.), and (.) hold. By Theorems . and ., it is
clear that Tψ,ψ,ϕ : Hp → Blog, is bounded. Taking the supremum in inequality (.) over
all f ∈ Hp such that ‖f ‖Hp ≤  and letting |z| → , yields

lim|z|→
sup

‖f ‖Hp ≤

(
 – |z|) log


 – |z|

∣∣(Tψ,ψ,ϕ f )′(z)
∣∣ = .

Therefore, by Lemma ., we have Tψ,ψ,ϕ : Hp → Blog, is compact.
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(a) ⇒ (b). Assume that Tψ,ψ,ϕ : Hp → Blog, is compact. Firstly, it is obvious Tψ,ψ,ϕ :
Hp → Blog is compact. By Theorem ., ψ, ψ, and ϕ satisfy conditions (.), (.), and
(.). It follows that for every ε > , there exists ρ ∈ (, ) such that (.), (.), and (.)
hold for ρ < |ϕ(z)| < . On the other hand, since Tψ,ψ,ϕ : Hp → Blog, is compact, then
Tψ,ψ,ϕ : Hp → Blog, is bounded. By Theorem ., ψ, ψ, and ϕ also satisfy conditions
(.), (.), and (.). Thus for ε > , there exists γ ∈ (, ) such that

(
 – |z|) log


 – |z|

∣∣ψ ′
(z)

∣∣ <
(
 – ρ)/p

ε, (.)

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z) + ψ ′
(z)

∣∣ <
(
 – ρ)+/p

ε, (.)

(
 – |z|) log


 – |z|

∣∣ψ(z)ϕ′(z)
∣∣ <

(
 – ρ)+/p

ε, (.)

for γ < |z| < . Next, we prove that (.) and (.) imply (.). The proof of (.) and
(.) is similar, hence it will be omitted.

From (.), one has, when γ < |z| <  and ρ < |ϕ(z)| < ,

( – |z|) log 
–|z| |ψ ′(z)|

( – |ϕ(z)|)/p < ε. (.)

By (.), we get, when γ < |z| <  and |ϕ(z)| ≤ ρ ,

( – |z|) log 
–|z| |ψ ′(z)|

( – |ϕ(z)|)/p

≤ ( – |z|) log 
–|z| |ψ ′(z)|

( – ρ)/p < ε. (.)

Having in mind (.) and (.) we conclude that (.) holds. This finishes the proof.
�

Due to Theorem ., the characterization of the compactness of the weighted compo-
sition operator Wψ ,ϕ : Hp → Blog, and the operator DWψ ,ϕ : Hp → Blog, are now obvi-
ous.

Corollary . ([, Theorem .]) Let ψ ∈ H(D), ϕ denote an analytic self-map of D, then
the weighted composition operator Wψ ,ϕ : Hp → Blog, is compact if and only if

lim
z|→

( – |z|) log 
–|z| |ψ ′(z)|

( – |ϕ(z)|)/p = 

and

lim|z|→

( – |z|) log 
–|z| |ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = .

Corollary . Let ψ ∈ H(D), ϕ denote an analytic self-map of D, then the weighted com-
position followed by differentiation DWψ ,ϕ : Hp → Blog, is a compact operator if and only
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if

lim|z|→

( – |z|) log 
–|z| |ψ ′′(z)|

( – |ϕ(z)|)/p = ,

lim|z|→

( – |z|) log 
–|z| |ψ ′(z)(ϕ′(z) + ϕ(z)) + ψ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = ,

and

lim|z|→

( – |z|) log 
–|z| |ψ(z)ϕ(z)ϕ′(z)|

( – |ϕ(z)|)+/p = .
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20. Stević, S, Sharma, A, Bhat, A: Essential norm of products of multiplication composition and differentiation operators

on weighted Bergman spaces. Appl. Math. Comput. 218(6), 2386-2397 (2011)
21. Zhang, F, Liu, Y: Products of multiplication, composition and differentiation operators from mixed-norm spaces to

weighted-type spaces. Taiwan. J. Math. 18(6), 1927-1940 (2014)
22. Datt, G: Product of composition and multiplication operators. Acta Math. Vietnam. 37(2), 293-300 (2012)
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