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Abstract

We propose a novel three-layered neural network-based architecture for predicting the Sixteen Personality Factors
from facial features analyzed using Facial Action Coding System. The proposed architecture is built on three layers:
a base layer where the facial features are extracted from each video frame using a multi-state face model and the
intensity levels of 27 Action Units (AUs) are computed, an intermediary level where an AU activity map is built
containing all AUs’ intensity levels fetched from the base layer in a frame-by-frame manner, and a top layer consisting
of 16 feed-forward neural networks trained via backpropagation which analyze the patterns in the AU activity map and
compute scores from 1 to 10, predicting each of the 16 personality traits. We show that the proposed architecture
predicts with an accuracy of over 80%: warmth, emotional stability, liveliness, social boldness, sensitivity, vigilance, and
tension. We also show there is a significant relationship between the emotions elicited to the analyzed subjects and
high prediction accuracy obtained for each of the 16 personality traits as well as notable correlations between distinct
sets of AUs present at high-intensity levels and increased personality trait prediction accuracy. The system converges to
a stable result in no more than 1 min, making it faster and more practical than the Sixteen Personality Factors
Questionnaire and suitable for real-time monitoring of people’s personality traits.

1 Introduction
Greek philosophers believed that the outer appearance
of people, especially their face, conveys relevant informa-
tion about their character and personality. The same be-
lief can be found in other cultures as well. Egyptians
believed that the human face proportions are closely
linked to consciousness and how feelings are expressed,
while in Chinese culture, the facial structure played a
major role in Daoist philosophy and was thought to re-
veal information about the mental and physical state of
an individual [1]. Although this practice was disputed
throughout the Middle Ages and up until the nineteenth
century, it has regained interest in the latest years, and
several recent studies showed that facial appearance is
indeed linked to different psychological processes and
behaviors [2–4]. Recent research showed that people’s
evaluation of others is also closely related to their phys-
ical appearance, as we tend to interact with other people

based on our first impression [5], and this first impres-
sion is in many ways influenced by the appearance of
the people we interact with [6]. Several psychological
studies also showed that our unconscious judgment of
the personality traits of others during first impression
plays a major role in social collaboration [7], elections
[8], criminal court sentences [9], economic interactions
based on trust [10], or in the healthcare industry [11].
Based on these studies, research in machine learning

was also conducted to analyze the facial features of in-
dividuals in order to evaluate different psychological
characteristics automatically. Although at first focused
on predicting the emotional state of people [12, 13], as
Facial Expression Recognition (FER) systems gained
momentum and started achieving acceptable prediction
accuracy, recent research papers have begun using facial
features analysis for more complex tasks, such as tracking
and predicting eye gaze [14, 15], predicting driver atten-
tion for car accident prevention [14, 16], predicting stress
levels [2, 17], diagnosing depression [3], assessing the fa-
cial attractiveness of individuals [18], evaluating people’s
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trust [19], and predicting personality traits [4, 20–23]. All
these research studies showed that the face indeed con-
veys information that can be analyzed to predict different
psychological features of an individual.
In this work, we focus on analyzing the relationship

between the personality traits evaluated using the 16
Personality Factors (16PF) model and the facial muscle
activity studied by means of the Facial Action Coding
System (FACS) on subjects recorded in different emo-
tional states. Our research brings several contributions
to the affective computing domain. Firstly, this is the
first paper that studies the 16PF traits using FACS. The
only similar work that uses the 16PF methodology is
presented in [23]. However, it only focuses on analyzing
a set of still images using a Convolutional Neural
Network (CNN) and CNN features, while our research
uses the FACS methodology for studying the face, as
FACS is better at predicting hidden emotions [24–26],
hence will provide more accuracy and reliability to the
personality prediction task knowing there is a close rela-
tionship between personality traits and how emotions
are expressed [27, 28]. FACS [29] also offers an in-depth
analysis of the facial muscle activity by studying micro
expressions and, as we use video recordings of subjects’
frontal face and not still images, our paper shows signifi-
cant prediction accuracy improvement compared to [23]
which we detail in the next sections. Secondly, our pro-
posed work also studies the relationships between the
emotions induced to the subjects involved in the tests,
their facial muscle activity (the activation of the Action
Units (AUs) analyzed), and their personality traits, hence
provides a broader picture on how these three concepts
influence each other and how their analysis can be opti-
mized for achieving high prediction accuracy. As we will
show in the next section, this is the first paper that con-
ducts such an extensive study on 16PF traits’ prediction.
Lastly, we propose a novel multi-state face model archi-
tecture for the personality prediction task built on three
layers, introducing a novel intermediary layer where the
facial muscle activity is stored in a specifically designed
map and then fetched to the top layer where a set of 16
neural networks assess each of the 16 personality traits
in a pattern recognition task. Such novel architecture
provides the opportunity to conduct more in-depth ana-
lysis of personality trait prediction and to study the rela-
tionships between the three concepts mentioned before
(facial muscle activity, emotion, and personality trait).
The proposed system can have a large variety of uses

as it computes the personality traits in less than 1 min
and can be used to monitor the personality traits of an
individual in real time. It could be useful in applications
for career development and counseling in the human re-
sources or academic areas [30, 31], adaptive e-learning
systems [32], diagnosis of mental health disorders

(borderline personality disorder [33], depression [3],
schizophrenia [34], eating disorder [35] or sleep disor-
ders [36]), virtual psychologist applications [37], and per-
sonalized health assistance [38]. It was also shown that
there are links between common physical diseases (such
as heart attacks, diabetes, cancer, strokes, arthritis,
hypertension, and respiratory disease) and Big Five per-
sonality traits [39] such that these diseases influence the
age-related personality accelerating with 2.5 years de-
crease for extraversion, 5 years decrease for conscien-
tiousness, 1.6 years decrease for openness, and 1.9 years
increase for emotional stability. Therefore, by monitor-
ing in real time the personality traits of an individual
and spotting these changes in personality traits, we
could diagnose several physical diseases. It is important
to mention that personality types do not alter from one
moment to another rapidly, but we usually need longer
periods of time to see changes; these changes are
typically associated with aging, mental, or physical
diseases [39].
In the following section, we describe the state-of-the-

art in the area of affective computing focusing on the re-
search conducted for predicting personality traits from
facial features. Next, we present the two psychological
frameworks employed in this study (16PF and FACS) as
well as thoroughly describe the design of the proposed
architecture, illustrating each of the three layers in detail:
the base layer is where facial features are collected and
AUs’ intensity levels are determined using specific classi-
fication methods, the intermediary layer is where an AU
activity map is built containing the frame-by-frame
changes in intensity levels for each analyzed AU, and the
top layer composed of 16 Feed-Forward Neural Net-
works (FFNNs) (each of them associated to one of the
16PF traits) which take as input the AU activity map and
compute a score on a scale from 1 to 10 for each per-
sonality trait, in accordance with 16PF methodology.
The design of these neural networks, the hyperpara-
meters used, and the outputs are described in detail. We
also present the database we created to test the proposed
architecture and show the experimental results for both
intra-subject and inter-subject methodologies. We detail
as well the further tests conducted to study the patterns
between the emotions induced, the facial muscle activity,
and the personality trait prediction accuracy, and we
share the results obtained from this analysis.

1.1 Related work
As shown in the previous section, research conducted in
the area of face analysis has been initially focused on
predicting the emotional states of an individual and only
recently has it extended to more complex tasks, such as
predicting personality traits. In the following paragraphs,
we present the state-of-the-art in these two major
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research areas, FER systems and personality trait predic-
tion systems, focusing on the latter as it is more relevant
to our current work.
FER systems are typically divided into two categories:

FER systems based on FACS and FER systems that use
other methods for face analysis. FACS is the most used
approach for classifying the facial muscle activity and
correlating it with the emotions expressed by the ana-
lyzed subject [40–44]. It was used successfully with dif-
ferent architectures and different classification methods.
Jiang et al. [40] make use of Local Phase Quantization
from Three Orthogonal Planes (LPQ-TOP) to analyze
the FACS AUs divided into temporal segments and clas-
sified using a set of Hidden Markov Models (HMMs).
The proposed approach increases the AU classification
accuracy by over 7% compared with the state-of-the-art
methods. Wang et al. [41] use Dynamic Bayesian
Networks (DBNs) for the AU classification task in a
three-layered architecture: bottom layer (where facial
feature points are extracted for each facial component),
middle layer (where AUs are classified using DBNs), and
a top layer (where six prototypical emotions are mapped
on the classified AUs). Their proposed system shows
over 70% accuracy for emotion prediction. Eleftheriadis
et al. [42] employ Discriminative Shared Gaussian
Process Latent Variable Models (DS-GPLVM) to solve
the multi-view and view-invariant classification prob-
lems. They define a discriminative manifold for facial ex-
pressions that is primarily learned and only after that the
expression classification task is triggered. The proposed
approach shows promising results for AU classification
in multi-view FER systems. Happy et al. [43] suggest the
use of salient patches with discriminative features and
use one-against-one classification to classify pairs of
expressions. The purpose of this approach is to
automate the learn-free facial landmark detection and
provide better execution times. Tested on the Extended
Cohn-Kanade (CK+) [44] and JAFFE [45] databases, the
method shows accuracy similar to that of other state-of-
the-art studies but computed significantly faster.
Regarding FER systems using other face analysis

methods for predicting emotions, we mention the use of
Local Directional Pattern (LDP) features [12] extracted
from time-sequential depth videos, augmented using op-
tical flows, and classified through Generalized Discrim-
inant Analysis (GDA). The resulted LDP features are
then fetched to a chain of HMMs trained to predict the
six basic emotions. The proposed method outperforms
the state-of-the-art by up to 8% in terms of emotion pre-
diction accuracy. Genetic programming can also be used
for FER [46], specifically for searching and optimizing
the parameters defined for determining the location, in-
tensity, and type of the emotional events, and how these
are linked to each emotion. Tested on the Mars-500

database, the proposed method predicts the six basic
emotions with over 75% accuracy. A rather new
approach is the use of slow feature analysis (SFA) for dy-
namic time-varying scenarios [47] with the main advan-
tage of being able to find uncorrelated projections by
means of an Expectation-Maximization (EM) algorithm.
Neural networks have also been used in FER systems,
specifically Long Short-Term-Memory Recurrent Neural
Networks (LSTM-RMM) [15]. The proposed method de-
fines a set of Continuous Conditional Random Fields
(CCRF) that are used to predict emotions from both en-
cephalogram (EEG) signals and facial features. The re-
sults show that facial features offer better accuracy for
emotion prediction, but the EEG signals convey
emotion-related information that could not be found
when analyzing the face. Specific descriptors have also
been employed [48] with a set of soft biometric algo-
rithms for predicting the age, race, and gender of the
subject whose facial features are analyzed, and the ap-
proach offers high accuracy when tested on two publicly
available databases.
As far as personality trait prediction systems are con-

cerned, despite the increasing interest in this domain in
recent years, it is still understudied and only a few works
have taken the challenge of designing such systems.
Setyadi et al. [4] propose the use of Artificial Neural
Networks (ANNs) trained via backpropagation for pre-
dicting the four fundamental temperaments (sanguine,
choleric, melancholic, and phlegmatic) by analyzing a set
of facial features: the dimension of the eyes, the distance
between two opposite corners of the eyes, the width of
the nose, mouth and eyes, and the thickness of the lower
lip. An overall prediction accuracy of 42.5% is achieved,
mainly because of low-personality prediction rates for
choleric and phlegmatic types. Teijeiro-Mosquera et al.
[20] use the Computer Expression Recognition Toolbox
(CERT) in order to find relationships between facial fea-
tures and the Five-Factor Model (FFM) personality traits
when analyzing the faces of 281 YouTube vloggers.
Their research shows that multiple facial feature cues
are correlated with the FFM personality traits, and extra-
version can be predicted with 65% accuracy. Chin et al.
[16] propose an exaggeration mapping (EM) method
that transforms the facial motions in exaggerated
motions and use them to predict the Myers-Briggs Type
Indicator (MBTI) personality traits with an overall
prediction accuracy of 60%.
Regarding research papers that use FACS for analyzing

the face and predicting the personality type of an indi-
vidual, the only such research is conducted in [21] where
FFNNs are used to study the AU activity and predict the
FFM personality traits. The proposed method offers over
75% prediction accuracy for neuroticism, openness to ex-
perience, and extraversion, results being computed in
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less than 4 min. 16PF traits’ correlation to facial features
has also been understudied, the only such research being
proposed by Zhang et al. [23]. An end-to-end CNN is
built to predict the 16PF traits and intelligence. Tested
on a custom-made database comprising frontal face im-
ages, the method shows satisfactory prediction accuracy
and reliability for only rule-consciousness and tension,
while other personality traits, as well as intelligence,
could not be successfully predicted. Compared to the
previously described works, the current research con-
ducts a more extensive study of the 16PF traits’ predic-
tion by using FACS which has not been approached in
any of the previous research papers. It also provides an
analysis of the relationship between the emotions in-
duced to the subjects involved in the tests, their facial
muscle activity and their personality traits, hence offers
a broader picture of the links between these three con-
cepts which has not been studied before. The use of
video recordings for this study is also a novelty in this
area. Most research studies abovementioned make use of
only still images. Video recordings provide more infor-
mation about the facial activity which, analyzed using
FACS, will result in better personality type prediction ac-
curacy, as we show in the next sections. The three-
layered architecture proposed in this paper where an AU
activity map is built and fetched to a set of 16 FFNNs
that predict the 16PF traits in a pattern recognition task
is also a novel approach which has not been used in any
other previous research paper.

2 Methods
2.1 Theoretical model
As previously mentioned, the two psychological frame-
works that we employ in the current work are 16PF and
FACS. We detail each of these instruments in the follow-
ing subsections.

2.1.1 16PF
16PF is a psychometric self-report personality question-
naire developed by R. B. Cattell and A. D. Mead [49] and
is generally used by psychologists for diagnosing mental
disorders and planning therapies for individuals (as 16PF
offers the ability to measure anxiety and psychological
problems), for career counseling and vocational guidance
[50, 51], operational selection [50], predicting couple com-
patibility [51], or studying academic performance of stu-
dents [50]. We have chosen 16PF in our research because
it was thoroughly tested and is highly utilized by clini-
cians, being translated in over 30 languages and dialects
and used internationally [49].
16PF originates from the five primary traits, similar to

FFM, but the main difference is that 16PF extends the
scoring on the second-order traits as well, providing
multi-leveled information describing the personality

profile of the human subject [49]. Cattell mentions that
at the basis of 16PF stand the individual differences in
cognitive abilities, the transitory emotional states, the
normal and abnormal personality traits, and the dynamic
motivational traits [52]. Because of this, the 16PF ques-
tionnaire asks routine, concrete questions instead of ask-
ing the respondents to self-assess their personality,
therefore removing the subjectivity and self-awareness of
the subject. Filling in the 16PF questionnaire usually
takes between 25 and 50 min and is designed for adults
at least 16 years of age [49]. The 16PF traits evaluated
using this questionnaire are the following:

– Warmth (A), reserved/warm
– Reasoning (B), concrete thinking/abstract thinking
– Emotional stability (C), reactive/emotionally stable
– Dominance (E), submissive/dominant
– Liveliness (F), serious/lively
– Rule consciousness (G), expedient/rule conscious
– Social boldness (H), shy/bold
– Sensitivity (I), unsentimental/sensitive
– Vigilance (L), trusting/vigilant
– Abstractedness (M), practical/abstracted
– Privateness (N), forthright/shrewd
– Apprehension (O), self-assured/apprehensive
– Openness to change (Q1), traditional (conservative)/

open-to-change
– Self-reliance (Q2), group-dependent/self-reliant
– Perfectionism (Q3), tolerates disorder/perfectionistic
– Tension (Q4), relaxed/tense

All these traits are evaluated using a score from 1 to
10 (e.g., for trait warmth, 1 means “reserved,” 10 means
“warm,” and any score in between is a nuance within the
two extreme values). The abovementioned 16PF traits
can also be grouped into five factors (except for reason-
ing which is treated separately) [49] as follows:

– Introversion/extraversion: A, F, H, N, and Q2
– Low anxiety/high anxiety: C, L, O, and Q4
– Receptivity/tough-mindedness: A, I, M, and Q1
– Accommodation/independence: E, H, L, and Q1
– Lack of restraint/self-control: F, G, M, and Q3

Our work aims to predict the 16PF traits by analyzing
the facial features of individuals using FACS. Such a sys-
tem could provide more robustness to the measurement
of the 16PF traits as the 16PF questionnaire can be faked
by subjects knowing the questions beforehand which de-
creases its reliability, whereas analyzing the face using
FACS provides robust results even in cases when emo-
tions are faked by the subject [24–26]. It is also more
practical than filling in a questionnaire which takes
minimum a 25 min and requires a specialized person to
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interpret the results while predicting the 16PF traits
from facial features is done automatically and ad hoc
with significantly less effort from both the subject and
the psychologist’s sides.

2.1.2 FACS
To analyze the facial muscle activity in correlation with
the 16PF traits, we used FACS [29], a system developed
by Eckman and Friesen in 1978. FACS defines a set of
AUs which are closely related to the movement of spe-
cific facial muscles and are activated in different ways
when the subject is expressing different emotions. We
use FACS in our current work as it proved to be a reli-
able model for determining real emotions (even when
subjects are trying to act different ones, as the residual
facial activity conveying the “real” emotions is persisting
in most cases [24–26]); hence, it provides more robust-
ness and ensures that we are analyzing the emotion-
relevant information.
FACS is composed of 46 AUs which are typically

divided into two large categories [44]:

– Additive; when the AU is activated, it determines
the activation of another AU or group of AUs. All
AUs involved in this activity are grouped in a
structure called Action Unit Cluster (AUC).

– Non-additive; the activation of an AU is
independent of the activation of any other AU.

In the latest revision of FACS 2002 [53], several AUs
can also be evaluated in terms of intensity, using the fol-
lowing levels: A - Trace (classification score between 15
and 30), B - Slight (classification score between 30 and
50), C - Marked and pronounced (classification score be-
tween 50 and 75), D - Severe or extreme (classification
score between 75 and 85), E - Maximum (classification
score over 85), and O - AU is not present (classification
score below 15). Because the task of personality trait
prediction is a complex one and the output of the sys-
tem consists of 16 scores from 1 to 10 for each of the
16PF traits, we need to have a scaled input as well in-
stead of a binary one in order to convey all the slight
changes in facial muscle activity from each video frame.
For this purpose, in our current research, we will analyze

only AUs for which intensity levels have been described
in the latest FACS revision.

2.2 Proposed architecture
To study the relationships between the emotions in-
duced in the test subject, the facial muscle activity and
the personality trait prediction accuracy, we designed a
neural network-based architecture on three layers:

– The base layer; facial features are extracted from
each frame in the video samples, and a set of classifiers
is used to compute the AU classification scores.

– The intermediary layer; an AU activity map is built
containing the AU classification scores computed in
the base layer for each frame from the analyzed
video sample.

– The top layer; a set of FFNNs is used to predict the
scores for all 16PF traits.

In the following subsections, we describe each of these
layers in detail.

2.2.1 The base layer
The base layer is designed for extracting the facial features
from each video frame and for translating them into AU
classification scores representing the intensity level of each
AU. We use a multi-state face model for facial features ex-
traction and AU classification, similar to the one pre-
sented in our previous work [54], dividing the face into
five components: eye component, cheek component, brow
component, wrinkles component, and lips component.
The face segmentation is depicted in Fig. 1.
Out of the 46 AUs, only 30 AUs are anatomically re-

lated to the contractions of specific facial muscles: 12 for
the upper face and 18 for the lower face [44]. From these
two categories in our current work, we only analyze the
following AUs:

– From the upper face, we analyze AU1 (inner brow
raiser), AU2 (outer brow raiser), AU4 (brow lowerer),
AU5 (upper lid raiser), AU6 (cheek raiser), AU7
(lid tightener), AU43 (eyes closed), and AU45 (blink).

– From the lower face, we analyze AU9 (nose
wrinkler), AU10 (upper lip raiser), AU11 (nasolabial

Fig. 1 Face segmentation
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deepener), AU12 (lip corner puller), AU13
(sharp lip puller), AU14 (dimpler), AU15 (lip corner
depressor), AU16 (lower lip depressor), AU17
(chin raiser), AU18 (lip pucker), AU20
(lip stretcher), AU22 (lip funneler), AU23
(lip tightener), AU24 (lip pressor), AU25 (lips part),
and AU28 (lip suck).

We have excluded AU41 (lid droop), AU42 (slit),
AU44 (squint), and AU46 (wink) from the upper face
AUs and AU26 (jaw drop) and AU27 (mouth stretch)
from the lower face AUs as these were not coded with
criteria of intensity in the latest FACS revision and, as
mentioned before, as the 16PF traits’ prediction is a
complex task with a scaled output, we need a scaled in-
put as well, to have enough information for the 16
FFNNs to predict with high accuracy the 16PF traits’
scores. Moreover, these AUs are part of the standard set
used in the majority of FER systems based on FACS
[40–42]. Apart from these 24 AUs, we also analyze
AU33 (cheek blow), AU34 (cheek puff ), and AU35
(cheek suck) in order to have more input from the cheek
component. These three AUs have been coded with cri-
teria of intensity in the latest FACS revision. Note that
the system can be extended and other AUs that can be
described with intensity criteria could also be used, but
we have limited our research to only these 27 AUs in
order to avoid overcomplicating the system as well as
overfitting the FFNNs. Another reason for using only
this set of 27 AUs is that all can be classified with over
90% accuracy using fairly simple methods and provide
the basis for reliable personality trait prediction results,
while other AUs typically add either more complexity or
the classification scores are lower. Also, we needed to
make sure that all the AUs that we are analyzing are
coded in the CK+ database which we use for AUs’
classification training and testing, hence why we settled
with only these 27 AUs which are properly annotated in
CK+ database.
For each of the five face components, we use specific

features and classifiers to determine the presence/ab-
sence as well as the intensity of every analyzed AU. The
features, classification methods, and AUs analyzed in
each component are detailed below:

– Eye component; Gabor jets-based features have been
successfully used for analyzing the eye features
providing classification rates of over 90% as well as
fast convergence, surpassing other state-of-the-art
methods [45, 55, 56]. Because of these strong points,
we use them in our work as well, alongside with
Support Vector Machines (SVMs) for the AU
classification task. The AUs classified in the eye
component are AU5, AU7, AU43, and AU45.

– Brow component; we also use Gabor jets-based
features as these have been shown to offer the best
performance for classifying AUs from the brow
component [57, 58], and we use SVMs for the AU
classification task. The AUs classified in the brow
component are AU1, AU2, and AU4.

– Cheek component; we use a combination of Feature
Point Tracking (FPT) methods and HMMs as they
provide the highest accuracy for classifying AUs
from the cheek component [59]. AUs classified in
the cheek component are AU6, AU11, AU14, AU33,
AU34, and AU35.

– Lip component; we use Local Binary Pattern (LBP)
features as they have been shown to provide the
highest classification accuracy for AUs pertaining to
the lip component compared to state-the-of-the-art
methods [60]. LBP features also have the advantage of
not needing manual initializations and can run in
real time. They also do not require images with
high resolution and are relatively simple from a
computational point of view, which is a strong
point considering that the lip component have the
highest AU density. As used in [60], we employ SVMs
for the AU classification task. The AUs classified in
the lips component are AU10, AU12, AU13, AU15,
AU16, AU17, AU18, AU20, AU22, AU23, AU24,
AU25, and AU28.

– Wrinkles component; we employ the Gabor Wavelet
feature extraction technique which has been shown
to provide the highest classification accuracy for
evaluating AUs associated with the wrinkles component
[60]. The AUs analyzed in the wrinkles component are
AU5, AU7, and AU9.

All these five components output the AUs’ classifica-
tion scores for all 27 analyzed AUs and for each frame
in the video sample. It is important to mention that we
have analyzed each of the 27 AUs independently in this
layer as it is complicated to predefine general AUCs that
will appear in all test scenarios and for all subjects.
These possible AU linear dependencies will be deter-
mined through training the FFNNs and the AUs in this
situation will be treated as a single input.

2.2.2 The intermediary layer
The intermediary layer is designed for collecting the
AUs’ classification scores from the base layer and for
constructing an AU activity map. The AU activity map
is, in turn, provided as an input to the 16 FFNNs in the
top layer which analyze it in a pattern recognition task
and predict the 16PF traits’ scores.
The AU activity map contains a row for each frame in

the video sample, and each row has the following struc-
ture: (A1C, A2A, A4C, A5C, A6B, etc.) where A1C
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means that AU1 has an intensity level C. From the previ-
ous subsection, it can be observed that the two AUs
have been classified in both eye and wrinkle components
by different classifiers (AU5, AU7) because they contain
relevant information for both of these components. For
these two AUs, the entry in the AU activity map is the
highest intensity score obtained out of the two classifiers
used. We have taken this decision in order to keep the
meaningful information in the AU activity map instead
of bypassing the AU or considering it less active.

2.2.3 The top layer
The top layer is designed to analyze the facial muscle ac-
tivity collected in the AU activity map, in a pattern recog-
nition task, and output a score from 1 to 10 for each of
the 16PF traits, in accordance with the 16PF framework.
To accomplish this, we have defined 16 FFNNs denoted
as follows: warmth (A) - neural network (A-NN), reason-
ing (B) - neural network (B-NN), emotional stability (C) -
neural network (C-NN), dominance (E) - neural network
(E-NN), liveliness (F) - neural network (F-NN), rule-
consciousness (G) - neural network (G-NN), social bold-
ness (H) - neural network (H-NN), sensitivity (I) - neural
network (I-NN), vigilance (L) - neural network (L-NN),
abstractedness (M) - neural network (M-NN), privateness
(N) - neural network (P-NN), apprehension (O) - neural
network (O-NN), openness to change (Q1) - neural
network (Q1-NN), self-reliance (Q2) - neural network
(Q2-NN), perfectionism (Q3) - neural network (Q3-NN),
and tension (Q4) - neural network (Q4-NN).
Because the task to compute the 16PF traits’ scores

from the AU activity map is a pattern recognition task
and the architecture employed is bottom-up with no
feedback loops, we use FFNNs which have been proven
effective for pattern recognition [61].
All 16 FFNNs have three layers: the input layer, one

hidden layer, and the output layer. The input layer con-
tains 30 consecutive rows from the AU activity map.
Each row in the AU activity map corresponds to a video
frame, and we consider 30 consecutive rows because
these pertain to 1 s (for a frame rate of 30 frames per
second (fps) as the one we use) which is high enough to
catch the micro expressions that last on average 500 ms
as well as low enough to avoid overfitting the FFNNs.
As we have 27 AUs for each of the 30 frames in the AU
activity map, each FFNN has 810 input nodes. The AU
intensity levels from the AU activity map are normalized
in the [0,1] interval with the following rule: level A = 0.2,
level B = 0.4, level C = 0.6, level D = 0.8, level E = 0.9,
while the absence of an AU (level O) has the value 0.
The output layer for each of the 16 FFNNs has only one
node as it computes a score from 1 to 10 for each of the
16PF traits.

For calculating the number of hidden nodes for each
FFNN, we denote xA = {xAi } , i = 1 , 2…P an N-
dimensional set of input vectors for the A-NN, such as
xA = [xA1 , x

A
2…xA N]

T, YA = {yA i} , i = 1 , 2…P a one-
dimensional set of output vectors (as we have only one
output node), WAH(matrix of weights between input and
hidden nodes), WAO(matrix of weights between hidden
nodes and output nodes), L the number of hidden
nodes, and fA1a and fA2a activation functions. The expres-
sion form can be written as below (1):

yA ¼ fA2a

XL

l¼0

wAO
l f

A
1a

XN

n¼0

wAH
nlx

A
n

" #
1ð Þ

The same logic is applied for all 16 FFNNs.
As a training method, we use backpropagation as it is

known to offer the best performance for pattern recogni-
tion tasks [62]. The input data is sent to the input layer
neurons and then fetched to the hidden neurons which
in turn compute a weighted sum of the inputs and fetch
this to the output layer through an activation function.
When the output is obtained, the difference between the
expected output and the one determined is computed in
terms of Average Absolute Relative Error (AARE) (2)
based on which the WAH and WAO weight matrices are
tuned in order to minimize the AAREA:

AAREA ¼ 1
P

XP

i¼1

yAi−y
A
e;i

yAe;i

 !�����

����� 2ð Þ

The activation function for the input layer for all 16
FFNNs was chosen log sigmoid function in order to
introduce nonlinearity in the model, as well as knowing
that it leads to faster convergence when the FFNN is
trained with backpropagation. For the output activation,
because we need to compute a score from 1 to 10, there-
fore we need to perform a multi-class classification, we
used softmax. As an optimization method, we used Sto-
chastic Gradient Descent (SGD) as, compared to the
batch gradient descent, it is known to deal better with
redundancy by doing only one update at a time, it re-
duces the chance of the backpropagation algorithm to
get stuck in local minima, and is performing faster for
on-line learning [63]. We started with 0.1 as learning
rate and decreased to determine the optimal one for
each of the 16 FFNNs. We also employed the Nguyen-
Widrow weights initialization method to distribute the
initial weights evenly in each layer [64]. We obtained the
following hyperparameters for the 16 FFNNs (to note
that the same learning rate was used for different layers
of the same FFNN and the momentum was set to 0.9 for
all the 16 FFNNs):
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– A-NN; hidden nodes 72, learning rate 0.02, weight
decay 0.001, training epochs 30,000

– B-NN; hidden nodes 76, learning rate 0.02, weight
decay 0.001, training epochs 30,000

– C-NN; hidden nodes 57, learning rate 0.01, no
weight decay needed, training epochs 35,000

– E-NN; hidden nodes 66, learning rate 0.015, weight
decay 0.0005, training epochs 32,000

– F-NN; hidden nodes 79, learning rate 0.02, weight
decay 0.001, training epochs 30,000

– G-NN; hidden nodes 68, learning rate 0.015, weight
decay 0.0005, training epochs 28,000

– H-NN; hidden nodes 81, learning rate 0.02, weight
decay 0.001, training epochs 33,000

– I-NN; hidden nodes 58, learning rate 0.01, no weight
decay needed, training epochs 28,000

– L-NN; hidden nodes 72, learning rate 0.02, weight
decay 0.001, training epochs 30,000

– M-NN; hidden nodes 68, learning rate 0.015, weight
decay 0.005, training epochs 28,000

– N-NN; hidden nodes 74, learning rate 0.02, weight
decay 0.001, training epochs 32,000

– O-NN; hidden nodes 69, learning rate 0.015, weight
decay 0.0005, training epochs 35,000

– Q1-NN; hidden nodes 55, learning rate 0.01, no
weight decay needed, training epochs 30,000

– Q2-NN; hidden nodes 66, learning rate 0.015,
weight decay 0.0005, training epochs 28,000

– Q3-NN; hidden nodes 60, learning rate 0.015,
weight decay 0.0005, training epochs 30,000

– Q4-NN; hidden nodes 49, learning rate 0.01, no
weight decay needed, training epochs 32,000

2.2.4 Overall architecture
The platform used for implementing the above described
neural network-based architecture is Scala (as program-
ming language) using Spark MLib library. Implementa-
tion is done on a standard Java Virtual Machine (JVM),
and Eclipse is used as an Integrated Development Envir-
onment (IDE). The complexity of the program is around
90,000 code lines, and training the FFNNs is done in
parallel and lasts an average 3 h; the maximum time be-
ing around 5 h for N-NN and F-NN trained in inter-
subject methodology. The JVM is running on a system
with Intel i7 processor, 8 GB of RAM memory, and
using Linux Solaris 11.3 as an operating system.

2.2.4.1 16PF-FACS database As described in the previ-
ous subsections, currently, there is no standard database
that will relate face, emotions, and 16PF traits; hence, we
built our own by recording the frontal face of 64 sub-
jects in different emotional conditions. In the following
section, we will refer to as controlled scenarios––the
cases where the subject is recorded while watching

videos designed to elicit one of the six basic emotions
(sadness, fear, happiness, anger, surprise, disgust), and
random scenarios––the cases where the subject is re-
corded when watching neutral (non-emotion eliciting)
videos. It is important to mention that these neutral vid-
eos might trigger different emotions to the subjects
watching them, but not in a controlled manner and
similar to the randomness of emotions triggered in any
non-emotion eliciting environment. Recordings are re-
peated six times in 3 months and every time the subject
is asked to take the 16PF questionnaire for evaluating
their 16PF traits in the day their face is recorded. There-
fore, for each of the 64 subjects, we have 36 frontal face
video recordings where emotion is induced (six for each
of the six emotions), 30 frontal face video recordings in
random scenarios (no emotion is elicited), and six 16PF
questionnaire results. The frame rate used for the video
recordings is 30 fps. The individuals that took part in
this experiment were 64 Caucasian subjects, 32 males,
and 32 females, with ages between 18 and 35,
participating in accordance with the Helsinki Ethical
Declaration [65].
The videos employed for stimulating the subject’s

emotion are collected from the LIRIS-ACCEDE data-
base [66], as this is the only publicly available database
that provides the induced valence and arousal axes for
each video, the annotations being consistent despite the
broad diversity of subjects’ cultural background.
Because each video in the LIRIS-ACCEDE database has
between 8 and 12 s, we combine more videos for the
same emotion in a 1-min video compilation as our
application needs longer recordings of the subject’s
emotion for both training and testing.

2.2.4.2 Training phase The training phase can be di-
vided into two stages: AU classifiers’ training (base layer
training) and the 16 FFNNs’ training (top layer training).
The AU classifiers’ training is the first training step

and is achieved using the CK+ [44] and MMI [67] data-
bases in order to provide AU classification rates of over
90% in cross-database tests. Results are detailed in the
next section. When the AU classifiers’ training is com-
pleted, we proceed with training the 16 FFNNs. We used
both inter-subject and intra-subject methodologies for
training and testing the proposed architecture, but the
process is similar for both: the video frame containing
the frontal face is normalized, the face is detected using
the Viola-Jones face detection algorithm [68], and the
same algorithm is used for detecting the face compo-
nents: the eye, brow, cheek, wrinkles, and lips [69]. The
facial features are acquired from each face component
using the methods depicted when the base layer was de-
scribed and then fetched to the previously trained AU
classifiers. Each classifier determines the intensity level
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of the classified AU for each frame in the video sample
and fetches the result to the intermediary layer where
the AU activity map is built. When 30 new rows are
computed in the AU activity map pertaining to 30 con-
secutive frames from the video sample, they are fetched
to the 16 FFNNs in the top layer which are trained via
backpropagation in order to offer the same results as the
ones obtained via the 16PF questionnaire in the same
day the video sample used for training was recorded.
When AARE is low enough (0.01), and the training sam-
ples are exhausted, the training is complete, and the sys-
tem is ready to be tested. The overall architecture can be
seen in Fig. 2.

2.2.4.3 Testing phase With the AU classifiers and the
FFNN trained, the system is ready to be tested. Hence,
frontal face video recordings of subjects are provided as
input to the base layer. The logic is similar to the one
for the training phase. The video sample is first normal-
ized, and then, the face and its components are detected
using the Viola-Jones detection algorithm [68, 69]. The
facial features are again extracted from each frame and
for each face component and fetched to the AU classi-
fiers which determine the intensity levels for each of the
27 AUs and fetch them to the AU activity map. When
30 new rows exist in the AU activity map, they are pro-
vided as an input to each of the 16 FFNNs, and each
FFNN computes a score from 1 to 10. When the score
becomes stable (has the same value for 10 s––300
consecutive frames) the process stops, and the personal-
ity trait prediction results are provided as an output. In
Fig. 3, a screenshot of the application is shown which

depicts how, at a random video frame, the 16PF
predicted traits compare with the results obtained from
filling in the 16PF questionnaire.

3 Results and discussion
3.1 AU classification tests
To create the conditions for achieving high personality
prediction accuracy, we need to ensure that all 27 AUs
are classified with over 90% accuracy in cross-database
tests. For this, we performed several cross-database tests
on MMI [67], CK+ [44], and JAFFE [45] databases, and
in all these tests, we obtained classification rates higher
than 90%. Results are detailed in Table 1.
Lower classification rates are observed when JAFFE

database is used either for testing or training, mainly be-
cause the Japanese facial structure slightly differs from
that of the Caucasian subjects that are present in larger
numbers in the MMI and CK+ databases. Because in our
case, we test the proposed architecture only on Caucasian
subjects, the over 93% average AU classification rates for
MMI – CK+ cross-database tests offer a solid foundation
for evaluating the architecture on the far more complex
task of personality traits’ prediction. Therefore, we keep
the AU classifiers trained on CK+ database and continue
with the 16PF traits’ prediction tests.

3.2 Personality prediction tests
For testing the proposed architecture and analyzing the
relationships between the emotions induced, the facial
muscle activity, and the 16PF traits, we employed the
16PF-FACS database that we described in the previous
section. In the next sections, we discuss the results

Fig. 2 Overall architecture
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obtained when conducting tests using intra-subject and
inter-subject methodologies.

3.2.1 Intra-subject methodology
Intra-subject methodology implies that the architecture
is trained and tested with video recordings pertaining to
the same subject. It is important to mention that the
16PF questionnaire results differed for the same subject
over the course of 3 months; hence, our database con-
tains relevant datasets to train and test the system using
this methodology.
As we have 36 frontal face video recordings in con-

trolled scenarios and 30 frontal face video recordings in
random scenarios for each subject as well as six 16PF
questionnaire results collected at intervals of 2 weeks,
we can use different combinations of these recordings in

order to analyze the relationship between the emotions
induced and the prediction accuracy for the 16PF traits.
We first train the proposed architecture on 12 video re-
cordings acquired in controlled scenarios and test it on
the remaining 24 samples acquired in the same condi-
tions, and we repeat this test for all combinations of
such video recordings pertaining to the subject analyzed.
We then increase the number of training samples to 18,
making sure that we have at least three samples for each
emotion, and we test the system on the remaining 18
samples, and, lastly, we train the system on 24 video
samples (four samples for each emotion) and test it on
the remaining 12 samples. A similar approach is used
for the video recordings acquired in random scenarios.
In addition to these tests done on samples that are either
acquired in controlled scenarios or random scenarios,

Fig. 3 16PF-FACS analysis application
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we also perform a cross-dataset test; hence, we train the
system on video recordings acquired in controlled sce-
narios (where a particular emotion is elicited), and we
test it on video recordings acquired in random scenarios
(where no emotion is elicited) and vice-versa. All these
tests are repeated for all the 64 subjects, and results are
displayed in Table 2.
Analyzing the results, we observe that the highest pre-

diction accuracy is obtained when the video recordings
acquired in controlled scenarios are used for both train-
ing and testing, more precisely when the number of
training samples is the highest. In this case, we obtain
over 80% prediction accuracy for warmth, emotional
stability, liveliness, social boldness, sensitivity, and
vigilance as well as over 75% prediction accuracy for rule
consciousness and tension while for other 16PF traits
the prediction accuracy is 60–70%. When video record-
ings acquired in random scenarios are used in both
training and testing phases, the 16PF prediction accuracy
is 4% lower. We obtain 75% prediction accuracy for

warmth, emotional stability, liveliness, social boldness,
sensitivity, and vigilance and close to 70% prediction ac-
curacy for rule consciousness and tension. As we have
seen, a prediction accuracy increase of 4% when using
the video recordings collected in controlled scenarios.
This indicates that there is a relationship between the
16PF traits and the facial muscle activity elicited by the
induced emotion that is adding more value to the overall
16PF traits’ prediction accuracy.
When the system is trained on video recordings

acquired in controlled scenarios and tested on the ones
acquired in random scenarios, we also observe an
improvement of up to 6% compared to the tests where
the samples collected in random scenarios are used for
training and the ones collected in controlled scenarios
are employed for testing and only a 2% decrease com-
pared to the case where video recordings acquired in
controlled scenarios are used for both training and test-
ing. This shows that the frontal face recordings acquired
when a specific emotion was induced add more value in

Table 1 AUs’ classification rates for different cross-database tests

Training database MMI [67] MMI [67] CK+ [44] CK+ [44] JAFFE [45] JAFFE [45]

Test database CK+ [44] JAFFE [45] MMI [67] JAFFE [45] MMI [67] CK+ [44]

AU1 (classification rate) [%] 94.31 ± 0.54 90.23 ± 0.61 91.01 ± 0.51 90.51 ± 0.81 90.31 ± 0.95 90.71 ± 1.05

AU2 (classification rate) [%] 95.41 ± 0.41 91.24 ± 0.62 93.23 ± 0.42 92.43 ± 0.62 93.22 ± 0.43 92.13 ± 0.51

AU4 (classification rate) [%] 96.40 ± 0.64 91.32 ± 0.83 95.02 ± 0.63 92.33 ± 0.83 92.23 ± 0.75 91.43 ± 0.62

AU5 (classification rate) [%] 97.41 ± 0.33 92.34 ± 0.44 91.33 ± 0.44 92.14 ± 0.45 91.44 ± 0.52 91.52 ± 0.75

AU6 (classification rate) [%] 93.62 ± 0.32 91.46 ± 0.45 92.43 ± 0.21 91.34 ± 0.58 92.21 ± 0.65 91.11 ± 0.74

AU7 (classification rate) [%] 94.42 ± 0.42 94.27 ± 0.46 92.04 ± 0.34 91.13 ± 0.33 91.11 ± 0.45 92.14 ± 0.55

AU10 (classification rate) [%] 93.11 ± 0.41 91.21 ± 0.34 91.54 ± 0.32 91.31 ± 0.25 91.52 ± 0.42 91.24 ± 0.54

AU11 (classification rate) [%] 95.23 ± 0.32 92.12 ± 0.63 91.13 ± 0.35 93.21 ± 0.35 92.11 ± 0.48 91.12 ± 0.65

AU12 (classification rate) [%] 93.21 ± 0.24 92.12 ± 0.52 91.22 ± 0.38 93.20 ± 0.38 90.11 ± 0.44 90.41 ± 0.55

AU14 (classification rate) [%] 94.24 ± 0.25 91.23 ± 0.31 91.33 ± 0.41 92.22 ± 0.35 94.53 ± 0.45 93.23 ± 0.56

AU15 (classification rate) [%] 94.34 ± 0.26 92.35 ± 0.42 91.15 ± 0.47 92.20 ± 0.57 91.44 ± 0.73 93.25 ± 0.83

AU16 (classification rate) [%] 94.23 ± 0.47 92.22 ± 0.63 93.22 ± 0.48 94.32 ± 0.67 92.22 ± 0.76 94.32 ± 0.82

AU17 (classification rate) [%] 95.12 ± 0.33 91.23 ± 0.51 94.12 ± 0.51 90.53 ± 0.71 91.34 ± 0.6 92.01 ± 0.75

AU18 (classification rate) [%] 93.21 ± 0.26 91.53 ± 0.52 92.41 ± 0.44 91.34 ± 0.52 93.27 ± 0.56 92.22 ± 0.65

AU20 (classification rate) [%] 94.44 ± 0.23 93.35 ± 0.54 92.25 ± 0.44 92.53 ± 0.44 92.58 ± 0.55 92.11 ± 0.61

AU22 (classification rate) [%] 95.32 ± 0.32 94.12 ± 0.62 94.43 ± 0.58 94 ± 0.78 92.26 ± 0.95 90.65 ± 0.85

AU23 (classification rate) [%] 97.31 ± 0.41 93.23 ± 0.41 92.32 ± 0.42 92.34 ± 0.76 92.54 ± 0.75 92.43 ± 0.82

AU24 (classification rate) [%] 94.14 ± 0.33 92.15 ± 0.52 91.33 ± 0.42 91.44 ± 0.64 90.95 ± 0.65 90.53 ± 0.73

AU25 (classification rate) [%] 93.33 ± 0.45 91.32 ± 0.51 91.75 ± 0.44 92.11 ± 0.74 92.01 ± 0.75 91.32 ± 0.82

AU28 (classification rate) [%] 95.32 ± 0.36 93.23 ± 0.45 93.44 ± 0.35 92.12 ± 0.78 91.22 ± 0.85 91.41 ± 0.83

AU33 (classification rate) [%] 94.24 ± 0.22 92.15 ± 0.57 92.32 ± 0.47 92.33 ± 0.75 93.14 ± 0.82 92.13 ± 0.84

AU34 (classification rate) [%] 94.22 ± 0.41 92.23 ± 0.55 92.31 ± 0.45 93.31 ± 0.65 91.23 ± 0.73 91.45 ± 0.78

AU35 (classification rate) [%] 95.41 ± 0.34 95.24 ± 0.43 93.42 ± 0.34 95.51 ± 0.65 92.45 ± 0.72 93.22 ± 0.75

AU43 (classification rate) [%] 96.24 ± 0.21 93.25 ± 0.62 92.35 ± 0.52 91.33 ± 0.85 92.46 ± 0.83 95.45 ± 0.9

AU45 (classification rate) [%] 95.35 ± 0.41 93.21 ± 0.81 92.58 ± 0.58 91.21 ± 0.95 95.01 ± 0.92 94.21 ± 0.72
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the testing phase. This is a significant finding if we con-
sider this system’s applicability for real-time applications
where the testing is done ad hoc, as it shows that the
controlled scenarios are only necessary for the training
stage and, once the system is trained, it will return satis-
factory results in random situations. The fact that, when
video recordings collected in both controlled and ran-
dom scenarios are used together for testing and training,
the prediction accuracy only reduces by 1% compared to
when the samples acquired in the controlled scenario
are used for training, and the ones collected in random
scenarios are used for testing also sustains this finding.
Regarding processing time, the highest is obtained when

samples from both scenarios are used in both training and
testing. In this case, the time needed to converge to a
stable result is 50 s. When samples acquired in controlled
scenarios are used for both phases, the average conver-
gence time is 30 s, while when samples acquired in
random scenarios are used for both training and testing,
the convergence time increases with 10 s.
We also conduct a test to determine how the six in-

duced emotions are correlated with each of the 16PF
traits’ prediction accuracy. For this, we train the system
on 35 samples acquired in the controlled scenario, and
we test it on the remaining sample with a leave-one-out
approach, repeating the test until all 36 samples are used
for testing and averaging the accuracy for each of the
16PF traits. The test is repeated for all 64 subjects, and
the averaged results are detailed in Table 3.
As it can be observed, several correlations can be

found between some of the 16PF traits and the emotions
induced:

– Inducing happiness or anger leads to over 88%
prediction accuracy for warmth

– Inducing happiness or sadness leads to over 88%
prediction accuracy for emotional stability

– Inducing happiness or surprise leads to over 86%
prediction accuracy for liveness

– Inducing happiness or fear leads to over 88%
prediction accuracy for social boldness

– Inducing happiness or anger leads to over 88%
accuracy for sensitivity

– Inducing fear or disgust leads to over 87% prediction
accuracy for vigilance

– Inducing anger or fear leads to over 87% prediction
accuracy for tension

For other 16PF traits, there is no clear relationship
between the emotion elicited and high 16PF traits’
prediction accuracy.

3.2.2 Inter-subject methodology
Inter-subject methodology refers to training the pro-
posed architecture on multiple subjects and testing it on
a brand new subject. Similar to the intra-subject meth-
odology, we train the system using a leave-one-out
approach, first on 32 subjects and test it on the
remaining 32, then on 48 subjects and test it on the
remaining 16, and, lastly, on 63 subjects and test it on
the remaining one. The tests are repeated until all com-
binations of 64 subjects go through the testing phase.
We use the same approach as in intra-subject method-
ology, training and testing the proposed architecture on
samples acquired in controlled scenarios, samples

Table 3 16PF traits’ prediction accuracy for intra-subject tests based on test sample induced emotion

Emotion induced Happiness Anger Fear Disgust Surprise Sadness

Prediction accuracy (%) Warmth 89.51 ± 0.32 85.54 ± 0.25 76.54 ± 0.45 88.21 ± 0.26 72.12 ± 0.33 74.41 ± 0.37

Reasoning 70.13 ± 0.33 73.35 ± 0.37 74.33 ± 0.43 72.32 ± 0.45 70.23 ± 0.36 71.13 ± 0.34

Emotional stability 88.23 ± 0.21 74.45 ± 0.35 67.21 ± 0.51 65.23 ± 0.43 65.52 ± 0.46 89.02 ± 0.27

Dominance 65.28 ± 0.42 73.34 ± 0.32 73.24 ± 0.45 65.32 ± 0.42 66.21 ± 0.44 66.44 ± 0.52

Liveliness 86.27 ± 0.34 76.43 ± 0.45 74.35 ± 0.47 72.21 ± 0.45 87.02 ± 0.24 73.34 ± 0.42

Rule-consciousness 72.24 ± 0.36 72.13 ± 0.43 69.35 ± 0.35 69.22 ± 0.54 70.21 ± 0.36 70.22 ± 0.51

Social boldness 88.86 ± 0.26 79.32 ± 0.23 90.04 ± 0.22 67.43 ± 0.52 72.23 ± 0.35 71.16 ± 0.42

Sensitivity 88.95 ± 0.32 91.05 ± 0.21 78.05 ± 0.32 72.35 ± 0.38 74.44 ± 0.37 72.37 ± 0.37

Vigilance 75.53 ± 0.32 73.23 ± 0.34 87.53 ± 0.32 87.33 ± 0.28 78.45 ± 0.28 72.13 ± 0.38

Abstractedness 63.31 ± 0.42 65.54 ± 0.42 68.04 ± 0.38 70.04 ± 0.34 67.52 ± 0.43 67.42 ± 0.45

Privateness 68.57 ± 0.43 67.25 ± 0.52 66.53 ± 0.42 64.33 ± 0.52 70.04 ± 0.41 65.58 ± 0.52

Apprehension 70.35 ± 0.45 72.65 ± 0.43 68.44 ± 0.45 67.42 ± 0.46 70.22 ± 0.37 70.33 ± 0.45

Openness to change 60.24 ± 0.52 59.33 ± 0.35 65.51 ± 0.47 62.21 ± 0.45 63.23 ± 0.52 61.68 ± 0.35

Self-reliance 70.05 ± 0.45 65.24 ± 0.45 66.23 ± 0.51 67.32 ± 0.47 61.11 ± 0.54 59.33 ± 0.65

Perfectionism 59.95 ± 0.55 60.05 ± 0.34 60.05 ± 0.55 65.04 ± 0.51 62.06 ± 0.64 63.05 ± 0.55

Tension 70.21 ± 0.47 87.23 ± 0.31 87.23 ± 0.28 67.23 ± 0.45 72.12 ± 0.43 76.04 ± 0.36
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acquired in random scenarios, and combinations of the
two datasets. Results are averaged and are detailed in
Table 4.
As it can be observed, we have similar results as the

ones obtained in intra-subject methodology. The high-
est 16PF traits’ prediction accuracy is obtained when
63 subjects are used in the training phase, and the pro-
posed architecture is tested on the remaining subject,
in both phases using samples acquired in controlled
scenarios. In this case, we obtain 84% prediction accur-
acy for sensitivity, 82.2% prediction accuracy for social
boldness, 80.4% prediction accuracy for liveliness and
warmth, 80.3% prediction accuracy for emotional sta-
bility, and over 75% prediction accuracy for vigilance
and tension. Similarly, when samples acquired in ran-
dom scenarios are used for training and testing, the
prediction accuracy for all 16PF traits decreases with
up to 4%.
When we use samples acquired in controlled scenar-

ios for training and samples acquired in random sce-
narios for testing, we also observe an increase of up to
4% compared to when the samples acquired in random
scenarios are used for both training and testing. The
same conclusion as the one drawn in intra-subject
methodology can be formulated here: the video record-
ings acquired in controlled scenario add more value to
the prediction accuracy if they are used in the training
phase. This emphasizes the applicability of this
approach in real-time applications where the 16PF
traits need to be evaluated ad hoc, as the need for con-
trolled scenarios is only vital when training the system,
while for testing, we can use video recordings acquired
in totally random scenarios. The fact that the same
finding is observed in both intra-subject and inter-
subject methodology shows that the proposed architec-
ture is robust across different testing methodologies.
Regarding the processing time, the highest conver-

gence time that the 16 FFNNs needed to compute the
16PF traits is obtained when samples acquired in both
controlled and random scenarios are used for both
training and testing; in this case, it reaches an average
of 58 s. Similarly to the intra-subject methodology,
when the samples acquired in the controlled scenario
are used for both training and testing, the maximum
time needed to compute the 16PF predicted traits was
33 s, while when samples acquired in random scenarios
are used, the time to converge is 12 s higher. This
means that every maximum of 1 min, the proposed
architecture computes the predicted 16PF traits and,
knowing that personality traits usually change over
larger periods of time, this makes our approach suitable
for real-time monitoring as well as offers the advan-
tages of being faster and easier to assess the 16PF traits
than the 16PF questionnaire.

We conduct the same analysis as in intra-subject
methodology, evaluating the relationships between the
induced emotions and each of the 16PF traits’ prediction
accuracy in inter-subject methodology. Results are
detailed in Table 5.
We reached similar conclusions as in intra-subject tests:

– Inducing happiness or anger leads to over 85%
prediction accuracy for warmth

– Inducing happiness or sadness leads to over 85%
prediction accuracy for emotional stability

– Inducing happiness or surprise leads to over 84%
prediction accuracy for liveliness

– Inducing happiness or fear leads to over 86%
prediction accuracy for social boldness

– Inducing happiness or anger leads to over 87%
prediction accuracy for sensitivity

– Inducing fear or disgust leads to over 82% prediction
accuracy for vigilance

– Inducing anger or fear leads to over 80% accuracy
for tension

These prediction accuracies are more than 5% higher
than the most successful case when samples acquired in
the controlled scenario are used for both training and
testing, with 63 subjects used in the training phase. This
shows that eliciting emotions adds significant value to
the prediction of these seven 16PF traits.

3.3 Links between FACS to MBTI personality traits
As we showed in both intra-subject and inter-subject
tests, if specific emotions are induced to the subject, their
facial muscle activity provides more valuable information
that leads to predicting with higher accuracy than the
16PF traits. In order to determine the relationship
between the facial muscle activity and the 16PF traits, we
build another application that searches within all the rows
added to the AU activity map during the 16PF traits
prediction task and flags the AUs that are present at high
levels (level E – classification score of over 85) when the
prediction accuracy for each of the 16PF traits is over
85%. The results are detailed in Table 6.
We observe that for each of the 16PF traits, we have

an AU or group of AUs that, if present at high levels,
contribute to predicting with high accuracy the 16PF
traits. We determined, for example, that if AU4, AU5,
and AU6 are present at high levels, warmth can be pre-
dicted with very high accuracy, while if AU4, AU5, and
AU23 are present at high levels, dominance can be pre-
dicted with over 85% accuracy. These findings provide
valuable information that relates the facial muscle activ-
ity to the 16PF traits and which can be further exploited
to determine faster and with higher accuracy scores for
each of the 16PF traits.
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3.4 Comparison with state-of-the-art
As detailed in the Section 1.1, recognizing personality
traits from facial features is an understudied domain,
and, currently, there is no database that is generally used
in these studies, so the comparison with the state-of-
the-art is made by mentioning that the databases and
personality frameworks used are different. The compari-
son is presented in Table 7.
Our work offers 67% prediction accuracy for the 16PF

traits when trained and tested on samples acquired in

random scenarios and an average of 70–72% prediction
accuracy when samples acquired in controlled scenarios
are used. We obtain over 80% prediction accuracy for
seven of the 16PF traits (warmth, emotional stability,
liveliness, social boldness, sensitivity, vigilance, tension).
Our current work, therefore, offers 10% better prediction
accuracy compared to the one conducted by Chin et al.
[22] using the MBTI instrument. Compared to the work
of Setyadi et al. [4] that evaluates the four temperaments
based on facial features, our system offers similar results

Table 5 16PF traits’ prediction accuracy for inter-subject tests based on test sample induced emotion

Emotion induced Happiness Anger Fear Disgust Surprise Sadness

Prediction accuracy (%) Warmth 85.41 ± 0.25 85.63 ± 0.24 76.45 ± 0.34 69.47 ± 0.43 78.21 ± 0.28 72.14 ± 0.46

Reasoning 68.32 ± 0.43 73.32 ± 0.39 72.13 ± 0.35 73.28 ± 0.35 68.92 ± 0.37 71.02 ± 0.45

Emotional stability 86.31 ± 0.27 72.41 ± 0.38 71.32 ± 0.35 73.36 ± 0.35 71.23 ± 0.35 85.64 ± 0.23

Dominance 69.23 ± 0.42 73.26 ± 0.34 72.64 ± 0.41 69.83 ± 0.45 71.32 ± 0.35 72.12 ± 0.43

Liveliness 85.42 ± 0.21 71.26 ± 0.43 72.14 ± 0.37 71.35 ± 0.43 84.96 ± 0.22 68.34 ± 0.56

Rule consciousness 71.11 ± 0.36 72.05 ± 0.39 68.33 ± 0.45 69.33 ± 0.44 72.07 ± 0.36 70.32 ± 0.43

Social boldness 87.23 ± 0.31 72.14 ± 0.42 86.32 ± 0.28 68.36 ± 0.44 69.21 ± 0.42 72.16 ± 0.42

Sensitivity 88.05 ± 0.25 87.33 ± 0.25 71.41 ± 0.35 73.38 ± 0.38 69.13 ± 0.43 72.16 ± 0.42

Vigilance 71.16 ± 0.43 69.32 ± 0.42 82.35 ± 0.31 83.15 ± 0.32 72.14 ± 0.34 73.14 ± 0.45

Abstractedness 64.34 ± 0.46 65.27 ± 0.45 64.46 ± 0.47 68.43 ± 0.45 67.45 ± 0.46 69.23 ± 0.48

Privateness 66.33 ± 0.42 66.26 ± 0.45 65.14 ± 0.43 68.97 ± 0.45 70.13 ± 0.38 61.12 ± 0.55

Apprehension 68.91 ± 0.38 69.24 ± 0.47 67.13 ± 0.38 70.24 ± 0.39 65.42 ± 0.45 66.41 ± 0.51

Openness to change 61.14 ± 0.55 59.33 ± 0.52 62.22 ± 0.52 63.13 ± 0.44 61.24 ± 0.48 66.43 ± 0.48

Self-reliance 58.22 ± 0.55 59.35 ± 0.55 56.51 ± 0.55 62.22 ± 0.46 63.26 ± 0.45 59.42 ± 0.56

Perfectionism 59.51 ± 0.54 59.33 ± 0.55 60.16 ± 0.52 63.41 ± 0.43 66.43 ± 0.51 62.14 ± 0.55

Tension 69.43 ± 0.43 81.28 ± 0.21 80.97 ± 0.23 70.22 ± 0.34 74.32 ± 0.35 68.16 ± 0.47

Table 6 Relationships between high-level AUs and high 16PF traits’ prediction accuracy

16PF personality trait AUs at high levels

Warmth AU6 (upper lid raiser), AU4 (brow lowerer), AU5 (upper lid raiser)

Reasoning AU1 (inner brow raiser), AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper lid raiser)

Emotional stability AU6 (cheek raiser), AU12 (nasolabial deepener), AU15 (lip corner depressor)

Dominance AU4 (brow lowerer), AU5 (upper lid raiser), AU23 (lip tightener)

Liveliness AU1 (inner brow raiser), AU2 (outer brow raiser), AU26 (jaw drop)

Rule consciousness AU5 (upper lid raiser), AU7 (lid tightener)

Social boldness AU6 (cheek raiser), AU7 (lid tightener), AU20 (lip stretcher)

Sensitivity AU6 (cheek raiser), AU12 (lip corner puller), AU23 (lip tightener)

Vigilance AU1 (inner brow raiser), AU2 (outer brow raiser), AU5 (upper lid raiser), AU20 (lip stretcher), AU9 (nose wrinkler)

Abstractedness AU9 (nose wrinkeler), AU15 (lip corner depressor)

Privateness AU5 (upper lid raiser), AU26 (jaw drop)

Apprehension AU7 (lid tightener), AU23 (lip tightener)

Openness to change AU2 (outer brow raiser), AU4 (brow lowerer), AU7 (lid tightener), AU20 (lip stretcher)

Self-reliance AU6 (cheek raiser), AU12 (lip corner puller)

Perfectionism AU15 (lip corner depressor), AU16 (lower lip depressor)

Tension AU7 (lid tightener), AU20 (lip stretcher), AU23 (lip tightener), AU26 (jaw drop)
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but on a far more complex task. Similarly, compared to
the work of Teijeiro-Mosquera et al. [20] which evaluate
the FFM personality traits using CERT, our results are
better with up to 5%, but lower than the results obtained
in our previous work [21] where the FFM personality
traits are evaluated on the same database. Our system
also offers better prediction accuracy and more robust-
ness compared to the results obtained by Zhang et al.
[23] which only reach over 80% accuracy for only two of
the 16PF traits while for other 16PF traits the results are
significantly lower, while in our study, we obtain satisfac-
tory prediction accuracy for almost all 16PF traits and
over 80% prediction accuracy for seven of them.

4 Conclusions
We propose a novel three-layered neural network-based
architecture for studying the relationships between emo-
tions, facial muscle activity analyzed using FACS, and
the 16PF traits. We use a specific set of features and
classifiers to determine the AUs’ intensity levels, and we
compute an AU activity map which is in turn analyzed
by a set of 16 FFNNs predicting the scores for the 16PF
traits. Tested on our database, we show that using video
samples acquired in controlled scenarios (when emotion
is elicited) for training, the 16PF traits’ prediction accur-
acy increases with up to 6%. The proposed system also
determines with over 85% accuracy seven of the 16PF
traits, while for the other traits, the accuracy is lower.
We show that there are distinct sets of induced emo-
tions and specific combinations of high-level AUs that
can be used to improve the prediction accuracy for the
16PF traits even more, demonstrating that there is a re-
lationship between the facial muscle activity, emotions,
and the 16PF traits that can be further exploited for
higher prediction accuracy and faster convergence, and

this will be the direction of our future research. Regard-
ing the processing time, the system converges to a stable
result in no more than 58 s, making the approach faster
and more practical than filling in the 16PF questionnaire
and suitable for real-time monitoring, computing the
personality traits of an individual in no more than
1 min. As a drawback, we obtain lower prediction accur-
acy for several 16PF traits, and we can consider analyz-
ing a broader spectrum of AUs as well as posture and
gesture to increase the prediction accuracy for these
traits. We can also consider other ways of stimulating
emotions, knowing the fact that watching emotional vid-
eos is not always sufficient to prompt expressions that
would provide all the relevant information to evaluate all
aspects of personality, and this is another direction
which will be pursued in our future research.
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Table 7 Comparison with state-of-the-art

Work Year Method
used

Facial features used Personality type
assessed

Highest prediction accuracy

Setyadi et al. [4] 2015 ANNs Distance between two corners
of the eyes, high of eyes, ratio
of the mouth width and nose,
the width ratio of two eyes,
and thickness of lower lip

four temperaments 65–68% (for sanguine and
melancholic temperaments)

Teijeiro-Mosquera
et al. [20]

2015 CERT CERT—four sets of
behavioral cues

FFM 60–65% (for extraversion)

Gavrilescu [21] 2015 FFNN FACS—27 AUs FFM 75% (for neuroticism, openness
to experience, and extraversion)

Chin et al. [22] 2013 EM Marker-based tracking MBTI 60%

Zhang et al. [23] 2017 CNNs CNN features 16PF > 80% for rule consciousness and tension

Current work 2017 FFNNs FACS—27 AUs 16PF 67% (random datasets for training and testing)
70–72% (emotion induced datasets for
training and random datasets for testing)
> 80% for warmth, emotional stability, liveliness,
social boldness, sensitivity, vigilance, and tension

Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing  (2017) 2017:59 Page 17 of 19



Received: 4 April 2017 Accepted: 23 August 2017

References
1. D. McNeill, The Face: A Natural History (Back Bay Books, New York, 2000)
2. M. Pediaditis et al., Extraction of facial features as indicators of stress and

anxiety, Conference Proceedings of IEEE Engineering in Medicine and
Biology Society (EMBC), August 2015, Milan, Italy. doi:10.1109/EMBC.2015.
7319199.

3. Y. Zhu et al., Automated depression diagnosis based on deep networks to
encode facial appearance and dynamics, IEEE Transactions on Affective
Computing, January 2017, doi:10.1109/TAFFC.2017.2650899.

4. A.D. Setyadi et al., Human character recognition application based on facial
feature using face detection, 2015 International Electronics Symposium (IES),
IEEE, pp. 263–267, September 2015, Surabaya, Indonesia.

5. O. Vartanian et al., Personality assessment and behavioral prediction at first
impression. Personal. Individ. Differ. 52(3), 250–254 (2012)

6. A. Todorov et al., Understanding evaluation of faces on social dimensions.
Trends Cogn. Sci. 12(12), 455–460 (2008)

7. T. Gulifoos, K.J. Kurtz, Evaluating the role of personality trait information in
social dilemmas. Journal of Behavioral and Experimental Economics 68,
119–129 (2017)

8. M. Koppensteiner, P. Stephan, Voting for a personality: do first impressions
and self-evaluations affect voting decisions? J. Res. Pers. 51, 62–68 (2014)

9. I.V. Blair et al., The influence of Afrocentric facial features in criminal
sentencing. Psychol. Sci. 15(10), 674–679 (2004)

10. M. Yu et al., Developing trust: first impression and experience. J. Econ.
Psychol. 43, 16–19 (2014)

11. K. Mattarozzi et al., I care, even after the first impression: facial appearance-
based evaluations in healthcare context. Soc. Sci. Med. 182, 68–72 (2017)

12. M. Z. Uddin, Facial expression recognition using depth information and
spatiotemporal features, 2016 18th International Conference on Advanced
Communication Technology (ICACT), IEEE, pp. 726–731, Febuary 2016,
Pyeongchang, South Korea

13. M. Soleymani et al., Analysis of EEG signals and facial expressions for
continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016)

14. Yafei Wang et al., Head pose-free eye gaze prediction for driver attention
study, 2017 IEEE International Conference on Big Data and Smart
Computing (BigComp), February 2017, doi:10.1109/BIGCOMP.2017.7881713.

15. W. Sun et al., An auxiliary gaze point estimation method based on facial
normal. Pattern. Anal. Applic. 19(3), 611–620 (2016)

16. F. Vicente et al., Driver gaze tracking and eyes off the road detection
system. IEEE Trans. Intell. Transp. Syst. 16(4), 2014–2027 (2015)

17. S. Baltaci, D. Gokcay, Role of pupil dilation and facial temperature features in
stress detection, 2014 22nd Signal Processing and Communications
Applications Conference (SIU), April 2014, Trabzon, Turkey, doi:10.1109/SIU.
2014.6830465.

18. J. Xu et al., Facial attractiveness prediction using psychologically inspired
convolutional neural network (PI-CNN), 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), March 2017, New
Orleans, LA, USA, doi:10.1109/ICASSP.2017.7952438.

19. H. M. Khalid et al., Prediction of trust in scripted dialogs using neuro-fuzzy
method, 2016 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), December 2016, Bali, Indoensia, doi:10.
1109/IEEM.2016.7798139.

20. L. Teijeiro-Mosquera et al., What your face Vlogs about: expressions of
emotion and big-five traits impressions in YouTube. IEEE Trans. Affect.
Comput. 6(2), 193–205 (2015)

21. M. Gavrilescu, Study on determining the Big-Five personality traits of an
individual based on facial expressions, E-Health and Bioengineering
Conference (EHB), November 2015, Iasi, Romania, doi:10.1109/EHB.2015.
7391604.

22. S. Chin et al., An automatic method for motion capture-based exaggeration of
facial expressions with personality types. Virtual Reality 17(3), 219–237 (2013)

23. T. Zhang et al., Physiognomy: personality traits prediction by learning. Int. J.
Autom. Comput., 1–10 (2017)

24. A. Larochette et al., Genuine, suppressed and faked facial expressions of
pain in children. Pain 126, 64–71 (2006)

25. M.D. Giudice, L. Colle, Differences between children and adults in the
recognition of enjoyment smiles. Dev. Psychol. 43(3), 796–803 (2007)

26. P. Gosselin et al., Components and recognition of facial expression in the
communication of emotion by actors. Oxford: Oxford University Press,
243–267 (1995)

27. R. Subramanian et al., ASCERTAIN: Emotion and Personality Recognition
using Commercial Sensors, IEEE Transactions on Affective Computing,
November 2016, doi:10.1109/TAFFC.2016.2625250.

28. H. Berenbaum et al., Personality and pleasurable emotions. Personal. Individ.
Differ. 101, 400–406 (2016)

29. P. Ekman, W.V. Friesen, Facial Action Coding System: Investigator’s Guide
(Consulting Psychologists Press, Palo Alto, 1978)

30. T. Taleb et al., A novel middleware solution to improve ubiquitous
healthcare systems aided by affective information. IEEE Trans. Inf. Technol.
Biomed. 14(2), 335–349 (2010)

31. A. Sano et al., Recognizing academic performance, sleep quality, stress level,
and mental health using personality traits, wearable sensors and mobile
phones, 2015 IEEE 12th International Conference on Wearable and
Implantable Body Sensors Networks (BSN), June 2015, Cambridge, MA, USA,
doi:10.1109/BSN.2015.7299420.

32. O. Santos, Emotions and personality in adaptive e-learning systems: an
affective computing perspective. Human-Computer Interaction Series,
Chapter: Emotions and Personality in Personalized Services, 263–285 (2016)

33. A. Daros et al., Identifying mental disorder from the faces of women with
borderline personality disorder. J. Nonverbal Behav. 40(4), 255–281 (2016)

34. C. Ridgewell et al., Personality traits predicting quality of life and overall
functioning in schizophrenia. Schizophr. Res. 182, 19–23 (2017)

35. J. Levallius et al., Take charge: personality as predictor of recovery from
eating disorder. Psychiatry Res. 246, 447–452 (2016)

36. S.E. Emert et al., Associations between sleep disturbances, personality, and
trait emotional intelligence. Personal. Individ. Differ. 107, 195–200 (2017)

37. A. Cerekovic et al., How do you like your virtual agent?: human-agent
interaction experience through nonverbal features and personality traits.
International Workshop on Human Behavior Understanding, 1–15 (2014)

38. M.A. Fengou et al., Towards personalized services in the healthcare domain,
Handbook of Medical and Healthcare Technologies, pp. 417–533, November
2013

39. M. Jokela et al., Personality change associated with chronic diseases:
pooled analysis of four perspective cohort studies. Psychol. Med.
44, 2629–2640 (2014)

40. B. Jiang et al., A dynamic appearance descriptor approach to facial actions
temporal modelling. IEEE Transactions on Cybernetics 44(2), 161–174 (2014)

41. Y. Li et al., Simultaneous facial feature tracking and facial expression
recognition. IEEE Trans. Image Process. 22(7), 2559–2573 (2013)

42. S. Eleftheriadis et al., Discriminative shared Gaussian processes for multiview
and view-invariant facial expression recognition. IEEE Trans. Image Process.
24(1), 189–204 (2015)

43. S.L. Happy, A. Routray, Automatic facial expression recognition using features
of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2015)

44. P. Lucey et al., The extended Cohn-Kanade dataset (CK+): a complete
dataset for action unit and emotion-specified expressions, 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshop (CVPRW), June 2010, San Francisco, CA, USA, doi:10.1109/CVPRW.
2010.5543262.

45. M.L. Lyons et al., Coding facial expressions with Gabor wavelets, IEEE
International Conference on Automatic Face and Gesture Recognition, April
1998, Nara, Japan

46. E.I. Barakova et al., Automatic interpretation of affective facial expressions in
the context of interpersonal interaction. IEEE Transactions on Human-
Machine Systems 45(4), 409–418 (2015)

47. L. Zafeiriou et al., Probabilistic slow features for behavior analysis. IEEE
Transactions on Neural Networks and Learning Systems 27(5), 1034–1048 (2016)

48. P. Carcagni et al., A study on different experimental configurations for age,
race, and gender estimation problems. EURASIP Journal on Image and
Video Processing 37, 2015 (2015)

49. H.E.P. Cattell, A.D. Mead, in The SAGE Handbook of Personality Theory and
Assessment: Vol. 2. Personality Measurement and Testing, ed. by G. J. Boyle,
G. Matthews, D. H. Saklofske. The sixteen personality factors questionnaire
(16PF) (Thousand Oaks, 2008), Sage Publishing, pp. 135–159

50. R.B. Cattell, Use of Factor Analysis in Behavioral and Life Sciences (Plenum,
New York, 1978)

51. Pearson Education, Inc. (n.d.). 16pf Fifth edition: clinical assessment.
Retrieved February 24, 2017 from http://www.pearsonassessments.com/

Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing  (2017) 2017:59 Page 18 of 19

http://dx.doi.org/10.1109/EMBC.2015.7319199
http://dx.doi.org/10.1109/EMBC.2015.7319199
http://dx.doi.org/10.1109/TAFFC.2017.2650899
http://dx.doi.org/10.1109/BIGCOMP.2017.7881713
http://dx.doi.org/10.1109/SIU.2014.6830465
http://dx.doi.org/10.1109/SIU.2014.6830465
http://dx.doi.org/10.1109/ICASSP.2017.7952438
http://dx.doi.org/10.1109/IEEM.2016.7798139
http://dx.doi.org/10.1109/IEEM.2016.7798139
http://dx.doi.org/10.1109/EHB.2015.7391604
http://dx.doi.org/10.1109/EHB.2015.7391604
http://dx.doi.org/10.1109/TAFFC.2016.2625250
http://dx.doi.org/10.1109/BSN.2015.7299420
http://dx.doi.org/10.1109/CVPRW.2010.5543262
http://dx.doi.org/10.1109/CVPRW.2010.5543262
http://www.pearsonassessments.com/HAIWEB/Cultures/en-us/Productdetail.htm?Pid=PAg101&Mode=summary


HAIWEB/Cultures/en-us/Productdetail.htm?Pid=PAg101&Mode=summary.
Accessed 24 Feb 2017.

52. G.J. Boyle, in The SAGE Handbook of Personality Theory and Assessment: Vol.
1––Personality Theories and Models, ed. by G. J. Boyle, G. Matthews, D. H.
Saklofske. Simplifying the Cattellian psychometric model (Sage Publishers,
ISBM 1-4129-2365-4, Los Angeles, 2008)

53. P. Ekman, W. V. Friesen, J. C. Hager, (Eds.). (2002). Facial Action Coding
System [E-book], Salt Lake City, Utah, Research Nexus, 2002

54. M. Gavrilescu, Proposed architecture of a fully integrated modular neural
network-based automatic facial emotion recognition system based on
Facial Action Coding System, 2014 10th International Conference on
Communications (COMM), May 2014, Bucharest, Romania, doi:10.1109/
ICComm.2014.6866754

55. M. Mikhail, R. Kaliouby, Detection of asymmetric eye action units in
spontaneous videos, 2009 16th IEEE International Conference on Image
Processing (ICIP), IEEE, pp. 3557–3560, November 2009, Cairo, Egypt

56. Y. Tian et al., Eye-state action unit detection by Gabor wavelets, Advances in
Multimodal Interfaces––ICMI 2000, Lecture Notes in Computer Science,
volume 1948, pp. 143-150, 2000

57. Y. Tian et al., Evaluation of Gabor-wavelet-based facial action unit
recognition in image sequences of increasing complexity, 2002 Proceedings
of 5th IEEE International Conference on Automatic Face and Gesture
Recognition, May 2002, Washington, DC, USA, doi:10.1109/AFGR.2002.
1004159

58. G. Donato et al., Classifying facial actions. IEEE trans. on pattern analysis and
machine intelligence 21(10), 974 (1999)

59. J.J. Lien et al., Detection, tracking, and classification of action units in facial
expression. Journal of Robotics and Autonomous Systems 31(3), 131–146 (2000)

60. M. S. Bartlett et al., Toward automatic recognition of spontaneous facial
actions, in What the Face Reveals: Basic and Applied Studies of
Spontaneous Expression Using the Facial Action Coding System, Oxford
Scholarship Online, Oxford, 2005, doi:10.1093/acprof:oso/9780195179644.
001.0001

61. C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, Inc, New York, NY, USA, 1995

62. S. Cho, J.H. Kim, Rapid backpropagation learning algorithms. Circuits,
Systems and Signal Processing 12(2), 155–175 (1993)

63. J. Werfel et al., Learning curves for stochastic gradient descent in linear
feedforward networks. Neural Comput. 17(12), 2699–2718 (2005)

64. S. Masood et al., Analysis of weight initialization methods for gradient
descent with momentum, 2015 International Conference on Soft
Computing Techniques and Implementations (ICSCTI), October 2015,
Faridabad, India, doi:10.1109/ICSCTI.2015.7489618

65. World Medical Association, Declaration of Helsinki: Ethical principles for
medical research involving humansubjects, JAMA. 310 (20), 2191–2194,
(2013)

66. Y. Baveye et al., LIRIS-ACCEDE: a video database for affective content
analysis. IEEE Trans. Affect. Comput. 6(1), 43–55 (2015)

67. M. Pantic et al., Web-based database for facial expression analysis,
Proceedings of IEEE International Conference on Multimedia and Expo
(ICME), pp. 317–321, 2005, doi:10.1109/ICME.2005.1521424

68. P. Viola, M. Jones, Robust real-time object detection, 2nd International
Workshop on Statistical and Computational Theories of Vision - Modeling,
Learning, Computing, and Sampling, IEEE, July 2001, Vancouver, Canada

69. A. E. Maghrabi et al., Detect and analyze face parts information using Viola-
Jones and geometric approaches, International Journal of Computer
Applications, 101(3), 23-28, 2014, doi:10.5120/17667-8494

Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing  (2017) 2017:59 Page 19 of 19

http://www.pearsonassessments.com/HAIWEB/Cultures/en-us/Productdetail.htm?Pid=PAg101&Mode=summary
http://dx.doi.org/10.1109/ICComm.2014.6866754
http://dx.doi.org/10.1109/ICComm.2014.6866754
http://dx.doi.org/10.1109/AFGR.2002.1004159
http://dx.doi.org/10.1109/AFGR.2002.1004159
http://dx.doi.org/10.1093/acprof:oso/9780195179644.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780195179644.001.0001
http://dx.doi.org/10.1109/ICSCTI.2015.7489618
http://dx.doi.org/10.1109/ICME.2005.1521424
http://dx.doi.org/10.5120/17667-8494

	Abstract
	Introduction
	Related work

	Methods
	Theoretical model
	16PF
	FACS

	Proposed architecture
	The base layer
	The intermediary layer
	The top layer
	Overall architecture


	Results and discussion
	AU classification tests
	Personality prediction tests
	Intra-subject methodology
	Inter-subject methodology

	Links between FACS to MBTI personality traits
	Comparison with state-of-the-art

	Conclusions
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

