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1  Introduction
Recent market research from Wireless Watch [1, 2] predicts a threefold increase in the 
wireless intra-car connections market, from 279.3 million in 2022 to a whopping 828.7 
million in 2030. When we consider large public commuter vehicles (bus, trolleybus, 
tram etc.) along with the small private vehicles, the figures would be even more startling. 
No wonder there has been a surge of startups in the domain, and both industry and aca-
demia are interested in wireless intra-vehicular communication (IVC) research.

With technological advancement and the increase in the consumer-friendly market, 
the number of features and technologies incorporated inside a vehicle has increased 
considerably. Wired IVC connections between different vehicular communication mod-
ules get cumbersome, raising design, manufacturing, and installation issues. Inversely, 
wireless IVC systems have high-speed duplex data links, which are better equipped to 
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handle multiple tasks through one system, thus providing more convenience, a simpli-
fied design, and hassle-free installation. The significance of wireless IVC can be esti-
mated by understanding various savings introduced due to the reduction in the number 
of wires. Approximately five miles of wires is used in modern-day vehicles for connec-
tion between different nodes of IVC [3]. Cutting the use of wires reduces the mass of 
the vehicles by at least 40 kg. This incorporates cost savings on manufacturing, assem-
bly, warranty, and maintenance. Further, a reduction in weight increases fuel efficiency. 
Additionally, a wireless harness means the flexibility of inclusion of newer technologies 
to increase security and enhance safety protocols, better automation, and user experi-
ence [4].

The major functions of wireless IVCs include assisting in signalling and controlling 
operations, passenger assistance, Heat Ventilation and Air-Conditioning (HVAC) con-
trol, video surveillance in public vehicles, infotainment services, and many more. To 
perform these operations smoothly, a knowledge of the wireless channel environment 
plays an important role. In addition to these facts, today’s communication era empow-
ers its users with on-the-move connectivity to utilise their time on their mobile devices 
using various platforms like gaming, media, entertainment, and infotainment. With the 
introduction of 5 G wireless networks, these platforms will be more engaging. All these 
add to the exponential increase in the demand for on-demand high data rates for vari-
ous data network services [5]. Adequate information on the radio channel plays a critical 
role in achieving such a high data rate.

Modern wireless IVCs are data-intensive, meaning wireless IVCs require the system to 
have high data handling capacity, a data rate in giga bits per second (gbps), low latency, 
and large bandwidth. Bandwidth in existing sub-6 GHz systems is not enough to han-
dle large amounts of data. Bluetooth and Zigbee-based systems have major latency, reli-
ability, and security issues, whereas ultrawideband (UWB) cannot provide data rate in 
the gbps order. The millimetre wave (mmWave) spectrum is under-utilised, and prop-
erties like large bandwidth, high data rate, and low latency offer an adequate solution. 
MmWave spectrum orthodoxly spans from 30 to 300 GHz, which means GHz contig-
uous frequency bands are available to exploit, leading towards Gbps data rate without 
incorporating complex spectrally efficient hardware in the transmitter or receiver side.

IVC channels operating at mmWave bands are quite different from conventional cel-
lular channels. Thus, the knowledge and understanding of pre-existing cellular channel 
models cannot be directly applied to the mmWave IVC channel models. Demanding 
time constraints, a large number of scatterers, lack of line-of-sight propagation, and 
human blockage make the mmWave IVC channel environment more complex. The 
emergence of automatic vehicles demands such models to be highly accurate and time 
efficient. Emulating such complex channel scenarios requires a detailed understanding 
of channel behaviour.

1.1 � Motivation

To guarantee optimal system performance, designing of the system must be accurate 
and trustworthy. The channel model assists the engineers by making channel parame-
ters readily available even for unknown scenarios. Accurate channel models ensure that 
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the channel parameters are close to the real-time measurements. Thus, it is necessary to 
develop reliable, efficient, and accurate channel models.

Channel models identify the relationship between channel parameters and the physi-
cal channel environment. It can be classified broadly into three categories. First, the sta-
tistical models are stochastic channel models with heuristically derived mathematical 
formulas based on massive empirical observations [6]. Such models lack preciseness, are 
unable to explain channel behaviour, and are computationally complex. Also, stochas-
tic channel models are inefficient in corresponding to changes in the channel environ-
ment. The second is geometric modelling, which employs geometric information about 
the channel to determine the channel behaviour for a given set of TX–RX positions. Such 
models are more accurate in depicting the channel behaviour but require more compu-
tational time, are site specific, and require relevant expertise. Moreover, small changes in 
the channel environment mean a rerun of the entire simulation.

Both the above models mathematically characterise the multipath components 
(MPCs) based on some stochastic process or mathematical derivation. Both methods 
require extensive measurement of campaign data for the application scenario to generate 
the respective channel model. Measurement data may not be available for the scenario, 
which leads to imperfect channel models. Moreover, not every data point can be meas-
ured. To summarise, the conventional methods are not generalisable to any unknown 
channel environment for the system.

As an alternate solution to the problems of conventional channel modelling, machine 
learning(ml)-based channel prediction/estimation can be the ultimate solution. ML-
based prediction is well documented for high accuracy. ML algorithms can learn chan-
nel parameters from the underlying channel measurement data, and the trained model 
can be used for channel characterisation/modelling or prediction. The research commu-
nity emphasised using an ANN-based ML model for channel modelling.

1.2 � Contributions

The contribution of this article is to show that a simple feedforward MLP-based ANN 
model can be constructed to capture the major features of a channel-sounding dataset. 
The test case that we considered is an intra-vehicular communication channel inside 
a bus and inside a car, and our operating frequency is in the 60 GHz millimetre wave 
range. Specifically, our contributions are as follows:

•	 We propose an ANN approach to synthetically generate a power delay profile (PDP) 
in a direct and indirect manner, which can be readily used for characterising intra-
vehicular mmWave propagation.

•	 We derived a tapped delay-line (TDL) channel model from the synthetically gener-
ated PDPs. Different error measures show that the simulated model tallies well with 
the TDL model directly obtained by sampling the measured PDP.

•	 We compared the real-world dataset with the synthetic dataset in terms of sensitivity 
and goodness of fit measures.
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1.3 � Literature survey

Since the last decade, researchers have shown considerable interest in the field of IVC. 
The advancements in integrated circuit technology, efforts to make travel safer and 
more convenient, and increasing demand for on-the-go connectivity have fuelled the 
search for better solutions. Channel characterisation plays a pivotal role in developing 
a high-performance IVC system. A good number of literature dealt with intra-vehicular 
(iv) channel characterisation in public vehicles. In [7], authors provided insight into the 
channel environment in the 5-GHz bands inside an aircraft. The authors designed the 
channel model by using the root mean square error (rmse) delay spread and coherence 
bandwidth. Trains are one of the primary public transport vehicles, but train wagons 
still lack high-capacity wireless networks. In [8, 9], authors measured and analysed the 
intra-wagon channel in the 25–40-GHz band and the 60-GHz and 300-GHz bands using 
the ray tracing (rt) tool. An underground convoy was used for intra-wagon frequency-
domain measurements in the 26-, 28-, and 38-GHz bands [10]. The authors concluded 
that antenna position and scattering-rich environment are essential in intra-wagon 
scenarios. The authors also advocated that the waveguide effect and human blockage 
affect the channel measurements and must be considered while designing the model. 
In another intra-wagon channel measurement campaign, authors [11] compared the 
channel-sounding data with RT in the 300-GHz band. Another extensively used pub-
lic vehicle anywhere around the world is the bus. In [12], Semkin et  al. constructed a 
logarithmic, distance-based pathloss model for wearable deployments inside a bus in a 
60-GHz band. For the same 60-GHz band, Chandra et al. reported frequency-domain 
measurements inside the bus. Here, the authors [5, 13, 14] proposed PDP-based analyti-
cal model for mmWave intra-bus wireless channel. Apart from public vehicles, private 
vehicles like cars and SUVs are the most extensively researched. With the evolution of 
human-driven to driverless cars and fossil fuel-based to electric vehicles, manufactur-
ers and researchers are working in tandem to provide better safety and the best user 
experience. In [15], authors developed a comprehensive simulation framework to esti-
mate frequency-domain channel transfer function in the intra-car scenario for the UWB 
band. In a similar attempt, authors in [16] concluded that for UWB band intra-car sce-
narios, the cluster arrival rate is higher than that of indoor propagation. In contrast, the 
cluster decay rate is lower than the indoor propagation scenarios. The following articles 
[17–21] compared the performance of intra-vehicular schemes for UWB and mmWave 
bands. In [20], analysed the time of arrival of the packets and concluded that in the 
absence of human blockage, ranging accuracy is similar in both bands, but in the pres-
ence of passengers, ranging accuracy got reduced for the mmWave band, whereas [17, 
18] advocated that the 60-GHz mmWave band performs better than UWB in the intra-
car scenario. Authors in the intra-vehicular studies are still running; it is proved that 
mmWave-based channel characterisation performs better than UWB. Also, the studies 
are predominantly specific vehicle dependent and cannot be extended to new scenarios.

Machine learning is expected to extract channel characteristics and design and esti-
mate a channel model much better than conventional methods. An overview of the ML-
based framework for channel characterisation and modelling was provided in [22]. The 
article advocated the use of reinforcement learning for channel modelling in autono-
mous vehicles and further emphasised searching for more generalisable schemes. Indoor 
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channel sounding at 100 GHz was analysed by [23]. The authors proposed fingerprint-
based feature extraction from PDP and then the application of various ML algorithms 
to design a channel model. A hybrid approach of physics based and data driven to gen-
eralise the site-specific through-vegetation scenarios was proposed in [24]. The authors 
proved that ML could estimate the complex mmWave channel parameters accurately 
based on the channel geometric configurations and TX–RX positions. In the articles 
[25–29], the authors elaborated on the use of ML in other application domains justifying 
the use of ML-based schemes in mmWave channel characterisation and channel model-
ling. In the articles [6, 30], the authors provided an extensive survey for the application 
of ANN-based artificial intelligence in channel characterisation and channel modelling. 
The authors in [31–33] provided a step-by-step tutorial for optimising the neural net-
work followed by the application of MLP-based ANN and convolutional neural network 
to extract channel characteristics and used the trained model for channel modelling.

The use of artificial intelligence and machine learning (AI/ML) techniques in the con-
text of vehicular networking is relatively recent concepts. In [34], the authors vouched 
for combining AI and blockchain to realise a mobile-edge-platooning cloud platform. 
Advanced ML techniques, such as deep reinforcement learning (DRL) and long short-
term memory (LSTM), have been successfully applied in [35] and [36], respectively. 
Although advanced AI/ ML techniques yield better results, the trade-off is the complex-
ity, implementation time and real-time operation. In our work, we used a simple feedfor-
ward ANN-based multilayer perceptron instead and showed that considerable accuracy 
could also be achieved with such an introductory model.

2 � Field test
An extensive 60-GHz intra-vehicular measurement campaign was carried out by the 
current authors at Brno University, Czech Republic, and reported in [5, 13, 14]. As illus-
trated in Figs. 1 and 2, the channel measurement campaign aims to provide a channel 
model that can enable the commuting public with onboard gigabyte wireless networks 
using a common vehicular access-point (ap) inside the vehicle, wirelessly connected to 
the roadside units or base stations through the vehicle-to-infrastructure (v2i) mobile 
networks. The AP will act as a transceiver and connects the passenger devices to the out-
side world, giving access to various on-demand high-data-rate services over static intra-
vehicular channels.

2.1 � Measurement campaign inside bus

Here the experimental set-up consists of an analog signal generator (model: Agi-
lent E8257D), a scalar signal analyser (model: Rohde and Schwarz FSUP50), a pair of 
mmWave antennas, a power amplifier (PA), a mixer, a DC power supply, adapters, and 
connecting cables (Fig. 1). The signal generator sweeps all the frequencies from 55 to 65 
GHz with a step size of 10 MHz generating 1001 readings in each sweep in the transmit-
ter section. The generator output power is set to 13 dBm. The output signal is carried 
through a 2.5m-long phase-stable coaxial cable (model: MegaPhase TM67) to the power 
amplifier (model: Quinstar QPW 50662330) through standard 1.85 mm adapters. The 
power amplifier has a gain of 31 dBm, which is high enough to compensate for the cable 
loss and boosts the signal fed to the open-waveguide antenna (OWGA). A DC power 
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supply powers the power amplifier and its accessories. A substrate-integrated waveguide 
slot antenna (SIW SA) intercepts the signal and sends the received signal to the signal 
analyser at the receiving end. An external mixer converts the signal to an intermediate 
frequency and helps avoid high cable loss at mmWave frequencies. The GPIB cables con-
nect the two pieces of hardware at the transmitting and receiving sections for synchro-
nisation. To extend the Tx and Rx distance, we can cascade several GPIB cables together.

Fig. 1  Experimental set-up for bus measurement campaign

Fig. 2  Experimental set-up for car measurement campaign
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The measurement set-up is placed inside a 50-seater Mercedes Benz Tourismo bus to 
conduct the measurement experiments. Placing the transmitter near the ceiling at the 
bus’s front end creates a real-time scenario, and the receiver is placed in the seat’s drop-
down tray to imitate a hand-held device. The receiver location was changed to different 
seats to cover the entire interior space of the bus in the presence/absence of passengers.

2.2 � Measurement campaign inside car

Intra-car measurement set-up consists of Rohde & Schwarz ZVA67 4-port vector net-
work analyser (VNA) with a continuous sweep capability from 110 MHz to 110 GHz, 
PA, pair of mmWave waveguide antennas, Fig. 2. Phase-stable coaxial cables connect the 
VNA to antennas. To compensate for any loss due to cable loss and to boost the dynamic 
range of measurements, Quinstar PA, with a 30 dB gain, was used. The losses were well-
calibrated for zero transmission. A medium-sized 4-seater Skoda Octavia carries the 
entire set-up inside it. For a given arrangement of TX and RX , the forward transmission 
coefficient s21 is recorded for the frequency range of 55–65 GHz.

3 � Estimating PDP with MLP
Conventional channel sounding procedures have little knowledge about the underlying 
channel conditions and cannot interpolate or extrapolate the data. This limits them from 
working in all kinds of complex channel environments [6]. The state-of-the-art studies 
suggest that ANN, due to its low complexity and off-line training process, is the most 
prominent method for implementing ML. A multilayer perceptron (MLP) is a fully con-
nected feed-forward artificial neural network. As mentioned in [6, 30, 37], a 3-layer MLP 
can be an excellent choice to approximate the channel behaviour using physical param-
eters to a desired accuracy. Combining the MLP model with the channel environment 
measurement database promises estimation close to theoretical calculations. On the 
other hand, changing the input parameters signifies the channel environment’s role in 
signal propagation. Simple MLP models also mean less computational complexity and 
less time consumption at the cost of a slight reduction in accuracy. It further reduces the 
need for robust, expensive computers, which reduces carbon footprints.

ANN constitutes one input layer, one output layer, and at least one hidden layer. More 
hidden layers or more neurons in the hidden layer usually reflect better accuracy. But 
when the datasets are limited, adding depth to ANN may overfit the model resulting 
in inaccurate predictions. To gain the ’generalisable’ edge over the conventional chan-
nel models, ANN algorithms must be able to learn from the physical channel environ-
ment. To reduce the classical dichotomy between computational efficiency and accuracy 
selection of input parameters, precise and compact training datasets and constructing 
efficient ANN models are critical [32, 33]. For the current work, we chose the frequency 
and distance parameters as input vectors since these parameters are the most basic fea-
tures for signal propagation. To increase the computational efficiency, we regularise the 
model by reducing the error between training and validation datasets before the model 
starts overfitting.

This article aims to estimate PDP using a feed-forward ANN-based MLP model with 
minimal physical inputs using direct or indirect processes. In the indirect method, 
using channel measurement data, the channel transfer function (CTF) is estimated 
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and estimated CTF values are used to generate PDP. In the more direct method, meas-
urement data are first used to extract the delay spread feature for a given set of Tx - Rx 
positions.

3.1 � Indirect method

In the indirect method, physical channel features are first selected from measurement 
campaign datasets, as shown in Fig. 3. For this article, signal frequency spectrum (55–
65 GHz with 60 GHz as centre frequency) and TX–RX positions are selected as input 
parameters as seen in the second block from left. Again from the measurement cam-
paign data, we chose channel transfer function (CTF) corresponding to different TX–RX 
distances for the 60-GHz band as the output vector. As the data for the presence of pas-
sengers and their seat positions were insufficient, these parameters were not chosen. 
Using the input parameters, the MLP model is first optimised for the number of neurons 
using the training dataset (bottom left). Next, the optimised MLP model is trained using 
the training datasets, and the results are validated, as shown in the middle blocks on the 
right side of Fig. 3. The trained model then estimates CTFs for the given frequency spec-
trum. The estimated CTFs and measured CTFs are then converted from the frequency 
domain to the time domain using inverse fast Fourier (ifft) to generate PDP data. The 
simulated CTFs generate a PDP trend which is analysed and compared with PDP gener-
ated from measured test data.

3.2 � Direct method

In the direct method, physical channel parameters from the measurement campaign are 
used to extract time delay spread data (Fig.  4). The delay spread data and the TX–RX 
positions constitute the input parameters for the training datasets. PDP sequence data 
extracted from CTF data from the measurement data describe the output vector. The 
input and output vectors are used to optimise the MLP network (bottom right block in 
Fig. 4) Optimised MLP network is then trained to estimate PDP for the extracted input 
parameters and output vector. The trained model is then fed with test data to estimate 

Fig. 3  Schematic for indirect PDP generation
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the PDP trend. The synthetic PDP trend is then compared with the PDP sequence gener-
ated from measured test data and analysed as shown in the top right block of Fig. 4.

3.3 � Neuron optimisation

The choice of the number of hidden layers and the number of neurons in each hidden 
layer decides the accuracy of the MLP model. Anything less than the optimised value 
causes an under-fitting and inaccurate perception of the physical channel. Also, increas-
ing the number of hidden layers by increasing the number of neurons increases model 
complexity and training time without significantly increasing the model accuracy.

In the present article, the training dataset is fed into the untrained MLP network, and 
the model is evaluated for different numbers of neurons in terms of the validation RMSE. 
The MLP architecture for which RMSE is the smallest is chosen for the final MLP model.

4 � Results and discussions
The present article implements a fully connected feed-forward artificial MLP neural net-
work. We utilised the car and bus channel sounding measurement campaign data for 
the current study. The dataset contains the frequency-domain CTF values for the 55–65 
GHz frequency range. We tried to generate the PDP for a given set of frequency vectors 
and Tx − Rx position vector. As explained in Figs. 3 and 4, we followed two methods for 
generating the synthetic PDP. Firstly, the indirect method used physical parameters like 
available frequency spectrum and Tx − Rx position. In the second method, we converted 
frequency-domain CTF to time-domain CIR to generate delay spread data. Using these 
fabricated data, we estimate the PDP at a given distance from the receiver.

4.1 � Simulation results

Our study used the ANN model to replicate the behaviour of a physical intra-vehicular 
wireless channel over a 55–65 GHz frequency band. We used a 3-layer MLP model to 
imitate the wireless channel environment inside a car and a 4-layer MLP model inside 
a bus. The choice for a more complex MLP model for the bus is due to the complex 

Fig. 4  Schematic for direct PDP generation
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channel environment, resulting in more significant multipath propagation. We observed 
that only a few channel parameters are required to reproduce the channel environment. 
Additional parameters increase the accuracy by a small margin at the cost of higher 
computational complexity and processing time.

Our first method utilised the frequency band information and Tx − Rx position infor-
mation to generate synthetic CTF data. We further observed that the obtained CTF 
trend roughly follows the measured CTF trend. As shown in Fig. 5, adding a small dc 
offset can result in the synthetic CTF trend following the measured CTF more closely. 
When these synthetic CTF data are used to generate the PDP sequence by applying 
IFFT, the resultant synthetic PDP sequence also follows the trend of the measured PDP 
sequence. Again here also, an additional DC offset is required.

Instead of selecting the frequency parameter and distance vector directly, implement-
ing IFFT operation on frequency-domain data to extract the time-domain data provides 
improved results. As shown in Fig. 6, the synthetic PDP trend closely follows the meas-
ured PDP trend. The artificial PDP trend generates tapped delay line (TDL) model for 
bit-error simulations.

4.2 � Tapped delay line analysis

Since the dense physical environment inside a bus gives rise to highly clustered wireless 
channels resulting in distinctive multipaths, TDL models allow differentiating between 
these scattered multipath components, with each tap representing a single component. 
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The PDP sequence obtained from such multipath channels depicts the time average of 
tap gains at corresponding tap delays.

As evident from Figs. 8a and 9a, the average trend for measured PDP closely followed 
the simulated PDP trend for the direct method for PDP generation. On the other hand, 
we have to note that the effect of the DC offset requirement in Fig. 5 is also shown in 
Fig. 7 while obtaining the TDL model. When we compared the averaged PDP trend for 
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measured values at different tap delays and compared with sampled simulated PDPs, we 
found that the difference between the tap gains for average measured PDP and simulated 
PDP is relatively low (Figs. 8b, 9b). Thus, the simulated PDP can replace an average trend 
of measured PDP.

4.3 � Sources of errors

Intra-vehicular scenarios are highly clustered and complex environments. Application of 
ANN (or any other ML or DL algorithms) in such environments is prone to many errors 
[32]. For example, the presence or absence of a line-of-sight(LOS) component dramati-
cally influences the performance of ANN models [31]. The higher number of LOS com-
ponents means more accurate the ANN-based models. Similarly, distance or frequency 
variations affect the ANN model’s performance. It has been found that ANN models are 
prone to errors when the receiver is in the vicinity of the transmitter [38]. Also, small-
scale fading affects the accuracy of the ANN model [39] for a higher frequency.

4.4 � Understanding the errors

As discussed earlier in the section, generating channel characteristics synthetically 
using ANN algorithms is prone to errors due to the complex and cluttered environment. 
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Thus, we analysed synthetic channel measurements with measured channel measure-
ments. Table 1 shows the NRMSE, MAE and MSE error metrics for the varying distance 
between transmitter and receiver.

4.5 � Sensitivity analysis

The TDL samples are compared with synthetic PDP samples obtained from the direct 
method for PDP generation with error tolerance levels of 5% and 10%. From the results, 
we obtain a 2 ∗ 2 confusion matrix. The true positive values indicate the synthetic value 
is greater than or equal to the TDL value and is within the tolerance limit, whereas true 
negative indicates the synthetic value is less than the TDL value and within the tolerance 
level. Similarly, a false positive is when the synthetic PDP value is greater than the TDL 
value and above the tolerance limit, and a false negative indicates a PDP value less than 
the TDP value and lesser than the tolerance limit.

From Fig. 10, it is clear that due to a more complex channel environment and greater 
distance, the MLP channel model for the bus is having lesser accuracy compared to that 
of the car.

5 � Conclusion
This article proposed a feedforward MLP-based ANN framework for a 60-GHz wire-
less communication link inside a bus and a car. The comprehensive study of fre-
quency-domain channel sounding for mmWave IV measurement campaigns led to 
the development of simulated PDP using dynamic channel parameters. The highly 
similar trends of measured and simulated PDPs support that for IVC, PDPs can be 

Table 1  Error Metrics measured and simulated PDPs

Parameter BUS CAR​

1.47m 5.12m 8.18m 1.48m 2.08m

NRMSE 0.15 0.16 0.66 0.06 0.27

MSE 0.8 0.64 4.54 0.23 5.47

MAE 0.66 0.71 1.88 0.42 2.06

Fig. 10  Tapped delay line analysis for direct method
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synthetically generated using MLP. Our claim was further supported by the results 
of the goodness of fit parameters. The accuracy of the MLP model was calculated 
using a confusion matrix between the simulated PDP trend and the time-averaged tap 
delay gains with an error tolerance of 5% and 10%. In the case of the bus, the model 
achieved an accuracy of 66.7% and 86.7% for 5% and 10% tolerances, respectively. In 
the case of car, the model achieved the target accuracy of 100% for 5% and 10% error 
tolerance. This indicates that the synthetically generated PDPs from the proposed 
MLP-based model can replace a measurement-based TDP model when the actual IV 
channel-sounding data are not available.
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