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1 Introduction
The Internet of Things (IoT), especially the Internet of Vehicles (IoV), is rapidly growing 
and moving toward the 6G networks [26], which leads to dramatically raised security 
issues [39]. IoT and IoV are shaping the next generation of networking and communica-
tion [3]. IoT/IoV can be defined in different ways [49] and usually covers objects such as 
physical devices including sensors and vehicles [24]. Also, the meaning has expanded 
from local region to global region, covering different types of network such as local area 
network (LAN) and next-generation 6G mobile network. This is due to 5G technology 
cannot support the near-future IoT/IoV applications requirements [18]. When more 
things are included into the IoT/IoV network, network traffic among devices increases 
much more rapidly. On the one hand, IoT/IoV networking enriches daily life as well as 
industry equipment. On the other hand, malware is also getting multiplied and their 
threats are spreading across all network layers and periods of lifecycles [29, 30]. Security 
becomes one of the important research areas that is mainly due to two IoT/IoV charac-
teristics, heterogeneity and dynamic [3]. The 6G network is supposed to support numer-
ous heterogeneous devices and infrastructures and will exceed 5G networks [44].
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One way to monitor and detect IoT/IoV cyber threats is conducting network traffic 
classification and prediction using data-based methods such as machine learning [5, 
24]. A typical limitation of machine learning is the quality and quantity of data required. 
This limitation may be worse especially within specific scenarios on edge devices [6, 22]. 
Some work uses simulated data while some uses generative adversarial network (GAN) 
[11] to generate data and some add noise or fluctuation to data.

On each edge or local devices, the data are usually limited, especially abnormal data. 
Thus, it is a good idea to combine them if possible. Also, avoiding human in this combi-
nation procedure is preferred.

Though some studies have shown good data fusion results with similar or the same 
data scenarios [32, 45], the previous studies have not investigated if and when it is possi-
ble to join different datasets with different scenarios to enhance prediction and classifica-
tion for malicious conversation detection. This work aims to investigate this procedure.

The sections of this article are organized as follows. Section 2 provides backgrounds 
related information regarding alternative approaches. Section  3 describes used meth-
odologies in detail including methods and metrics, including description for data and 
experiments. Later, the experimental results are presented and analyzed in Sect.  4. 
Finally, conclusions are made, and limits are discussed in Sect. 5.

2  Background
Facing the challenges of IoT malware, researchers have done much work and proposed 
many solutions. One of the good practices is to use machine learning algorithms to dis-
tinguish malicious traffic from benign (normal) traffic and then take further actions, such 
as isolation or replacement of the infected things. When referring to machine learning, 
the definition can differ from people to people. We here consider the related definitions 
with the relation in Fig. 1. In most cases, traditional machine learning (excluding deep 
learning) algorithms are considered to be less power consuming and more comprehen-
sive, while deep learning methods are used when more computing resources are avail-
able [37]. Artificial intelligence (AI) is often considered to be a broader concept and may 
refer to robots more than others. The biggest circle indicating data mining is dashed, as 
its definition is much more fuzzy and fogged. In this work, we use the definition from 
Kevin Murphy [27], and the field of machine learning is about developing algorithms 
that can automatically discover and describe patterns in history data [35].

Fig. 1 Relationship of machine learning-related concepts in general, though definitions and opinions may 
differ
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When analyzing temporal data using classical machine learning, researchers often 
adopt an ensemble learning approach. The idea is to combine weak learners by bag-
ging, boosting and/or stacking considering usage scenarios to finally form a better 
learner [33].

XGBoost algorithm [7] is an ensemble algorithm proposed in recent years. It is 
based on decision tree structure CART (classification and regression tree) [19] and 
enhanced by bagging and boosting. It can also be considered as one kind of gradi-
ent boosted decision trees (GBDT) [17]. At present, XGBoost has been used by many 
researchers in data analysis and processing, especially for tabular data, showing rela-
tively good prediction and classification effects. It is often used as it provides advan-
tages such as easy model construction, strong universality and fast speed. Besides, it 
shows good performance comparable with or better than classical machine learning 
methods [25, 38, 42, 43] with better efficiency [7].

When analysing temporal data using deep learning algorithms, methods consisting 
memory mechanisms are often used, such as recurrent neural networks (RNN) [8] or 
long short-term memory networks (LSTM) [47] or even Generative Adversarial Net-
work (GAN) [20]. Some researchers consider that for temporal network traffic data, 
relation among packets should be extracted, and conversations among devices are 
considered as better analysis targets instead of individual packets. This work take the 
second way to conduct analysis.

Meta learning has been used for combining different base weak learners to form a 
better stacked model [46, 51]. However, we consider to reduce the number of models 
and also consider when different edge devices gathering data locally and send to only 
similar edges to reduce network traffic as it costs. This is one of important costs to 
consider even for network operating companies.

Instance-based clustering [1] is not in the coverage of this work, with the similar 
reason that edge devices are usually not able to store too many history data.

3  Methods, features and metrics
In this work, we consider different datasets can be used together to train models as 
data from the same domain have relationships. To test this hypothesis, we consider 
to conduct experiments using a collection of real-world datasets within one domain.

3.1  Dataset characterization methods

The captured network traffic packets are firstly transformed to conversations among 
devices. Main features include originator (source) and responder (destination) 
addresses, ports and payload size in bytes and number of packets per conversation. 
General statistical calculation methods are employed to characterize datasets, includ-
ing mean, standard deviation, quantiles at 0, 25, 50, 75, 100 percentages, skewness [9], 
kurtosis [12, 15] and median. Later, the first-order and second-order differentials of 
the above statistical characteristics are investigated to find insight between perfor-
mance of algorithms and dataset fusion.
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3.2  Machine learning methods

As mentioned previously, this work uses machine learning to indicate non-neural net-
work methods. XGBoost algorithm is currently one of the widely used representative 
machine learning methods and is used as a baseline here.

Tree-based algorithms have high compatibility and can effectively classify and predict 
instances with a variety of different types of data.

Bagging trains several sub-models, and each model is trained using a generated boot-
strapped dataset. Bootstrapping is a resampling method which samples instances (usu-
ally with replacement) from the original dataset. Datasets created by bootstrapping are 
only weakly dependent and randomness of samples matters. Thus, bagging builds sub-
models in a parallel way. Boosting, however, builds sub-models in a serial manner with 
rounds. In boosting, a base sub-model is firstly build using selected weak learner. Later, 
the inference results are analyzed, and wrongly predicted instances are paid more atten-
tion in the next round using weighting strategies to reduce residuals. This continues 
until termination conditions are met. The XGBoost objective function consists of loss 
function part indicating model deviation and regularization part indicating model vari-
ance. Suppose the loss function is l and the regularization is � , the objective function for 
each round is:

Those boosted models are then ensembled and used consecutively and additively. 
XGBoost objective functions can be approximated using Taylor series to unary quadratic 
polynomial functions shown as the formula below:

where the variable X = x0, . . . , xn represents features in the training dataset. Usually, 
most features contribute little or even negatively and so they are given small weights 
or even discarded. Another reason to do so is to avoid over-fitting, i.e., avoid over-com-
plex models, which only shows high accuracy during training while reduces generality. 
A good practice is trying to use as much data as possible during training to get models 
with high accuracy (low deviation) and high precision (low variance). The above ideas 
are combined together and lead XGBoost to a common good baseline.

3.3  Deep learning methods

Deep learning methods are developing rapidly though tabular-targeted deep archi-
tectures are limited. TabNet is a neural network algorithm for tabular data published 
by Google [4]. It implements instance-wise feature selection through a sequential 
attention mechanism similar to the additive model. Self-supervised learning is also 
realized through encoder-decoder framework. TabNet has some advantages over 
deep neural network (DNN) [23]. Similar to image processing, TabNet can encode 
the data of the table and obtain a representation of the original table data, which is a 
representation learning method. In this way, the model can learn the corresponding 
features from the original data without human intervention for feature extraction 

(1)L(φ) =
i

l yi, ŷi +
k

� fk

(2)f (xi) = w0x0 + w1x1 + w2x2 + w3x3 + · · · + wnxn
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and corresponding processing. At the same time, the model can reduce its depend-
ence on feature engineering [16] (i.e., feature cleaning, processing, selection, etc.). 
TabNet algorithm also has some advantages of tree algorithm [2] in table data 
prediction. For example, the decision manifold is good, the model can be learned 
sparsely, the model has high explanatory degree, and the training speed is fast. This 
makes it not only has the advantages of DNN, but also can be comparable with the 
current mainstream tree model in the prediction of table data. TabNet combines the 
idea of Sequential Attention with the behavioral logic of decision trees, and sim-
ulates the algorithmic logic of decision trees through the framework of multi-step 
neural networks.

A step of the algorithm corresponds to the establishment of a tree in the deci-
sion tree algorithm. The steps of the algorithm mainly include two key operations: 
1.Attentive Transformer. The operation of this process is mainly to select some of 
the most important features for the next operation, that is, to simulate the feature 
selection step of the decision tree. The function of this layer is to calculate the Mask 
layer of the current step according to the output results of the previous step (the 
mask layer realizes feature screening through matrix operation).

The Sparsemax layer is a sparse version of Softmax. Fully connected (FC) layer 
is a fully connected layer where weight and bias are specially set, and it can make 
conditional judgment on the input feature vector. BN layer can reduce the size dif-
ference of different features in numerical value, and reduce the influence on the 
training process, and reduce the problem of gradient explosion and gradient disap-
pearance. It is worth noting that the Mask vector of different samples can be dif-
ferent, that is to say, TabNet algorithm can make different samples select different 
features (instance-wise) to reduce the prediction error caused by too many samples. 
The traditional decision tree model uses the same features for each tree. 2. Feature 
Transformer. The main operation of this process is to process the input features into 
a more useful representation, that is, to simulate the decision tree and set the Fea-
ture threshold for Feature calculation.

The functions realized by BN (batch normalization) layer and GLU (gated linear 
units) layer at FC layer are similar to branching tree by setting threshold value in 
tree algorithm, and the output is the weight of influence feature in the final predic-
tion result. Feature transformer is mainly composed of two parts. Related param-
eters in the layer of the first half are shared, that is, the parameter is jointly trained 
in all steps. The main reason for doing so is to extract the common part of feature 
calculation and determine which features have a high weight in the vast variety of 
books. In other words, each step is trained separately. In this way, its specific weight 
for features can be obtained for different samples, that is, the characteristic part of 
feature calculation can be obtained. Both parts are connected by residuals and mul-
tiplied by 

√
0.5 to ensure the stability of the network.

Using both attentive and feature transformers, TabNet is able to simulate the deci-
sion-making process of a tree-based model. This model has the characteristics of 
both DNN and tree algorithm, and has been proved to have good prediction effect in 
image processing and table data processing.
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3.4  Optimal cutoff

When considering the tradeoff between true positive versus false positive, or sensitiv-
ity versus specificity, an optimal cutoff value is needed. The optimal cutoff is calcu-
lated using Youden’s J score statistic (Youden’s index) [48], which is defined as:

that is,

It is a reflection of to which extend the algorithm is good at distinguishing normal ver-
sus abnormal instances at balance considering both sensitivity and specificity simultane-
ously. The bigger Youden’s index, the better algorithm is. From visual perspective, the 
selected cutoff value is actually in correspondence to the point on the curve that is most 
close to the top-left corner of the rectangular plotting area.

3.5  Results evaluation methods

Some metrics are used to evaluate algorithms and their results. For prediction and 
classification, commonly used effective metrics include accuracy, receiver operator 
characteristic (ROC) curve, the area under ROC curve (AUC). Accuracy is a direct 
and simple method to provide a quantitative comparison, roughly. Imbalanced data 
occur now and then [21], and accuracy is not a suitable metric in this situation. 
Unfortunately, network traffic dataset, in most cases, is imbalanced dataset with 
much more benign instances than malicious ones. Thus, it is necessary to have a well-
recognized metric to evaluate results during network traffic analysis.

For classification, a good way to present results is to use confusion matrix [41] 
which includes key values that can be used for other purposes. A confusion matrix is 
an N*N matrix, the horizontal and vertical indexes are related categories, the diagonal 
lines are correctly classified data, and outside the diagonal lines are incorrectly clas-
sified data. For a dichotomous problem, we can divide the classification into the fol-
lowing four types: (1) Positive samples are correctly predicted to be positive samples 
(true positive, TP). (2) Positive samples are wrongly predicted to be negative sam-
ples (false negative, FN). (3) Negative samples were mispredicted as positive samples 
(false positive, FP). (4) Negative samples are correctly predicted to be negative sam-
ples (true negative, TN). These four cases correspond to the values in the confusion 
matrix. Receiver operating characteristic curve (ROC) [13] and AUC (area under the 
curve) value [28] are indicators of classification effect evaluation based on confusion 
matrix. It is often used to evaluate the merits of a binary classifier. At present, ROC 
curve and AUC value are popular and common evaluation indexes in classification 
problems [14]. The horizontal and vertical coordinates of the ROC curve are mainly 
determined by the following two formulas:

(3)J = true positives

true positives + false negatives

(4)+ true negatives

true negatives + false positives
− 1

(5)J = sensitivity+ specificity− 1
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Abscissa (horizontal axis) indicates false positive rate (FPR), i.e., the proportion of sam-
ples that are predicted to be positive but actually negative in all negative samples. Ordi-
nate (vertical axis) indicates true positive rate (TPR), i.e., the proportion of predicted 
positive samples and actually positive samples in all positive samples.

The specific drawing process of ROC curve is as follows: First, the classifier will give 
the probability of all samples being classified as positive samples. We took this probabil-
ity as the score of the sample, sorted score from high to low, and classified positive and 
negative samples by score as threshold successively. (That is, each point constituting the 
ROC curve corresponds to a threshold.) Those higher than this value are positive sam-
ples, and those lower than this value are negative samples. For example, when threshold 
is the largest, TP = FP = 0, corresponding to the origin; when threshold is minimum, 
TN = FN = 1, corresponding to the point (1,1) in the upper right corner. The coordi-
nates of a series of points (that is, the values of FPR and TPR) can be obtained by the 
above calculation formula. Finally, all nodes are connected to complete the ROC curve 
drawing.

The specific drawing process of ROC curve is as follows: First, the classifier will give 
the probability of all samples being classified as positive samples. So let us take this prob-
ability as an example and in the ideal case, the value of TPR should be close to 1, and the 
value of FPR should be close to 0. That is, the roc curve should be as close as possible to 
point (0,1) in the figure and deviate from the 45 degree diagonal.

The main advantage of ROC curve is that it can effectively deal with the classifica-
tion problem under the condition of uneven distribution of positive and negative sam-
ples. When the number of positive and negative samples in a data set is too unequal, a 
phenomenon of class imbalance occurs. (In daily life, uneven sample distribution often 
occurs.) If we simply take the proportion of misclassified samples to all samples as the 
accuracy of the experiment, the effect is extremely poor. That is, the classifier can still 
obtain high accuracy when all samples are predicted to be positive or negative samples. 
However, the ROC curve can remain unchanged when the distribution of positive and 
negative samples changes.

AUC value is the area under the ROC curve, which can intuitively evaluate the quality 
of the classifier, ranging from 0 to 1. The larger the value, the better. Generally, the AUC 
value can be understood as a probability value, that is, the probability that positive sam-
ples rank before negative samples. The larger the AUC value is, the more likely the score 
of positive samples calculated by the current classification algorithm is to be higher than 
that of negative samples.

3.6  Data specification and experimental design

A labeled collection of datasets, Aposemat IoT-23 [10], which is available in public domain 
with malicious and benign IoT network traffic is used for testing our hypothesis. This 

(6)FPR =
false positive

false positive+ true negative

(7)TPR =
true positive

true positives+ false negative
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collection is created by Avast AIC laboratory with the funding of Avast Software and was 
firstly published in 2020. It contains 23 datasets (corresponding to 23 scenarios) which con-
sists of 20 datasets from a malware-conquered IoT network (botnet) and 3 benign traffic 
datasets. The datasets are numbered thus noted as Di in this work. The traffic was firstly 
captured in pcap format which is frequently used during network capturing [31, 40] and 
then processed by a analyzer to get flows, i.e., communication conversations.

Zeek is a passive and publicly available open-source network traffic data analyzer and 
supports performance measurement and troubleshooting [34]. It is often used for monitor-
ing of network security status. It can be deployed to provide near real-time analysis to sup-
port investigations of suspicious or malicious activity. Through analyzing captured packets, 
Zeek finds communication conversations between devices and extract features.

Next, we make detailed statistics of the relevant features of these data, and introduce the 
feature engineering carried out in this experiment.

The extracted conversation features are conversation starting time, originator and 
responder IP address, originator and responder port number, transportation layer proto-
col (TCP or UDP), service (such as HTTP, DNS, DHCP, etc., decided mainly using pro-
tocol and port number), conversation duration, application layer payload total bytes sent 
by originator and responder, IP layer payload total bytes sent by originator and responder, 
connection termination status, total packets number sent by originator and responder. The 
malware datasets originate from pcap files sizes ranging from 2MB to 6GB (23 kilo to 271 
million packets) and capturing duration from 1 h to 112 h. The number of flows in ana-
lyzed results ranges from 238 to about 74 million. The scenarios and malware also vary. It is 
worth mentioning that the above numbers regarding sizes, flows, packets, etc., are not posi-
tively correlated; thus, this IoT-23 dataset provides high diversity which is a good candidate 
to be investigated.

The conversation instances are labelled in Stratosphere laboratory with “label” and “type”. 
Label indicates actual actions including normal traffic benign and abnormal traffic such as 
HeartBeat, FileDownload, PortScan, Attack, Torii (virus’ names) among others. Type is a 
binary target with benign traffic as “benign,” and all non-benign conversations are marked 
as “malicious”. Type is the target that we use in this work to train and test.

We firstly analyze each dataset to get some initial overview including data cleanliness and 
relations among them. Data cleaning is important as many algorithms cannot work with 
missing values and may be misled by outliers [36]. To make dataset analysis applicable to 
other domains, robust and general statistical methods are used. For data cleaning part, 
datasets that contain missing values cannot be sent directly to TabNet so they are processed 
by k-nearest neighbor to impute missing values. All experiments are conducted using ten-
fold cross-validation (CV) to ensure the validity and robustness of results.

The proposed method can be represented in pseudocode as Algorithm 1.
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The experiments are conducted inside Jupyter Notebook on a machine with Win-
dows 10, Intel Core i9-10900K CPU 3.7GHz, 64 gigabytes RAM, NVidia GeForce RTX 
3080 with 10GB RAM Graphic Processing Unit. The python version 3.6 is used together 
with PyCharm version 2021.1.2 community edition build 211.7442.25, runtime version 
1341.57 amd64, and the key packages are NumPy version 1.19.5, pandas version 1.1.5 
and libxgboost version 1.4.2.

4  Results and analysis
In this section, experimental results are presented in a manner of algorithms and per-
formance. Most of the datasets themselves are well organized and labelled which leads 
to the results that most classification and prediction results tend to be near perfect, thus 
are not discussed.

Typical results are presented using datasets D20 combined with D21 and D03 com-
bined with D34. The experimental results from datasets D20 and D21 show that combin-
ing datasets may improve prediction and classification results. For XGBoost, comparing 
the results (AUC and residual) of the original D20 (Fig. 2) and D21 (Fig. 3), respectively, 
with the results of the combined data (Fig. 4), it can be seen that the AUC value of the 
combined data has significantly improved. The fusion increased AUC by 7.77% and 
202% for D20 and D21, respectively. Detailed values are described in Table 1. It is worth 
mentioning that accuracy is showing its vulnerability and cannot “accurately” track the 
fusion influence.

Both D03 and D34 produced excellent results (AUC near 1.0) when using XGBoost 
alone (Figs. 5 and 6). Combining the D03 with D34 using XGBoost has produced some 
reductions (Fig. 7). After the combination, AUC drops suddenly by 7.39% and 6.56% for 
those datasets. Detailed values are described in Table 2
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Fig. 2 Results of applying XGBoost to D20 only. Left: residual sequence with original timed order. Right: ROC 
curve and residual distribution

Fig. 3 Results of applying XGBoost to D21 only. Left: residual sequence with original timed order. Right: ROC 
curve and residual distribution

Fig. 4 Results of applying XGBoost to D20 + D21 fused data increase AUC dramatically. Left: residual 
sequence with original timed order. Right: ROC curve and residual distribution

Table 1 XGBoost gives better results when combining two datasets appropriately

Dataset AUC Optimal Cutoff Accuracy

D20 0.891628171 0.18944216 0.881271424

D21 0.318110374 0.18664216 0.753499696

D20+D21 0.96090745 0.1924175 0.943187067
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Fig. 5 Results of applying XGBoost to D03 only. Left: residual sequence with original timed order. Right: ROC 
curve and residual distribution

Fig. 6 Results of applying XGBoost to D34 only. Left: residual sequence with original timed order. Right: ROC 
curve and residual distribution

Fig. 7 Results of applying XGBoost to D03 + D34 fused data results worse AUC. Left: residual sequence with 
original timed order. Right: ROC curve and residual distribution

Table 2 XGBoost gives worse results when combining two datasets appropriately

Dataset AUC Optimal Cutoff Accuracy

D03 0.998767676 0.7754513 0.997559304

D34 0.989943557 0.7583015 0.980168503

D03+D34 0.924983789 0.78958625 0.913047844



Page 12 of 17Sun et al. J Wireless Com Network        (2022) 2022:113 

TabNet produces similar result patterns and trends with XGBoost. Comparing the 
results of the original D20 and D21 (Figs. 8 and 9) with the results of the combined 
data (Fig. 10), the AUC has a higher improvement. This indicates an improvement of 
32.1% and 27.7% for those two datasets individually. Detailed values are presented in 
Table 3.

The trend of the results obtained using TabNet on the D03 and d34 datasets is simi-
lar to that obtained using XGBoost. Detailed values are described in Table 4.

Fig. 8 Results of applying TabNet to D20 only. Left: residual sequence with original timed order. Right: ROC 
curve and residual distribution

Fig. 9 Results of applying TabNet to D21 only. Left: residual sequence with original timed order. Right: ROC 
curve and residual distribution

Fig. 10 Results of applying TabNet to D20 + D21. Left: residual sequence with original timed order. Right: 
ROC curve and residual distribution
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It can be obtained from the data in Table 5. In the case of no data fusion, 70% of the 
data have good performance and can be effectively classified, and their AUC is above 
0.98. However, the classification effect of 30% data is not good, and the average AUC 
value is about 0.5.

According to the data performance in Table  6, 28% of the data are significantly 
improved after fusion, which is especially in the case of the previous single datasets 
with low performance. 7.5% of the data performance decreased after fusion, while the 
AUC decreased by about 0.1. As for the rest part, since the AUC value is generally 
above 0.98, the classification effect of a single dataset is good enough, leading to little 
difference after data fusion.

From the above results, we can see that fusion datasets may increase algorithm 
performance given some limitations. Dataset characteristics show that some second-
order feature differences between the two example fusions are huge. That is, the diver-
sity of dataset characteristics between D03 and D34 is much higher than the ones 
between D20 and D21. Three characteristics are gaining more attention compared to 
others: standard deviation, skewness and kurtosis. For those three characteristics, the 
differences between D03 and D34 are 12 to 175 times higher the ones between D20 
and D21. Thus, current experiments show that it is preferred to combine two datasets 
if there those three characteristics have less differences; otherwise, fusion may be a 
bad idea.

Table 3 TabNet gives better results when combining two datasets appropriately

Dataset AUC Optimal Cutoff Accuracy

D20 0.655936815 1 0.995014023

D21 0.678571429 1 0.995739501

D20+D21 0.866666667 1 0.995381062

Table 4 TabNet gives better results when combining two datasets appropriately

Dataset AUC 

D03 0.982570579

D34 0.969258236

D03+D34 0.922084062

Table 5 Performance of the single dataset

Performance High Low

Single Dataset 70% 30%

Table 6 Performance changes after data fusion

Performance Increased Unchanged Decreased

Data Fusion 28% 64.5% 7.5%
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It can be found from the experiment that in D20 and D21 data sets, the distribution of 
positive and negative samples is obviously uneven, and the number of positive samples is 
very small, accounting for less than 5%. The results show that the algorithm is not sensi-
tive to the classification of some anomalies in D20 and D21 datasets, but it is improved 
obviously after data fusion. The same is true in D42 and D44.

In D03 and D34, the proportion of positive samples is as high as 97% and 91%, 
respectively. (That is, there are many abnormal cases.) After data fusion, the perfor-
mance is degraded to a certain extent. The same is true in other data sets with degraded 
performance.

Therefore, we judge that the lower the proportion of abnormal samples in the original 
samples, the more obvious the performance improvement after data fusion. That is, the 
algorithm becomes more sensitive to positive samples. However, the higher the propor-
tion of abnormal samples in the original samples, the worse the performance of data 
fusion.

5  Conclusion
For the results and analysis, we can see that combing datasets with similar characteris-
tics improves the algorithm performance.

The results show that combining datasets can improve AUC 8% to 202% using tradi-
tional machine learning (XGBoost here) and 28% to 32% using deep learning (TabNet 
here).

The improvement is produced given the condition that fused datasets have similar 
deviation, skewness and kurtosis. This is a novel finding that we have not found during 
literature review.

Though combining datasets may lead to good results, improper combination may give 
worse results than individual datasets. Combining D3 and D48 reduces AUC by about 
7% when using XGBoost, and about 5% when using TabNet.

In summary, combination of datasets may help or worsen the performance. The sec-
ond-order dataset characteristic differencing should be considered to decide fusion. 
For the data with similarity characteristics, it is a good way to consider combining data-
sets to improve the algorithm classification and prediction performance. However, if 
the datasets differ with each other much, the combination should not be used as it will 
decrease the performance.

This work is currently done within one collection of cybersecurity domain, datasets 
of other domains can be used to check the robustness of our methodology. Big–small-
sized data fusion can be interesting given suitable situations especially when transfer 
learning is considered [50]. Also, TabNet seems to be able to provide better results with 
fine-tuned epoch rounds and patience. We plan to spend some time on those topics in 
exchanged for valuable performance enhancement.
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