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1  Introduction
Recent advancements in the digital era and intelligent devices have led to a break-
through in wireless technology. 4G long-term evolution (LTE) and the upcoming 
5G cellular technology are the backbones of this digital transformation by offering 
consistent and high-throughput network communication [1, 2]. However, maintain-
ing the connectivity mainly depends on the accuracy of the empirical signal path 
loss model, which covers the detailed environment structure such as trees, bushes, 
branches, leaves, and human-made constructions [3]. Based on empirical signal 
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models, RF engineers design, position, and deploy cellular towers (eNodeBs) over 
the target field. This process always requires a robust sensor configuration to acquire 
detailed information about the environment [4]. Light detection and ranging (LiDAR) 
has been widely used in many engineering applications, including civil engineering, 
military surveillance, natural resources characterization, and artificial intelligence 
(AI)-aided autonomous devices [5, 6]. However, LiDAR only system is not capable of 
georeferencing and mapping the terrain due to the lack of geographical and position-
ing information. Therefore, engineers use LiDAR, unmanned aerial vehicle (UAV), 
Global Positioning System (GPS), and inertial measurement unit (IMU) as the pri-
mary devices and sensors to obtain the 3D image of the environment [7, 8]. The row 
LiDAR data are direct-georeferenced by the fusion of GPS and IMU sensors. Every 
received data point containing GPS location (latitude and longitude) should be time-
stamped with pitch, yaw, and roll information through IMU [9]. Nevertheless, 3D 
mapping is not enough to detect and classify obstacles alone. Computer vision tech-
niques such as color segmentation and deep learning algorithms are also required to 
extract meaningful features from the environment.

Image color classification (ICC) is a computer vision technique applied to 2D images 
to extract desired areas from the target location. RGB is one of the most used image for-
mats containing composite channels of red, green, and blue coded in 256 levels (0–255). 
Thus, combining these three channels can create various types of colors that exist in 
nature. Since RGB color space is not suitable for digital manipulation to extract trees and 
other objects from the environment, Lab color space, which L stands for lightness and 
a and b stand for the color dimension, could be used [10]. The main advantage of using 
Lab color is to access all colors in the spectrum and some colors beyond human percep-
tion. These features are very critical for object detection and deep learning algorithms.

Deep learning is essentially a subset of machine learning where the artificial neural 
network (ANN) imitates human neural cells. The learning is based on training with a 
considerable amount of data which is used to reduce the error iteratively [11–13]. The 
term “deep” implies the high number of ANN layers. Thus, as the number of layers 
increases, the learning will be deeper. There are different types of ANN, such as con-
volutional neural networks (CNNs), recurrent neural networks (RNNs), and recurrent 
convolutional neural networks (R-CNNs). Some object detection systems also system-
atically use these neural nets to classify and locate objects such as You Only Look Once 
(YOLO) V5 and Efficient Net. However, all these systems have their pros and cons in 
terms of performance. The YOLO V5 utilizes CNNs to detect and classify objects for 
various applications in real-time (higher frame per second), making it more preferable 
[14, 15].

This research demonstrates an AI-aided multi-sensor fusion architecture to accurately 
predict wireless communication systems’ signal power path loss (SPPL) by including the 
micro-variation effect of the environment. Unlike other empirical models, our model 
will minimize the environmental constraints by extracting features including height and 
type of the obstacles in the line of sight (LOS) direction from the 3D classified terrain. 
The proposed method aggregates the effect of the trees and buildings on SPPL using the 
ICC and YOLO V5 algorithms. According to the results, there is a significant improve-
ment in predicting SPPL for the deployment of wireless communications systems. This 
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new method not only minimizes the error related to environmental complexity but also 
maintains the connectivity for any type of environment.

The rest of the paper is organized as follows: Sect. 2; Sect. 3; Sect. 4; Sect. 5 ; Sect. 6.

2 � Background work
The continuous growth of cellular communication systems and wireless sensor networks 
(WSNs) in parallel with increasing demands poses new energy consumption and effi-
ciency challenges. Federal communications commission (FCC) report states that the 
inadequacy of infrastructure limits the ability to manage services in response to the 
increasing demand for wireless communications [16, 17]. Adding new cellular tow-
ers may seem like an easy solution, but real-estate fees and equipment costs put com-
panies in a tight spot. Therefore, efficient cellular tower deployment is of paramount 
importance.

To achieve optimum SPPL, several performance criteria can be used, such as sufficient 
received signal level (RSL), comprehensive coverage, and long distance [18]. The SPPL 
is usually determined according to the free space, Cost-231 Hata, and log-normal mod-
eling results to increase efficiency. Some researchers also combine LiDAR and path loss 
models to achieve maximum accuracy. For instance, in their paper, Demetri et al. esti-
mate the radio RSSI readings and behavior of low-power WSN in a forest environment 
using airborne LiDAR equipment. Their study shows that LiDAR eliminates the neces-
sity of in-field campaigns and fine-grained ones. The proposed signal estimation method 
reduces the RSSI reading error to ± 6 dBm per link bases [19]. Image processing plays 
a significant role in many research areas such as medical science, defense, and surveil-
lance, constructions engineering, and path loss analysis [20–23]. In their study, Thrane 
et al. aim to find the effect of buildings on multi-path signal propagation path loss [24]. 
They collect signal attenuation measurements between the transmitter and receiver at 
different locations. The buildings’ path loss effects are estimated using image classifica-
tion and deep learning techniques, together with the 2D satellite images and the rotated 
versions of the images. Their model achieves a 1 dB to 4.7 dB improvement factor in the 
path loss estimation compared to the empirical models.

Similarly, Klautau et al. utilize LiDAR-based feature extraction and CNN architecture 
to reduce overhead in mm-Wave beam systems in the line of sight (LOS) direction. They 
use traffic, raytracing, and LIDAR simulators to simulate an orthogonal frequency divi-
sion multiplexing (OFDM) mm-Wave downlink channel. The study contains both binary 
and top-M classifications, and the minimum misclassification error achieved is 24% in 
the noise-free condition [25]. In another study, Krijestorac et  al. utilize deep learning 
and 3D maps to predict radio signal propagation in an urban environment, and their 
model outperforms the traditional methods for signal strength estimation [26]. Man-
made structures and tree canopies are two factors that reduce signal levels the most 
due to the scattering and absorption effects. To decrease these effects, aerial-based sta-
tion research and analysis are being done. When the ground-based cellular towers are 
damaged, these aerial-based stations might be practical after natural disasters, such as 
earthquakes, floods, tsunamis, and hurricane [27]. Andreyev and Thiel claim that aggre-
gated system capacity can be increased by 52% using aerial-based stations instead of 
traditional ground-based cellular towers [28]. According to Alzenad et al., aerial-based 
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stations maximize covered users using the minimum transmit power [29]. Pliatsios et al. 
also studied on the optimal deployment of drone-based stations by comparing swarm 
intelligence approaches [30]. Although studies on aerial-based stations are increas-
ing, these stations are unstable due to the high number of uncertainties, such as ran-
dom weather conditions and unpredictable motion on the air [31]. Thus, an advanced 
AI-aided SPPL system including direct-georeferencing and sensor fusion is required to 
obtain sustainable and reliable results.

3 � Materials and methods
3.1 � Direct georeferencing

Direct georeferencing is the method of finding the location and orientation of the 
Geodetics Mobile Mapping System (Geo-MMS) with the help of external orientation 
elements such as elevation, orientation angles ( θ , η ), and distances in the Cartesian coor-
dinate system (X, Y, and Z) [32, 33]. The Geo-MMS systems involving GPS, IMU, and 
LiDAR are generally mounted on unmanned aerial vehicles (UAVs) for photogramme-
try and real-time 3D mapping. The GPS and IMU provide orientation (Pitch, Yaw, and 
Roll) and position (latitude and longitude) of the UAV on the earth while the downward-
directed LiDAR scans the surface with laser pulses. These processes require very precise 
calibration since all the sensors are working independently [34], as seen in Fig. 1.

In this type of multi-sensor fusion architecture, the orientation of the architecture 
is supported by the Kalman filter supported inertial navigation system (INS) [35]. The 
INS assigns georeference points to each data block received from the IMU and LiDAR 
through the GPS. A sequential adjustment between INS and LiDAR is required as each 
sensor operates at different frequencies. After synchronization and direct georeferencing 
of IMU and LiDAR are completed, georeferenced data points are combined to visualize 
the 3D point cloud. In this endeavor, the raw point cloud data received at a 70 kHz scan 
rate with a 1 cm resolution is obtained from Florida International University (FIU) [36]. 
The survey area and corresponding 3D point data cloud from the Florida Tech neighbor-
hood in Melbourne, Florida, are represented in Fig. 2.

Fig. 1  Direct-georeferencing on LiDAR and UAV. Where (Xb , XL) , (Yb , YL) , and (Zb , ZL) are boresight and laser 
Cartesian coordinates which explain related rotation parameters pitch, yaw, and roll. The θ and η represent the 
angles between ground and target, and the angle between ground and laser’s X direction, respectively
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Classified 3D mapping is the fusion process of 2D image color classification (ICC) and 
3D point cloud. The process begins with the 2D ICC of the survey area which extracts 
features to accumulate valuable and necessary data parts. One way to apply ICC is to 
use Lab color space to identify the vegetation from the environment. Although most 
images are in RGB format, they are converted to Lab images since the RGB format is 
unsuitable for digital manipulation [37–39]. Next, a binary mask will be determined to 
find the average intensity of each channel falling into the mask for that image. For Lab 
color format, differences between each channel ( �L,�a , �b ) and corresponding masks ( 
µmaskL,µmaska, and µmaskb ) will be calculated as indicated in Eq.(1).

where L stands for lightness; a stands for the color dimension between red and green; 
and b stands for the color dimension between blue and yellow.

The desired area is not represented by only masks. Thus, the Euclidean distance for all 
three channels will yield the color values closest to the masked portion of the image, as 
indicated in Eq.(3) [40].

The � E must be within the 95% Confidence Interval (CI) since color classification with-
out some tolerance would remove entire color tones belonging to that specific area. If 
the � E values are smaller than CI, that value is assigned logic 1, otherwise logic 0. The 
3D map of the environment is classified by fusing the 3D point cloud and the 2D classi-
fied image. The obtained results are presented in Fig. 3.

3.2 � You Only Look Once (YOLO) V5

The You Only Look Once (YOLO) is one of the cutting-edge object detection algorithms 
[41]. YOLO outperforms the other traditional object detection algorithms by examining 

(1)
�LM×N = L− µmaskL, �LM×N

= a− µmaska, �LM×N

= b− µmaskb

(2)µ =
1

m× n
(m, n)Pmask(m, n) ×Onesm×n

(3)�EM×N =
√

(�L)2 + (�a)2 + (�b)2

Fig. 2  3D point data cloud from the Florida Tech neighborhood in Melbourne a Survey area from Google 
Maps b 3D point cloud of survey area
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the images only once to find the objects inside them. Among all previous versions, 
YOLO V5 has a faster processing speed with the most advanced structure using parallel 
calculations [42, 43]. Many new techniques are used in YOLO V5, such backbone (CSP-
Darknet), neck (PAnet), head (YOLO layer) [44]. To get more precise accuracy values, 
YOLO V5 uses a deeper and more complicated ANN, Dense Block [45].

Looking at the architecture in Fig.  4 carefully, we will see that cross-stage partial net-
work (CSPNet) finds a solution for repeated errors related to gradients on a large scale and 

Fig. 3  3D tree detection process via 2D ICC process a masked image,b 2D color classified image, c 3D color 
classified image

Fig. 4  YOLO V5 architecture
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integrates the difference into a feature map. In other words, CSPnet minimizes the number 
of used parameters in the model to speed up the process and accuracy [46, 47]. In addition, 
PANet, the neck section, gathers parameters from various backbone levels instead of the 
feature pyramid network (FPN). YOLO V5 also uses adaptive feature pooling to transfer 
features to subnetworks. Finally, in the last stage, the head is used to detect objects using 
anchor boxes. The YOLO V5 architecture is represented in Fig. 4.

In this study, YOLO V5 will be used to classify buildings from two-dimensional satellite 
images and determine buildings’ location in a 3-dimensional point cloud.

4 � Proposed deep learning and 3D classified map assisted SPPL architecture
Designing an intelligent SPPL architecture requires intensive work, which depends on 
an AI-aided computer vision algorithm and signal power estimation to achieve optimum 
transmitter locations. As it is known, the communication environment has many obsta-
cles such as trees, buildings, and some other man-made structure that affects the net-
work’s quality [48, 49]. Thus, as many obstructions as possible should be taken into account 
throughout propagation planning. Regular systems get benefits from empirical models 
such as Cost-231-Hata, log normal (LN), and free space path loss (FSPL) models to esti-
mate cellular tower location based on predefined parameters, including environment selec-
tion (rural, urban, and suburban) and shadowing factor ( Xσ ). FSPL is the essential path loss 
model when there is no obstacle in the medium. It only computes attenuation between 
Transmitter (TX) and Receiver (RX) utilizing the Friis formula indicated in Eq.(4) [50].

where Pt : transmitter power; Pr : receiver power; d: distance between Pt and Pr ; � : wave-
length. Gt transmitter antenna gain: Gt teceiver antenna gain.

However, the FSPL model is not applicable for an obstructed environment due to obsta-
cles of which the scattering and absorption cause an erroneous signal power predic-
tion [51–53]. Even the LN, one of the extensions of FSPL, only considers the shadowing 
effect(Xσ : N(0,σ )) and path loss component ( η ), which are meant for a specific environment 
that is inapplicable for different locations as seen in Eq.(5) [54].

where d0 : close-in reference distance(1 meter); η : path loss exponent; Xσ : N(0,σ )) normal 
distribution.

A similar idea can be applied to the Cost-231 Hata model since it is only meant for a 
detailed range of frequencies and does not contain many variations of the environment 
such as elevation, trees, buildings, etc. The mathematical model is demonstrated in Eq.(6) 
[55].

(4)FSPL = 10 log

(

Pt

Pr

)

= 10 log

(

4πd2

�2GtGr

)

(5)PL[dB] = PL(d0)+ 10η log

(

d

d0

)

+ Xσ

(6)
PL[dB] = 46.3+ 33.9 log(f )− 13.82 log(hB)− a(hR, f )

+ (44.9− 6.55 log(hB)) log(d)+ C
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where a(hR, f ) = (1.1log(f )− 0.7)hR − (1.56log(f )− 0.8) ; C = 0 dB in Suburban areas; 
C = 3 dB in Metropolitan areas. In summary, the performance parameters of the empir-
ical models are defined in Table 1.

In this work, we propose an optimal SPPL architecture that uses sensor fusion and 
image processing, including state-of-the-art deep learning systems and libraries such 
as YOLO V5 and TensorFlow to deal with minor variations in the environment and 
have maximum accuracy, as seen in Fig. 5. According to our architecture, three data 
sources were collected from LiDAR, 2D satellite images from Google Map, and refer-
ence signal received power (RSRP) level from mobile phones. These resources have 
different processes throughout the architecture to achieve maximum accuracy. The 
process initializes with manual annotations of georeferenced 2D images to identify 
the building class object. The obtained images and corresponding annotations go 
through the training process with the YOLO V5 algorithm, which is one of the states 
of art object detection algorithms to obtain a building detection model. Once the 
training process is completed, the optimized weights are used to locate and detect 
buildings and vegetation. The primary purpose of color classification is to classify 
irregular terrain patterns such as trees and power lines higher than a regular human 
height (1.65 meters). Counting objects higher than humans is crucial in maintaining 
network connectivity with lower process time. It should be noted that obtaining the 

Table 1  Performance parameters of empirical models

Performance parameters Definitions

f Frequency

� Wavelength

d Distance

do Close-in reference distance (1 meter)

Gt Gain of the transmitter antenna

Gr Gain of the receiver antenna

η Path loss exponent

Xσ Normal distribution with zero mean

hB Antenna effective height for eNodeB

hR Antenna effective height for the receiver

a(hR , f ) Height correction factor for the receiver

C Constant offset for different environments

Fig. 5  Optimal SPPL architecture
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object will help us assign an associated coefficient to the final SPPL prediction. How-
ever, since the georeferenced 2D satellite image is insufficient to acquire the elevation, 
the georeferenced 3D LiDAR image should also be considered [56]. For this purpose, 
the raw georeferenced LiDAR data are converted to the Cartesian coordinate system 
(x,y,z coordinates) to visualize the surfaces of the desired environment, as demon-
strated in Fig. 6.

Via inspecting the original image represented in Fig. 6, one can use the information of 
2D georeferenced satellite image as a reference to locate the position of the buildings in 
the 3D georeferenced LiDAR point cloud. By doing so, the elevation of every data point 
can be extracted from the environment. The same logic is also applicable for vegetation 
detection using color classification. After object detection and classification, the path 
loss exponent of the environment ( ηv = 1± 0.5 dB, ηb = 3.4 ± 1.5 dB ) can be computed 
through the average vegetation path loss difference per obstacle(�PLveg ) and average 
building loss difference per obstacle ( �PLbuilding ) as seen in Eq.(7).

Employing computer vision processes and path loss difference ( �PLveg and �PLbuilding ), 
the SPPL prediction parameters can be obtained as indicated in Table  2. It should be 
noted that implementing SPPL will require some constraints for vegetation since the 
natural environment complexity will still have some uncertainties for maintaining the 
network connectivity. Therefore, our approach will apply the following constraints to 

(7)ηv = Mean
(

�PLveg
)

ηv = Mean
(

�PLbuilding
)

Fig. 6  Cartesian model presentation of a LiDAR point cloud and corresponding 2D satellite image

Table 2  Obtained SPPL training parameters

Vegetation parameters Building parameters

Latitude Latitude

Longitude Longitude

Vegetation Loss(ηv) Building Loss(ηb)
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count vegetation as an object: Gaussian filter 3× 3 , vegetation height≥ 1.65m , vegeta-
tion width≥ 2m , distance peak to peak≥ 2m . Taking all into account, the optimum SPPL 
formula toward LOS can be achieved by aggregation of the Friis formula, YOLO V5 
object detection, and color classification (CC) algorithm, as seen in Eq.(8).

4.1 � Mean absolute percentage error (MAPE)

Prediction accuracy is one of the essential components that can be used to validate 
the model. Therefore, Mean Absolute Percentage Error(MAPE) is used as a statistical 
method to measure how accurate the system is. This method is based on the percent-
age representation of average error between ground truth and estimated values from the 
models. MAPE of SPPL findings in the LOS direction can be calculated in Eq.(9) [57].

5 � Analysis and results
This research compares three commonly used signal strength empirical models with the 
proposed SPPL model. The software and AI libraries used for this analysis are Google 
Collab, MATLAB, Python, TensorFlow, OpenCV, and Darknet. Also, a PCTEL-Seegull 
EX RF scanner with an antenna frequency from 698-3000 MHz is utilized. The scan-
ner is set for LTE frequencies of the AT &T service provider, which has 850 MHz and 
20 MHz channel bandwidth. For the experiment, a 3D point cloud and a 2D satellite 
image are selected from the Florida Tech neighborhood between the coordinate of(Lat:-
80.619091,Lon: 28.062167) and coordinate of (Lat:-80.616669, Lon: 28.063713). The pro-
cess starts with dataset preparation. The dataset is prepared using 256 satellite images 
and 2992 building annotations. The dataset is divided into 80% training, 10% validation, 
10% test set. The training hyperparameters, class name, number of the epoch, maximum 
batch size, GPU, and learning rate, are set to buildings, 100, 16, enabled, and 0.01. After 
the training is completed, the best model is obtained at 96% and 47% accuracy(the mAP 
0.5 and mAP 0.95, respectively). The box and abjectness score is also obtained as 0.05067 
and 0.1678, respectively. The obtained building detection results are indicated in Fig. 7.

The building detection results demonstrate that the obtained model has a significant 
performance level for building detection. Since we are using a 3D environment and try-
ing to get the best prediction for the height of the buildings and minimize vegetation-
related errors, we have removed the area from the bounding boxes. This procedure is 
essential in terms of keeping the detection area height over the LOS to take the path loss 
properly into account. The results are represented in Fig. 8.

Unlike the building detection process, YOLO V5 poorly performs on vegetation 
detection in 3D platforms due to the complex structure of the environment. There-
fore, the YOLO V5 algorithm is replaced with the ICC algorithm to classify colors with 

(8)

LOS(SPPL)[dB] = FSPL[dB] + CC

(

ntree
∑

i=0

ηvi [dB]

)

+ YOLOV5

(nbuildings
∑

i=0

ηbi [dB]

)

(9)LOS(MAPE) =
100

n

n
∑

i=0

∣

∣

∣

∣

Ground Truth - Model

Ground Truth

∣

∣

∣
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Fig. 7  YOLO V5 training results for building detection for Florida Tech neighborhood a Training results b 
YOLO V5 building detection results c Survey area results
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predefined limitations explained in section  2. Here, the primary objective is to detect 
the location and number of vegetation objects that block the signal propagation because 
their heights are higher than the average human height. Therefore, we have extracted 
only trees with minimum height and width limits of 1.65m and 2m, respectively. In order 
to see the performance of the SPPL model, the transmitter and receiver are located on 
3D vegetation filtered point cloud. The detected results are shown as a + sign with LOS 
side view, as seen in Fig. 9.

The results demonstrate that the 8 trees and 1 building(objectlocs ) are detected in the 
LOS direction with 77.6% average accuracy. For every tree and building, average losses 
of 1± 0.5 dB and 3.4 ± 1.5 dB are added into account, respectively. Since the required 
objects are identified in the LOS direction, we implemented our SPPL model along with 
empirical models. The obtained path loss results are presented in Table 3 and Fig. 10. 
From Table 3, one can see that the LOS path loss changes every time the signal encoun-
ters an object. The empirical model shows a higher amount of loss within 250 meters 
range than our SPPL model. In order to see the performance of the systems, we took 
actual RSL measurements from the same area in the LOS direction and compared the 
results. Fig. 11 and Table 4 illustrate the RSL versus the distance. The results show that 
our proposed SPPL model outperforms the empirical model-based deployments after 
the distance of 33m. This is because buildings and trees are taken into account with 
respect to their effect on signal propagation. The higher number of vegetation and 

Fig. 8  3D Building detection process using 2D/3D fusion a 2D building filtering b 2D/3D fused image

Fig. 9  3D point data cloud from the Florida Tech neighborhood in Melbourne a Filtered vegetationb 
Detected trees
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Fig. 10  Obtained path loss results

Fig. 11  Obtained path loss results

Table 3  Path loss comparison the models

(Obect)Locs(m) SPPL [dB] FS [dB] LN [dB] Cost-231 [dB] MES [dB]

12m 54.40 50.93 61.83 60.72 53.05

33m 64.27 59.71 72.64 76.19 69.65

39m 66.81 61.17 74.41 78.75 73.25

52m 70.40 63.66 77.43 83.15 75.23

177m 82.12 74.30 90.45 101.89 85.38

183m 83.50 74.59 91.27 102.40 86.37

191m 84.95 74.96 91.58 103.05 87.49

206m 85.61 75.62 92.20 104.21 88.84
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building the lower the performance will be observed. According to RSL MAPE results 
for all path loss models, the proposed model has significant improvement with a 3.95% 
estimation error. The results also demonstrate that FSPL, LN, and Cost-231 Hata models 
have relatively higher errors with 14.53%, 6.08%, and 15.26%, respectively.

6 � Discussion
Since 5G and similar technologies are rapidly taking place globally, the importance of 
quality of service (QoS) becomes one of the fundamental criteria for success. However, 
current SPPL models such as LN and Cost-231 Hata usually fail to fulfill the require-
ments because empirical models are not intelligent enough to cover and classify 
micro-variations on irregular terrains. It is known that irregular terrains, buildings, 
and vegetation, affect the health of the propagation significantly due to the multipath 
reflections. Moreover, empirical models are limited by the environment (Urban and 
Suburban) and location (Orlando, Tokyo). When they are implemented in a different 
environment, they end up with erroneous predictions. Therefore, an intelligent charac-
terization and the classification of the terrains become more critical in terms of path loss 
estimation. As a solution, we developed a method that utilizes 3D point cloud and 2D 
satellite images through YOLO V5 and Color classification algorithms. Satellite images 
and LiDAR data together provide enough information to simulate an environment’s 
geographical and man-made structures. These additional data and deep learning tech-
niques result in a complex and more accurate RF propagation model that works in every 
environmental situation, unlike traditional models. The tree canopy and buildings that 
play a key role in SPPL even at lower 4G band frequencies will increase their influence 
considerably in higher frequencies provided by 5G and beyond communication systems. 
The prediction results indicate a significant improvement in terms of RSL estimations. 
This is because our model does not use a constrained model limited by the environment 
when there is no object between the transmitter and receiver. It only corrects its predic-
tion when it encounters an object such as buildings and trees. Although the difference 
in buildings’ structural materials and types of trees may have a variable impact on SPPL, 
the prediction accuracy can be increased by measuring the propagation loss of common 
trees and building types in that environment. In future work, the model will be used 
in harsh environments for RF propagation like forested areas and metropolitan cities to 
provide further validation.

Table 4  RSL comparison of RSL the models

(Object)Locs(m) RSLSPPL[dBm] RSLFS[dBm] RSLLN[dBm] RSLCost231[dB] RSLMES[dBm]

12 m −61.54 −58.07 −68.88 −67.86 −60.02

33 m −71.42 −66.86 −79.91 −83.34 −76.8

39 m −73.95 −68.31 −81.62 −85.89 −80.4

52 m −77.54 −70.81 −84.65 −90.29 −82.38

177 m −89.26 −81.45 −97.62 −109.03 −92.53

183 m −90.64 −81.74 −97.91 −109.54 −93.52

191 m −92.10 −82.11 −98.67 −110.20 −94.64

206 m −92.75 −82.76 −99.50 −111.35 −95.98

MAPE(%) 3.95% 11.53% 6.08% 15.26% NA
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7 � Conclusion
This paper represented an intelligent SPPL system that implements state-of-the-art 
computer vision and deep learning algorithms such as ICC and YOLO V5 to deploy 
wireless communication systems. Through ICC and 3D classified map, the objects 
in the environment are separated into vegetation and buildings since the type of the 
object, mainly vegetation, has a significant effect on signal path loss. According to 
the YOLO V5 object detection results, the buildings are detected with 96% accuracy 
(mAP 0.5) and 47% (mAP 0.95). In addition, the trees which block signal propagation 
are detected with 77.6% accuracy using ICC and 2D/3D image fusion. The desired 
features ( ηvi and ηbi ) from 2D/3D Fused image are obtained to compute the final LOS 
(SPPL). According to mean absolute error results for all path loss models, the pro-
posed model has significant improvement with a 3.95% estimation error, whereas 
FSPL, LN, and Cost-231 Hata models have relatively higher errors with 14.53, 6.08, 
and 15.26%, respectively.

In future work, this work can be implemented on 5G and 6G communication systems 
to obtain optimum SPPL during the deployment of eNodeBs. To increase the classifica-
tion accuracies some complex computer vision filters can be employed. Moreover, the 
indoor LiDAR data can be merged with current systems to cover Bluetooth and Wi-Fi 
technologies.
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