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1  Introduction
Artificial intelligence technology has been transforming more and more industries as it 
has developed rapidly in recent years, creating disruptive changes across a wide range of 
sectors. Among them, mobile robots, as an essential part of achieving industrial intelli-
gence, have received widespread attention from academic and industrial sectors. SLAM 
(Simultaneous Localization and Mapping) technology relies on sensors to estimate the 
robot’s position and model its surroundings to generate a map that the robot can under-
stand and use for navigation.

SLAM with the camera as the only external sensor is called visual SLAM. Vision-based 
SLAM techniques have gradually developed a relatively mature algorithm system and 
program architecture. However, classical visual SLAM techniques can only operate nor-
mally and without interference in ideal environments, while it is challenging to maintain 
robustness in highly dynamic scenes. Meanwhile, deep learning-based image semantic 
segmentation and target detection methods have greatly improved efficiency and accu-
racy. As a result, numerous researchers remove or track dynamic targets by semantic 
tagging or target detection preprocessing and thus solve the dynamic SLAM problem.
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Dynamic vision SLAM techniques are resource-intensive in terms of memory usage 
and processing efficiency. Various complex tasks, such as image processing and spatial 
recognition of the environment, can make the system particularly computationally inten-
sive. It can be even slower for embedded systems due to limited hardware resources. 
Therefore, for resource-constrained mobile devices, it is challenging to apply dynamic 
vision SLAM technology based on deep learning efficiently. To improve mobile applica-
tions of dynamic visual SLAM techniques, offloading part of the computational tasks to 
the cloud is generally an effective method. However, in mobile applications, the response 
time is too long due to the long distance between the endpoint and the cloud, which lim-
its the quality of service. With mobile edge computing, we can provide cloud computing 
capabilities and IT (Internet Technology) service environments for mobile terminals at 
the network’s edge. The heavy computing tasks are offloaded from the mobile terminal 
to the high-performance mobile edge computing server, thus breaking through the hard-
ware limitation and resource constraints of the mobile terminal.

Driven by 5G, the demand for mobile communications work is surging. Ultra-dense 
networks are one of the critical technologies for 5G. UDN (Ultra-Dense Network) 
addresses the demand for wireless access by deploying dense base stations in commu-
nities, providing huge access capacity for end devices. In 5G networks, the application 
of UDN solves the problem of higher data volume and more efficient transmission due 
to the surge in mobile work demand. At the same time, MEC (Mobile Edge Comput-
ing) technology brings richer computing resources to the mobile side. Thus, there is a 
complementary relationship between UDN and MEC in the age of 5G. Combining UDN 
and MEC can provide more mobile devices with mighty computing power to perform 
resource and data-intensive tasks efficiently and with low latency.

B5G (Beyond 5G) further expands and deepens the scope and field of IoT (Internet 
of Things) applications based on 5G and combines with artificial intelligence, big data 
and other technologies to realize the intelligent interconnection of everything. As one 
of the important innovations of B5G network architecture, MEC can effectively solve 
the problems of massive data transmission and limited terminal resources faced by B5G 
scenarios. For the new trend of future B5G/6G network development, the combination 
of edge computing and artificial intelligence is inevitable. AI-EC (AI over Edge Com-
puting) enables fast visual recognition, speech synthesis, natural language processing 
and other services by integrating various AI (Artificial Intelligence) algorithms on the 
network edge devices. By reviewing the advantages and disadvantages of B5G-oriented 
dynamic visual SLAM and various technologies for offloading computing-intensive tasks 
to mobile edge servers by applying ultra-dense networks and MEC, this paper proposes 
current problems in this field and future development trends.

This paper is divided into four main sections. The introduction section in the first sec-
tion introduces the background and significance of the research. Section  2 introduces 
the research results in visual SLAM through three categories: classical static visual 
SLAM, visual SLAM techniques in highly dynamic environments, and SLAM techniques 
combined with deep learning. Section 3 analyzes the basic technology research related 
to the application of 5G ultra-dense network to offload complex computational tasks in 
visual SLAM systems to edge computing servers, starting from three modules: mobile 
edge computing compared with mobile cloud computing technology, 5G ultra-dense 
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networking technology, and MEC and UDN integration technology. Section 4 is the con-
clusion and outlook.

2 � Visual SLAM technology
2.1 � Brief description of the overview

Due to the rapid development of SLAM technology, there are significant differences in 
how SLAM has been introduced at various stages. The literature [1] addresses the opera-
tional environment of visual SLAM and compares the operational effectiveness of dif-
ferent SLAM schemes in indoor and outdoor environments. In particular, the paper [2] 
emphasizes that the visual SLAM system can crash very quickly if dynamic objects in 
the environment are not considered. However, do not go further to summarize the han-
dling of SLAM in dynamic environments. Instead, the paper [3] makes a detailed sum-
mary and analysis of the tracking of dynamic objects and 3D reconstruction of moving 
targets. As the theory of visual SLAM tends to mature, people gradually realize that to 
further improve the robustness of SLAM methods, they need to resort to multi-sensor 
fusion. Scholars have also provided detailed reviews on SLAM systems using different 
sensor fusion approaches, such as vision and laser fusion [4] and vision and IMU (Iner-
tial measurement unit) fusion [5]. Since deep learning has been successfully integrated 
into graphics over the last few years, more and more solutions have tried to apply it to 
other systems. As a result, numerous scholars have started a comparative analysis of cur-
rent SLAM systems from the perspective of deep learning [6, 7].

In summary, it is easy to find that the existing review comparisons focus on individ-
ual SLAM system development and fail to consider the actual mobile platform resource 
constraints in combination with the key technologies that break the hardware limita-
tions for a comprehensive comparison. To this end, this paper compares the underlying 
technologies related to applying 5G ultra-dense networks to offload complex compu-
tational tasks from visual SLAM systems to edge computing servers. It discusses their 
respective advantages and disadvantages, interconnections, and future development.

2.2 � Static SLAM

The classical vision SLAM framework [8] is shown in Fig.  1 and usually consists of 
five modules: vision sensor, vision odometry, nonlinear optimization, loopback 
detection, and map construction. Among them, vision SLAM can be classified into 

Fig. 1  Classic Visual SLAM Framework. Vision odometry, which estimates the camera motion between 
adjacent images and constructs a local map; nonlinear optimization, which receives the camera’s positional 
and loopback detection information and optimizes it to obtain a globally consistent trajectory and map; 
loopback detection, which determines whether the robot has reached a location it has been to before; and 
map construction, which constructs a map based on the estimated trajectory



Page 4 of 23Peng et al. J Wireless Com Network         (2022) 2022:98 

monocular, binocular, and RGB-3D SLAM types depending on the vision sensor from 
which the data are collected. Vision odometry, also known as the front-end, is tasked 
with acquiring the raw sensor data and preprocessing the data. Operations such as 
feature extraction and short- and long-term data correlation are performed to con-
vert the geometric information into a mathematical model and send it to the backend. 
Nonlinear optimization, also known as the backend, is tasked with optimizing the 
input model for the front-end, minimizing the cumulative error in the camera pose, 
and optimally adjusting the map information. Loopback detection sends the detec-
tion results of camera images to the backend for processing. The accumulated error is 
eliminated by calculating image similarity and recognizing and comparing the scenes 
the robot passes through.

SLAM research first appeared in Smith’s paper [9] in 1986. In that paper, the authors 
constructed a map consisting of a series of waypoints while recording the robot’s 
trajectory. Much of today’s work can be traced back to Davison’s Mono-SLAM [10] 
(Monocular SLAM), the first real-time monocular vision SLAM system. In Mono-
SLAM, sparse feature points are tracked using an extended Kalman filter as the back-
end. In the same year, Klein proposed PTAM [11] (Parallel Tracking and Mapping), 
which proposes and implements parallelization of the tracking and map building 
process and introduces a keyframe mechanism that allows for some mitigation of the 
computational growth problem [12]. A practical and easy-to-use SLAM system was 
proposed by Murartal in 2015: ORB-SLAM [13] (Oriented FAST and Rotated BRIEF 
SLAM). As far as mainstream SLAM feature points go, it represents the pinnacle.The 
system has several distinct advantages; firstly, it supports monocular, binocular, and 
RGB-D modes; secondly, the whole system is computed around ORB (Oriented FAST 
and Rotated BRIEF) features; finally ORB-SLAM innovatively uses three threads to 
complete SLAM, namely the tracking thread for real-time feature point tracking, the 
optimization thread for local BA (Bundle Adjustment), and the loopback detection 
and optimization thread for global bit-pose maps.

Visual SLAM can be classified into feature-based SLAM methods and direct meth-
ods depending on the image information. PTAM and ORB-SLAM are typical repre-
sentatives of feature-based SLAM methods. Most of these feature-based methods rely 
on the local features of the image and are therefore sensitive to the texture and image 
quality of the environment [14]. In contrast to the feature-based method, the direct 
method solves the bit pose by optimizing the photometric error of all pixels between 
frames. It has the advantages of fast operation and low requirement for the environ-
ment texture because it does not need to extract features and compute descriptors. 
As a representation of the direct method, Engel proposed LSD-SLAM (Large-Scale 
Direct monocular SLAM) as a method in 2014 [15], which, similar to ORB-SLAM, 
uses a graph optimization scheme and can be applied to large-scale scenes and build 
semi-dense maps. However, tests indicated that the accuracy of this algorithm was 
slightly inferior to that of ORB-SLAM. Using a sparse direct method, Forster [16] pro-
posed a visual odometry SVO (Semi-Direct Monocular Visual Odometry) in the same 
year. It uses blocks of feature point images to estimate the camera’s motion instead 
of directly matching all pixels. The advantage of SVO over other schemes is that it 
is speedy and can achieve real time even on low-end computing platforms. In 2016, 
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Engel [17] published another paper on DSO (Direct Sparse Odometry) based on the 
sparse direct method, which improved the operation speed of visual odometry based 
on the direct method to a new level.

In summary, the direct method is more robust to some scenes than the feature point-
based visual SLAM system. It reduces the time for feature extraction and descriptor 
matching, speeds up the time for pose estimation, and provides better real-time perfor-
mance of the algorithm. In addition, the direct method can recover semi-dense or dense 
maps that are more useful for navigation tasks. However, the direct method is based on 
the assumption of grayscale invariance, so illumination significantly impacts the system; 
moreover, the direct method suffers from tracking loss when the camera is moving fast.

2.3 � SLAM technique in high dynamic environment

2.3.1 � Removing dynamic targets

The classical vision SLAM systems assume a static environment. That is, the changes 
between adjacent frames are only due to camera movement. When these classical meth-
ods are applied to highly dynamic environments such as densely populated areas and 
driving areas of self-driving vehicles, the dynamic feature points extracted by the vision 
SLAM system on dynamic targets can directly affect the accuracy of the robot’s posi-
tional estimation, making the system suffer from errors and drift, which seriously affect 
the visual odometry and map construction results of the vision SLAM system [18]. To 
address this problem, many researchers have conducted research and proposed a series 
of visual SLAM methods to efficiently handle dynamic scenes.

The 3D feature points in space are required to satisfy the projection relationship of 
the multi-view geometry in the context of a static environment. Taking the feature 
point method as an example, the 2 frames of images after feature matching are gener-
ally optimized simultaneously using the BA method for the 6-degree-of-freedom poses 
of the camera and the 3D waypoint in space. As shown in Fig. 2, I1 , I2 are two adjacent 
frames,Pi1 represents the observation generated by feature point P in frame I1 , the pixel 
coordinates of feature point in image I1 , Pi2 represents the pixel coordinates of dynamic 

Fig. 2  Spatial point projection and matching. I1 , I2 are two adjacent frames, P is a dynamic feature point, Pi1 
represents the pixel coordinates of dynamic feature point P in frame I1 , Pi2 represents the pixel coordinates 
of P in frame I2 , Qi1 represents the predicted value Qi1 corresponding to Pi1 calculated by BA method, Pi2 and 
Qi1 will produce a certain deviation d between them, and the deviation needs to be reduced by continuously 
optimizing the transformation matrix of BA method. After the P point moves to the P’ position, the 
corresponding matching pixel becomes P′ i2 in the I2 frame, and the deviation between P′ i2 and Qi1 becomes d’
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feature point P in frame I2 , and Qi1 represents the predicted value Qi1 corresponding to 
Pi1 predicted by BA method calculation, and there will be a certain deviation d between 
Pi2 and Qi1 , which needs to be continuously optimized by the transformation of BA 
method matrix to reduce the deviation. However, if the feature point P is a moving tar-
get, when it moves to the position P’, the corresponding matching pixel in the I2 frame 
becomes P′i2 , and the deviation between P′i2 and Qi1 becomes d’ , which will make the 
optimization of the transformation matrix of BA method deviated and cannot get the 
optimal transformation matrix that minimizes the reprojection error between pixels. 
Therefore, to improve the accuracy and robustness of visual SLAM in dynamic environ-
ments, it is necessary to eliminate the influence of dynamic targets in the environment.

Removing dynamic feature targets using reprojection errors and acquiring static 
scenes for mapping is effective. Tan [19] propose a novel keyframe online representa-
tion and update method to adaptively model dynamic environments so that changes in 
the appearance and structure of the scene can be efficiently detected and processed. Sun 
[20] performs pixel classification by calculating the intensity difference of continuous 
RGB images and quantifying the segmentation of depth images [21] to obtain the static 
part of the scene.

There are also methods that combine geometric information with other information 
for the recognition of dynamic features [22]. Ambrus [23] combined dynamic classifica-
tion and multi-view geometry to dynamic segment objects and proposed methods to 
adjust static structures and merge new elements over time. Palazzolo [24] used RGB-D 
sensors to collect data and track them directly against the truncated symbol distance 
function TSDF [25] (Truncated Signed Distance Function) and finally used the color 
information encoded in the TSDF to estimate the sensor’s bit pose.

In addition, there are ways to reject dynamic targets by processing feature points. Kitt 
[26]classified feature points by training the classifier in advance to distinguish dynamic 
points from fixed points, but this method cannot be used to explore unknown environ-
ments. Li [27] proposed an odometry method based on the alignment of frame and key-
frame depth edge points, while assigning corresponding weight values to the keyframe 
depth edge points to reduce the influence of dynamic target points on the odometry, 
and the static weight values indicate the probability that the depth edge points are static 
or dynamic. The system only uses depth edge point information, so it is unsuitable for 
scenes lacking textures, and the maps created are sparse.

Some methods use optical flow to segment moving objects. Optical flow estimates 
pixel motion in 2 consecutive frames of an image in luminance mode [28]. Usually, it 
corresponds to the motion field in an image and can therefore be used to segment mov-
ing objects. Various moving objects are described by scene flow in 3D point clouds and 
optical flow in 2D images.

In 2017, Jaimez proposed Joint-VO-SF [29], which uses the k-means algorithm to clus-
ter images based on geometric and color information to obtain discrete image blocks, 
uses the direct method to estimate the camera pose, and statistically determines the 
reprojection error of the image blocks based on the estimation results to determine 
whether they are moving objects or not. This algorithm has good performance in com-
puting short-time scene streams. However, the localization accuracy is not high because 
the initial pose estimation is obtained by optimizing the photometric error of all pixels. 
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Alcantarilla [30] uses dense scene stream representation to detect dynamic targets. 
However, this system has distance constraints and is prone to mistakenly detect fixed 
points as dynamic points in weakly textured scenes. Kerl [31] treats the photometric 
error between two-pixel points located in different images. However, corresponding to 
the same spatial point as a variable finds that the distribution of the variable can be bet-
ter fitted by a t-distribution after statistical analysis, and use this property to assign a 
weight to each feature point while constructing a weighted least squares loss function 
to continuously optimize the camera pose through nonlinear optimization to achieve 
robust localization. The shortcoming of this system is that the dynamic target points are 
not completely removed, which makes the positional optimization have some errors.

Geometry-based and optical flow-based methods for removing dynamic targets have 
similar characteristics, which can accurately detect and identify moving objects’ posi-
tion and motion state without knowing the scene information and can work efficiently 
in real time. In addition, optical flow not only carries the motion information of mov-
ing objects but also rich scene 3D structure information, which provides a reasonable 
basis for dense map building. However, since the optical flow method works based on 
the assumption of constant luminance, it is susceptible to errors caused by the influence 
of illumination.

2.3.2 � Tracking dynamic targets

The approach of discarding dynamic targets as outliers in the positional estimation and 
not using them for map construction is applicable in most cases, but simply discarding 
the information may lead to tracking failure if the dynamic part of the image is a sig-
nificant occluder or takes up too large a proportion of the image. Therefore, tracking, 
identifying, and adding dynamic targets to static backgrounds to build maps containing 
dynamic targets are very necessary to research work.

Kundu [32] addressed the emotional SLAM problem by solving the motion recovery 
structure and moving object tracking problems. The system outputs a 3D dynamic map 
containing the structure and trajectories of static and dynamic objects. During the ICRA 
(International Conference on Robotics and Automation) conference in 2018, Scona [33] 
presented a robust, dense RGB-D SLAM system that detects moving objects and recon-
structs their background structure simultaneously. They simultaneously estimate the 
camera motion and the current static/dynamic segmentation of RGB-D images. In the 
next step, a dense RGB-D fusion algorithm is used to derive a 3D model of the static 
component of the environment based on this segmentation [34]. The camera motion 
estimation system is more accurate because it uses a 3D model to align frames to the 
model and segment static and dynamic information. The limitation of this system is that 
there cannot be a large number of dynamic objects within an initial number of frames 
so that the accuracy of the initial static scene map can be guaranteed. In the same year, 
Zhang [35] proposed Pose Fusion for segmenting dynamic bodies and static back-
grounds in dynamic environments, which detects human nodes and segments dynamic 
bodies in 3D point clouds and reconstructs dense maps.

The above methods can solve the problem effectively under certain conditions. How-
ever, in the presence of many moving objects in the scene, these methods will be brutal 
to complete the localization and map building tasks accurately and in real time due to 
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the lack of accurate semantic information as a priori. Deep learning has become increas-
ingly popular for dynamic SLAM as a result, and there has been a comprehensive devel-
opment of SLAM techniques that combine deep learning to identify and track dynamic 
targets.

2.4 � Visual SLAM technique combined with deep learning

2.4.1 � Removing dynamic targets

Several deep learning-based methods have gained efficiency and accuracy in recent years 
for semantic image segmentation and target detection [36, 37]. In many studies, seman-
tic tagging or target detection preprocessing is used to remove potentially dynamic 
objects and thus solve the dynamic SLAM problem. Compared with using multi-view 
geometric constraints or traditional image processing to solve the camera’s motion esti-
mation in dynamic environments, it is simpler and more reliable to use semantic infor-
mation with a priori knowledge to derive the camera’s motion model.

Yu Chao from Tsinghua University proposed DS-SLAM [38], which combines a 
semantic segmentation network with a moving consistency detection method to reduce 
the impact of dynamic objects. At the same time, the system generates a dense seman-
tic octree map that can be used for higher-order tasks. Experimental results show that 
the absolute trajectory accuracy in DS-SLAM can be improved by order of magnitude 
compared to ORB-SLAM2, which is one of the most advanced SLAM systems in highly 
dynamic environments, but the map building quality performs poorly. Xi [39] improved 
the DS-SLAM system by utilizing the PSP Net (Pyramid Scene Parsing Net) network 
with high segmentation accuracy as the segmentation network to further reduce the 
error of pose estimation in dynamic scenes, thus enabling the SLAM system to perform 
camera pose estimation in dynamic scenes more accurately. Berta [40] proposed a point-
based semantic SLAM system for dynamic environments-Dyna SLAM, which uses 
a combination of deep learning and multi-view geometry to determine whether a fea-
ture point belongs to a dynamic object and combines a domain growth algorithm to key 
out all dynamic pixels in the build thread to construct a dense static map. This method 
removes all possible moving objects, so fewer stationary feature points remain, affect-
ing the pose estimation. Xiao [41] proposed a new SLAM framework Dynamic-SLAM, 
which uses deep learning techniques to build a convolutional neural network-based 
object detector and combines a priori knowledge to achieve dynamic object detection at 
the semantic level. A velocity-invariant-based compensation model for missed detection 
of adjacent frames is proposed.

Deep learning can nicely complement the advantages of geometric and optical 
flow methods to deal with dynamic SLAM problems. Their combined use is essen-
tially joint processing of environmental semantic, geometric and photometric infor-
mation. According to Zhong [42], Detect-SLAM is a novel robotic vision system that 
integrates SLAM with a deep neural network-based object detector to maximize 
the benefit of both. Cui [43] in 2019 proposed SOF-SLAM, a semantic vision SLAM 
for dynamic environments. SOF-SLAM exploits the complementary properties of 
semantic segmentation of motion prior information and information about motion 
detection concerning polar geometric constraints. Using the semantic segmentation 
information to assist the computation of the polar geometry, dynamic features can be 
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removed more efficiently, resulting in more accurate results. In 2020, Han and Xi [44] 
proposed a PSP net-SLAM based on optical flow and PSP net removal of dynamic fea-
tures for improving ORB-SLAM2. Tracking is performed with the remaining features 
after removing the features extracted from marked dynamic objects and features with 
large optical flow values. Ma [45] proposed a joint semantic segmentation network 
and depth prediction network based on the DSO framework to solve the localization 
problem in dynamic scenes. The system segmented the input RGB images semanti-
cally and predicted them in depth separately, then used the original feature track-
ing method of DSO for feature matching and detected dynamic points by polar line 
constraints, and finally removed the dynamic points for camera pose estimation. Hu 
[46] used the Mask R-CNN (Mask Region-Convolutional Neural Network) network, 
for instance, segmentation of images, and first used semantic labels to estimate cam-
era pose. Then, we use light projection to determine which objects are visible in this 
frame, determine whether the objects are moving by calculating the motion residuals 
of each object, and optimize the camera poses according to the non-moving targets.

When adding a priori semantic information to a SLAM system, it is a very critical 
issue to ensure real-time performance as much as possible. Redmon [47] proposed 
the Yolo (You Only Look Once) network architecture in 2016, which classifies and 
localizes objects in one step, and the real-time performance of the One-stage algo-
rithm detection is very much improved compared to the Two-stage network. How-
ever, the detection accuracy is slightly lower compared to the Two-stage network. 
To filter out unstable features from moving objects, Zhang [48] used YOLOv3 [49] 
running in a separate thread. A novel sliding window compensation algorithm was 
proposed by Li [50]to reduce the error of YOLOv3 when detecting dynamic features, 
thus offering a new approach to dynamic object detection. Cheng [51] used YOLOv3 
as an image segmentation network and assigned prior probabilities to each class of 
objects based on semantic information. A Bayesian model updates the dynamic prob-
abilities of each grid to detect dynamic objects in the scene. These systems detect tar-
gets using YOLOv3. The segmented targets are labeled using bounding boxes, so the 
detection results cause errors by classifying static regions around dynamic targets. A 

Table 1  Comparison of visual SLAM algorithms combined with deep learning to remove dynamic 
targets

M represents a monocular camera, S represents a binocular camera, D represents an RGB-D camera, I represents an indoor 
environment, and O represents an outdoor environment

Algorithm Camera type Method Application 
scenarios

DS-SLAM D SegNet +Mobile consistency testing I

[35] D PSP Net+Mobile consistency testing I

DynaSLAM S,M,D Mask R-CNN+Multi-view geometry I/O

PSP Net-SLAM D PSP Net+Optical flow method I

[46] M YOLO v3 I

Dynamic-SLAM M SSD+Selective tracking algorithm I/O

Detect-SLAM D SSD+Movement probability propagation I

SOF-SLAM D SegNet+For polar geometric constraints I/O

DSO-Dynamic M Mask R-CNN+DSO O
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comparison of some visual SLAM algorithms that combine deep learning to remove 
dynamic targets is shown in Table 1.

By comparing the underlying SLAM frameworks, and technical approaches adopted 
by these systems, it is found that more scholars choose to develop based on the ORB-
SLAM2 system, which benefits from the excellent performance of the ORB-SLAM2 sys-
tem in a static environment and the easy readability of its open source code. In addition, 
dynamic SLAM systems based on a priori semantic information require higher hardware 
requirements. However, some lightweight networks can perform target detection or 
semantic segmentation tasks in real time with GPU acceleration, such as YOLOv3. How-
ever, if the segmentation phase is added to the visual SLAM system, the existing over-
all solutions integrating semantic information are not very good in real time. Therefore, 
integrating a semantic SLAM system in a dynamic environment into a mobile device is 
an effective way to consider offloading the heavy computational tasks from the mobile 
side to a high-performance mobile edge computing server, which will be described in 
detail later.

2.4.2 � Tracking dynamic targets

The idea of simultaneously estimating camera motion and multiple motion targets origi-
nated from the SLAMMOT (Simultaneous localization, Mapping and Moving object 
tracking) work [52]. The paper develops a mathematical framework that combines 
SLAM and motion target tracking and demonstrates that it meets the navigation and 
safety requirements for autonomous driving.

For moving target tracking reconstruction, in 2017, Runz [53] proposed Co-Fusion 
to different segment objects in dynamic scenes based on camera motion or seman-
tic cues, which can maintain a particular performance in dynamic scenes and track 
dynamic objects in the reconstructed environment during the SLAM process. The fol-
lowing year, Runz proposed Mask Fusion [54], a real-time, object-aware, semantic, and 
dynamic RGB-D SLAM system. The method provides object-level scene description by 
combining Mask R-CNN’s target and geometric object edge detection methods to refine 
the instance edges and reconstruct the recognized objects in 3D while building a back-
ground map [55]. Shen [56] used a binocular camera combined with a Faster R-CNN 
network for target detection and drew a 3D detection frame of the object with geomet-
ric information for an autonomous driving application scenario, which incorporated 
semantic information homography information into a unified optimization framework. 
At CVPR (Conference on Computer Vision and Pattern Recognition) 2020, Huang [57] 
introduced Cluster VO, a stereo visual odometer that simultaneously clusters and esti-
mates the motion of self and surrounding rigid objects. The method combines semantic, 
spatial, and motion information to jointly infer the clustered segmentation of each frame 
in an online manner.

Implementing visual SLAM in unstructured, dynamic environments requires identi-
fying moving targets and estimating their velocities in real time. Most existing SLAM-
based approaches rely on a 3D model database of objects or impose significant motion 
constraints. To address this problem, Jun [58] proposed VDO-SLAM (Visual Dynamic 
Object-aware SLAM), a robust target-aware dynamic SLAM system, which is a novel 
dynamic feature-based SLAM system that enables tracking of dynamic targets based on 
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semantic information of images in the scene without additional target pose or geometric 
information. At the ICRA 2020 conference, Henein [59] presented a new feature-based, 
model-free, object-aware dynamic SLAM algorithm that uses semantic segmentation to 
estimate the motion of rigid bodies in a scene without estimating the object’s pose or 
having any a priori knowledge of the object’s 3D model. The algorithm generates maps 
of dynamic and static structures and extracts the velocity of the rigidly moving objects in 
the scene.

In summary, if the dynamic targets in the image are essential occluders or take up a 
large proportion of the image, it becomes imperative to track, identify, and add them 
to the static background to build a map containing dynamic targets. Combining SLAM 
techniques with deep learning to identify and track dynamic targets, these methods will 
accomplish the tracking of dynamic targets more accurately and in real time due to the 
acquisition of accurate semantic information as a priori, and thus locate and build maps 
efficiently.

3 � Unloading of complex computing tasks in 5G network
3.1 � Mobile edge computing and mobile cloud computing

Since mobile devices’ computing and storage capacity cannot process and store huge 
data to meet the immediate need of deep learning tasks in SLAM systems to handle 
large amounts of computation, for this reason, mobile cloud computing can be used 
to solve this problem. Mobile cloud computing combines the advantageous features of 
cloud computing and mobile Internet [60]. All complex computations can be performed 
in the cloud, allowing mobile devices to be simplified and not requiring very complex 
configurations [61].

In MCC (Mobile Cloud Computing), end devices can offload low latency and high 
energy-consuming tasks to cloud servers for computational processing to enhance end 
devices’ computational and storage capabilities [62]. However, although the offloading 
of device tasks to the cloud server gives a great performance boost to the device, it also 
brings new problems, as the cloud server is far away from the end device, resulting in a 
potentially high task execution latency, which cannot meet the demand of the SLAM 
system for instant map building. At the same time, the mobile terminal needs to con-
sume more energy in the process, leading to an increase in system cost. Moreover, MCC 
adopts a centralized processing mode [63], and the massive data generated by a large 
number of terminal devices are transmitted to the cloud server for processing, which not 
only brings a great burden to the transmission network but also easily causes data pri-
vacy leakage and data security problems [64, 65]. Based on this, mobile edge computing 
was proposed in the industry [66].

Mobile edge computing can effectively solve the problems of time extension, high 
energy consumption, and data insecurity. In the MEC scenario, the proxy server or 
base station is placed closer to the mobile terminal. MEC computation offloading 
technique allows the terminal device to offload computationally intensive tasks to 
the MEC server for execution and achieve task execution latency reduction with the 
help of a high computational performance MEC server [67]. Meanwhile, offloading 
tasks from end devices to edge servers can also effectively reduce device energy con-
sumption. MEC computation offloading techniques can solve the problems caused 
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by cloud computing while effectively solving the resource-constrained problems of 
mobile end devices by optimizing the network load and transmission latency of off-
loading computations of deep learning tasks in visual SLAM to servers. As listed in 
Table 2, a comparison between mobile edge computing and mobile cloud computing 
is presented.

Computational offloading technology [68], as one of the key technologies of MEC, 
refers to offloading tasks running on end devices to edge servers through reason-
able offloading decisions and resource allocation strategies, using sufficient compu-
tational and storage resources of servers to complete task execution, reducing task 
completion delay and energy consumption of devices, and improving device perfor-
mance. Compute offloading techniques have been used in cloud computing, and the 
only difference in compute offloading techniques from those in mobile edge comput-
ing is the different destinations for offloading. The computation offloading process 
[69] is shown in Fig.  3. It is roughly divided into six phases: finding available MEC 

Table 2  Comparison of characteristics between MCC and MEC

Compared with MCC, MEC has the characteristics of low latency, low energy consumption, high security, and has more 
sufficient storage capacity and computing power

Method MEC MCC

Deployment method Distributed Centralized

Distance between server and mobile 
terminal

Close Far

Main idea Marginalization Centralization

Connection method Dedicated line connection Wireless connection

Delay Low High

Computing power Adequate Limited

Storage capacity Adequate Limited

Energy consumption Low High

Security High Low

Fig. 3  Process of Calculating Offload. The computational offload process is roughly divided into six phases, 
including finding available MEC computational nodes, program partitioning, offload decision, program 
transfer, execution of computation, and return of computational results
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computation nodes, program cutting, offloading decision, program transmission, exe-
cution of computation, and return of computation results.

3.2 � 5G ultra‑dense networking technology

5G communication technology, the fifth generation mobile communication technology, 
has the following core features: ultra-high speed, ultra-high capacity, ultra-low latency, 
ultra-efficient, and full coverage. Compared with 4G technology, 5G communication 
technology has significantly improved in terms of connection rate, system capacity, 
number of links, and network latency. As listed in Table 3, 5G and 4G performance indi-
cators are compared.

ITU (International Telecommunication Union) describes three scenarios for 5G appli-
cations: Enhanced mobile broadband, Massive IoT, Low Latency, and High Reliability. 
eMBB (Enhance Mobile Broadband): Human-centric application scenarios, focusing on 
ultra-high transmission data rates and guaranteed mobility with comprehensive cover-
age [70]. mMTC (Massive Machine Type Communication): As a result of 5G’s robust 
connectivity, various vertical industries can be rapidly integrated, creating the conditions 
for the “Internet of Everything” [71]. uRLLC (UltraReliable and Low Latency Communi-
cation): The connection latency should reach the 1ms level and support a high-reliability 
connection in the case of high-speed movement.

The 5G vision includes three approaches to increase system capacity: increasing spec-
trum bandwidth, improving spectrum utilization, and cell splitting [72]. It is considered 
that cell splitting is the most effective means of extending the coverage of macro base 
stations into blind areas and increasing spatial cell reuse by deploying low-power small 
base stations. There was an emergence of UDN in this context [73]. The most important 
goal of 5G is to increase the network’s capacity. 5G network adopts extensive space mul-
tiplexing technology and ultra-dense network collaboration mode, which can maximize 
the capacity of the network system.

Ultra-dense networking technology increases system capacity and thus frequency 
diversity by arranging wireless network infrastructure in high density. UDN is the 
deployment of more Small Cells, and Small Cells can be Femto Cells, Pico Cells, Micro 
Cells, etc., which usually cover a much smaller area than Macro Cells. These Small Cells 
in ultra-dense networking technology are small in size, flexible in backhaul, low in trans-
mission power, easy to install, low in construction resistance, and low in cost, and more 
importantly, significantly reduce the transmission distance between the base station and 

Table 3  Comparison of 5G and 4G technical indicators

Compared with 4G, 5G has many advantages such as higher traffic density, lower latency, higher energy efficiency and faster 
experience rate

Name of Indicator Flow density Connection 
number density

Time delay

4G reference value 0.1Tbps/Km2 100,000/Km2 10ms

5G Reference Value 10Tbps/Km2 1 million/Km2 1ms

Name of Indicator Mobility Energy Efficiency User Experience Rate Peak Rate

4G reference value 350km/h 1X Boost 10Mbps 1Gbps

5G Reference Value 500km/h 100x boost 0.1–1Gbps 20Gbps
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the user, with less path loss, and improve the signal quality to a greater extent. UDN 
is the core technology to meet the demand for low latency, high capacity, and efficient 
transmission in 5G network systems.

3.3 � Technologies for MEC and UDN integration

3.3.1 � 5G and MEC convergence architecture

The adoption of UDNs for 5G will meet future applications’ needs for higher data trans-
fer volumes and lower latency [74]. In 5G networks [75], MEC and UDN are comple-
mentary rather than competing technologies as MEC provides end users with computing 
and storage capabilities [76]. Due to the proximity of server resources, MEC-enabled 
UDNs have a significant advantage over macro-enabled MEC base stations in terms of 
offloading computational tasks. Due to short transmission distances, the UDN reduces 
the energy consumption of end devices and base stations [77]. Combined with 5G UDN 
is beneficial for future applications of terminal devices that require significant computa-
tional resources due to the sound 5G UDN.

Figure 4 shows the MEC deployment in the 5G network proposed by ETSI (European 
Telecommunications Standards Institute) [78]. As shown in Fig.  4, the left side is the 
5G network, which contains a series of control plane network elements such as AMF 
(Authentication Management Field), SMF (Session Management Function), and PCF 
(Policy Control Function), as well as user plane network elements UPF (User Plane 
Function), access network RAN (Radio Access Network), and terminal UE (User Equip-
ment). The right side is the MEC, which contains the MEC platform, management 
orchestration domain, and multiple service providing APPs (Applications). UPF is the 
integration point between the 5G network and the MEC. All data must pass through the 
UPF forwarding before it can flow to the external network. In other words, MEC devices 
responsible for edge computing must be connected to the UPF, a network element in the 
5G core network. 5G core network design is very flexible. In order to reduce data trans-
mission detours, the UPF is generally deployed in a lower position than the control plane 
network element, which is the UPF sink. For example, China Mobile’s core network is 
divided into eight regions across the country, each managing several provinces, but only 
control plane elements are deployed in the server rooms of these regions. At the same 

Fig. 4  5G and MEC Converged Architecture. On the left side is the 5G network, which includes a series of 
control plane elements such as AMF , SMF , PCF , and user plane elements UPF, access network RAN and 
terminal UE. On the right side is the MEC, which includes the MEC platform, management orchestration 
domain, and multiple service providing APPs. All data must be forwarded through the UPF before it can flow 
to the external network
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time, UPFs are sunk to provincial centers and even local cities and counties to facilitate 
local data local digestion. Such an architecture provides the conditions for MEC to be 
deployed close to the network edge.

3.3.2 � MEC unloading decision

The computational offloading process is affected by different factors [79], such as user 
habits, radio channel communication, backhaul connection quality, mobile device per-
formance, and cloud server availability. Therefore, the key to computational offloading is 
to specify the appropriate offloading decision. There has been considerable research on 
offloading decisions and resource allocation in MEC networks. They are broadly classi-
fied into three categories: the goal of reducing latency, the goal of reducing energy con-
sumption, and the goal of the trade-off between latency and energy consumption.

To enable latency-sensitive application execution latency reduction, Ning [80] pro-
posed an IHRA (Iterative Heuristic MEC Resource Allocation) scheme for making com-
putational offloading decisions in multi-user situations by considering the abundance of 
MCC computational resources and the low MEC transmission latency. Sun [81] studied 
the task offloading problem between vehicles and proposed an algorithm that enables 
vehicles to understand the offloading delay performance of neighboring vehicles during 
offloading. Jian [82] improves the bat swarm algorithm to solve the optimization prob-
lem of task offloading scheduling in edge computing and proposes an improved chaotic 
bat swarm cooperative offloading scheme, which greatly reduces the task completion 
delay and thus meets the demand for real-time task processing. Li [83] proposed a task 
offloading strategy based on intermediate nodes to balance the load between different 
edge nodes and shorten the task completion time.

All the above uninstallation decisions achieve the goal of reducing the time delay. 
However, they fail to consider the energy consumption at one end of the mobile ter-
minal device when performing computational uninstallation. The terminal device may 
not function properly due to insufficient power. Thus, researchers continue to explore 
offloading decision schemes to minimize energy consumption. Wen [84] minimizes the 
total device energy by solving an optimization problem constrained by its parameters. 
To minimize energy consumption, Cao [85] optimizes the shared resource allocation 
between users and auxiliary nodes. Zhang [86] models the dependencies between tasks 
as sequential call graphs and investigates the execution of collaborative mobile device 
and cloud server tasks under random wireless channels. Mobile device energy con-
sumption is minimized while time deadlines are met. Cuervo [87] proposed a system 
for offloading fine-grained energy-conscious mobile code to the infrastructure, reduc-
ing energy consumption, and modifying programs significantly. Zhou [88] minimizes the 
device’s energy consumption through the joint optimization of resource allocation and 
task offloading allocation.

The above computational offloading strategies aiming at reducing energy consumption 
largely alleviate the shortcomings in the battery life of mobile terminal devices. How-
ever, in some systems, users prefer to minimize the sum of time and energy consump-
tion to reduce the overall consumption of the system or to trade-off the time and energy 
consumption so that the total consumption of the system is relatively better and stable. 
Gu [89] proposed two independent heuristic matching algorithms to solve the problem 
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of minimizing the delay under the energy consumption constraint. Li [90] proposed a 
system based on Q-Learning and deep Q-Learning to solve the offloading decision prob-
lem in multi-user MEC systems. Lian [91] considered the system energy consumption 
and time delay as the final optimization objective and designed an offloading scheme 
based on quantum evolution theory. Dai [92] formulated the task offloading problem 
in a multi-user mobile edge computing scenario as a convex optimization problem with 
weighted and minimized delay and energy consumption under resource-limited condi-
tions and proposed a computational offloading mechanism based on the multiplicative 
method to minimize the energy consumption and task execution delay of mobile ter-
minals. Teng [93] optimized a multi-user mobile edge computational offload system by 
constructing a Markov decision problem with the long-term average overhead of delay 
and power consumption as the optimization objective and solving it using convex opti-
mization theory. Zhang [94] proposed a game-theoretic-based offloading scheme for the 
multi-user task offloading problem, which approximates the optimal solution to the the-
oretical optimal policy and dramatically reduces the system overhead.

By analyzing and comparing the above three types of computation offloading deci-
sions, it can be seen that the most significant advantage of offloading computation to 
the edge server is the reduction of computation latency compared to computing on the 
mobile side. The discussion on energy consumption can be further developed under the 
condition of guaranteeing computation latency. Although not minimizing latency or 
energy consumption, the strategy of maximizing revenue can be closer to the specific 
application requirements. In the future, the application scenario of mobile edge com-
puting is continuously being expanded, and the setting of computational offloading 
decisions largely depends on the characteristics of the task to be processed. The vari-
able factors involved in the computation using mobile edge computing technology will 
become more, and only by guaranteeing the stability of the elements involved in the 
computation process can the application of mobile edge computing technology be better 
supported.

3.3.3 � UND and MEC integration

Since mobile devices have proliferated and computation-intensive and latency-sensitive 
tasks have emerged, resources have been in high demand. This problem can be effec-
tively solved by combining mobile edge computing with ultra-dense networks, and thus, 
ultra-dense edge computing emerges. UDN’s base stations can be integrated with MEC 
by deploying MEC servers [95]. Integrating these systems allows real-time computing 
requirements to be met with low latency data transmission.

In the MEC, offloading tasks were a hot topic as mobile devices make offloading 
decisions to reduce execution delays, reduce energy consumption, and improve off-
loading efficiency. The problems related to resource allocation in UDNs have also 
received great attention. Using deep learning techniques, Zhou [96] intelligently 
avoided or alleviated congestion at UDN base stations. A similar method based 
on non-explicit ranking genetic algorithms has been proposed by Xu [97], which 
improves energy efficiency and spectral efficiency by allocating transmission power 
and resource blocks. Liu [98] proposed an optimal resource scheduling strategy 
with two-step joint clustering. Zhang [99] designed an augmented learning-based 
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downlink power control algorithm for managing interference in small cell networks 
with dense cell networks. These studies examine the problem of resource allocation 
in UDNs in depth. The solution to the spectrum and power allocation problem in 
UDN will help reduce interference and improve performance. If a large number of 
devices are engaged in data-intensive or compute-intensive tasks simultaneously, it 
will be challenging to fulfill the demands of the devices efficiently in real time.

To address the above issues, several studies have emerged in recent years to 
address the problem of task offloading and resource allocation in MEC-enabled 
UDNs. Guo [100] proposed an optimal enumeration offloading strategy and a two-
level game offloading strategy to optimize the weighted sum of delay and energy 
consumption. The task offloading algorithm proposed by Yang [101] is based on 
the game idea of UDN and is primarily designed to conserve energy under the delay 
constraint. An energy-collection MEC server was designed, as well as centralized 
and decentralized algorithms for offloading tasks, by Chen [102]. Using a long-term 
evolving UDN model, Bottai [103] developed an energy consumption correlation 
algorithm to study user terminal energy consumption. Sun [104] considered the cost 
of switching between tasks in a multitasking scenario with sequential constraints in 
their energy-aware mobility management algorithm. Guo [105]proposed a heuristic 
greedy offloading strategy for offloading MEC. The limitation of this method is that 
it does not consider the delay requirements of individual tasks but only the total 
delay of the whole system. Chen [106] proposed a differential evolutionary algorithm 
for task assignment and channel resource allocation, which reduces the task assign-
ment problem to integer nonlinear programming. This approach is efficient, has 
good convergence performance, and can significantly reduce energy consumption. 
Huang [107] studied the IoT offloading problem in MEC-based UDNs to minimize 
energy consumption and delay while optimizing offloading decisions, transmission 
power, and radio resource allocation. In the UDEC (Ultra-Dense Edge Computing) 
environment, the problem becomes very complex because UDEC has a large number 
of edge devices and servers with heterogeneous computational resources and com-
munication links. Therefore, exploring how to efficiently and fully utilize the system 
resources to improve the UDEC performance is very important.

In summary, channel resource allocation in UDN and offloading decisions in MEC 
directly affect user experience and network quality. The main objective of MEC’s 
offloading decisions is to reduce task execution delay, reduce energy consumption, 
and improve offloading efficiency. The UDN’s resource allocation problem usually 
involves allocating spectrum and power to reduce interference so that system perfor-
mance can be improved. These traditional approaches will have difficulty handling 
the demands of many devices simultaneously if they perform computation-intensive 
or data-intensive tasks. A further challenge in UDEC is that system resources are 
often diverse and variable over time, complicating scheduling. To achieve compu-
tational offloading, applications must be partitioned in real time, and low overhead 
resources must be allocated. Therefore, it is well worth exploring the research direc-
tion of how to design dynamic and real-time scheduling schemes to improve the 
quality of service of edge devices.
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4 � Summary and outlook
There are many applications of visual SLAM, including autonomous navigation, aug-
mented reality, virtual reality, and more. As most traditional visual SLAM techniques 
assume a static environment, dynamic targets in the environment will significantly affect 
the accuracy of the positional estimation when the SLAM system extracts dynamic fea-
ture points. For this reason, a series of visual SLAM methods for removing or track-
ing dynamic targets, including geometry, optical flow, and deep learning, have been 
proposed.

Among them, geometry-based and optical flow-based methods to remove dynamic 
targets can accurately detect and identify the position and motion state of mov-
ing objects without knowing the scene information. However, they are more affected 
by environmental factors such as illumination and weak texture of objects. The visual 
SLAM technique, which combines deep learning to identify and remove dynamic tar-
gets, has a significant improvement in the accuracy and robustness of localization and 
map building compared to the way of using multi-view geometric constraints or tradi-
tional image processing to solve the camera’s motion estimation in dynamic environ-
ments by using semantic information with a priori knowledge to assist in deriving the 
camera’s motion model. However, if the dynamic target of the image is a crucial occlu-
sion or takes up too large a proportion of the image, discarding the dynamic target as an 
outlier in the positional estimation and not using it for map construction will likely lead 
to tracking failure. Therefore, combining deep learning to track and identify dynamic 
targets and adding them to static backgrounds to build maps containing dynamic targets 
is a future mainstream research direction for dynamic SLAM.

The technology of combining deep learning for visual SLAM removal, tracking 
dynamic targets, and completing dynamic scene-building maps is gradually matured. 
However, the extremely high real-time requirements of dynamic visual SLAM and the 
heavy computational tasks caused by various complex image processing and environ-
ment recognition work limit its application on resource-constrained mobile devices. 
The mobile edge computing offload technology allows end devices to offload compu-
tationally intensive tasks to mobile edge servers for execution, achieving reduced task 
execution latency and device energy consumption with the help of high computational 
performance mobile servers. Mobile edge computing provides additional computing and 
memory resources for mobile devices, breaking through the hardware limitations and 
resource constraints of terminals.

With the development of 5G, the combination of mobile edge computing and 5G 
ultra-dense network deployment has given birth to UDEC technology to accommo-
date greater device access and further reduce data transmission latency for mobile 
end devices. With high bandwidth and low latency, UDEC technology enables com-
plex computing tasks in visual SLAM systems to be offloaded to edge computing serv-
ers with extremely low latency to meet real-time computing requirements. However, 
the presence of a large number of edge devices and edge servers in the UDEC envi-
ronment, as well as the diverse and time-varying nature of system resources, compli-
cates task offload decision-making. In addition, due to the highly dynamic mobility of 
mobile devices and the random nature of work requests, MEC servers can experience 
load imbalance. When a high number of tasks are offloaded to a single MEC server, 



Page 19 of 23Peng et al. J Wireless Com Network         (2022) 2022:98 	

it will cause server overload, and when computers run at a low load, they will waste 
enormous computing power. Therefore, when facing task offloading requests from 
multiple mobile devices, it is very important to deal with the problem of prioritiz-
ing tasks, designing an intelligent learning scheduling scheme to allocate resources, 
and partitioning program tasks so that the resources of edge computing servers are 
fully utilized. With low latency and low energy consumption as the research objec-
tives, it is very important to study in depth how to efficiently and fully utilize system 
resources, determine dynamic, real-time offload decisions and channel resource allo-
cation schemes, and improve UDEC performance in the future. In addition, it is easy 
to find from the schemes investigated in the paper that most proposed algorithms are 
not applied in real life. Due to the difference between theoretical research and prac-
tice, many other factors affect the research results. In the subsequent research work, 
more complex real-life scenarios should be considered to actively seek to implement 
the scheme technology on the ground to create economic and social values.
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