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1  Introduction
To accommodate the exponentially increasing traffic demand of Internet users and of 
connected devices, upcoming 5G wireless networks feature innovative technologies such 
as infrastructure densification, antenna densification and use of new frequency bands 
ranging from 700 MHz up to 30 GHz and maybe even higher [1, 2]. Consequently, the 
wireless networks become increasingly complex, heterogeneous and dynamic [3, 4], 
which make traditional model-based optimization approaches for radio resource man-
agement (RRM) no longer adequate, because highly complex scenarios are unlikely to 
admit a mathematical description that is at the same time accurate and tractable.
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The emerging paradigm of artificial intelligence and machine learning (AI/ML) could 
provide a promising means for effectively addressing various challenges of legacy model-
based optimization approaches. Leveraging recent progress in AI/ML, future radio net-
works are expected to follow a data-driven paradigm for resource management and for 
operations, where the level of network automation is increased [5, 6]. In such data-driven 
network automation paradigm, network nodes are able to determine the best policy 
based on the experience obtained by processing previous data [7]. The natural question 
that arises is how to integrate AI-based resource management into the architecture of a 
radio access network, i.e. where should one store the required data and where should the 
related computations be executed.

One way of realizing network automation is to have a cloud-based approach in which 
all intelligence is placed in a central point where data from the network are collected 
and the computations are executed [8, 9]. Nevertheless, such a centralized approach may 
have three major issues: latency, privacy and connectivity. These issues may render the 
centralized architecture a vulnerable solution. As an alternative, in a decentralized archi-
tecture, where the data and AI tasks are distributed across the network and the mobile 
devices, the communication overhead and the traffic load can be significantly reduced. 
However, due to limited storage and processing capabilities, mobile devices might not 
be able to develop accurate models. Moreover, the self-organizing nature of the devices 
may result in poor performance due to a lack of coordination. In between the centralized 
and completely decentralized architectures there are a variety of hybrid architectures, 
which—if carefully designed—could combine the benefits of the two. In this article, we 
propose a framework for comparing three  different architectures, in terms of deploy-
ment costs and performance metrics, and use the framework comparing the three alter-
natives for an AI architecture that handles standards-based beyond 5G (B5G) radio 
access networks.

The rest of the article is organized as follows. In Sect. 2, we present background knowl-
edge about the 5G systems architecture and functions. In Sect. 3, we provide the state-
of-the-art ML techniques and architecture solutions as well as the progress of AI/ML in 
B5G systems. In Sect. 4, we propose the three architectures for the deployment of AI in 
5G radio access networks and discuss a framework of requirements and challenges for 
the evaluation and selection of the architecture solutions. The framework is evaluated, 
in Sect. 5, based on a multi-hop multi-link use case scenario in heterogeneous networks 
(HetNets). Finally, we conclude on the article in Sect. 6.

2 � 5G networks: architecture and functions
One of the fundamental approaches concerning 5G-related 3GPP standards is that the 
radio access network (RAN) and core network (CN) architectures are described in terms 
of services and functions. Figure 1 illustrates the 5G general architecture as supported 
by a set of logical functions divided between the 5G core (5GC) network [10] and the 
next-generation radio access network (NG-RAN) [11].

The elements of the NG-RAN functions that provide radio access to 5G in new radio 
(NR) are the access nodes referred to as gNBs [12]. The gNB provides 5G NR access to 



Page 3 of 32Koudouridis et al. J Wireless Com Network         (2022) 2022:94 	

the users by providing NR control plane (CP) and user plane (UP) protocol termination 
towards the user equipment (UE) side1. A gNB may be logically split into a gNB-CU 
(central unit) and one or more gNB-DUs (distribution unit). The gNB-CU is a logical 
node that hosts the Radio Resource Control (RRC) [13, 14], Service Data Adaptation 
Protocol (SDAP) [15] and Packet Data Convergence Protocol (PDCP) [16] of the gNB 
protocols. While the gNB-DU is a logical node that hosts the radio link control (RLC) 
[17], medium access control (MAC) [18] and physical (PHY) [19] layers of the gNB pro-
tocols and functions. A gNB-DU, which is controlled by one or more gNBs, may support 
a single or multiple cells, while one cell is supported by only one gNB-DU. Furthermore, 
a gNB may consist of a gNB-CU-CP (central unit control plane), multiple gNB-CU-UPs 
(central unit user plane) and multiple gNB-DUs. The gNB-CU-CP and gNB-CU-UP are 
connected to the gNB-DU through the F1-C and the F1-U interfaces, respectively [20]. 
The gNB-CU-UP is connected to the gNB-CU-CP through the E1 interface [21]. One 
gNB-DU is connected to only one gNB-CU-CP, and one gNB-CU-UP is connected to 
only one gNB-CU-CP. The gNB-CU and gNB-DU are interconnected through the F1 
interface. The F1 interface supports signalling exchange and data transmission between 
the endpoints, separates radio network layer and transport network layer and enables 
the exchange of UE-associated and non-UE-associated signalling [12].

Similar to F1, NG and Xn are logical interfaces. The gNBs are interconnected 
through the Xn interface [22], while the NG interface [23] allows a NG-RAN con-
sisting of a set of gNBs to be connected to the 5GC (5G core network). The 5GC 
architecture consists of multiple network functions (NF), including authentication 
server function (AUSF), access and mobility management function (AMF), data net-
work (DN), unstructured data storage function (UDSF), network repository function 
(NRF), network exposure function (NEF), network slice selection function (NSSF), 
policy control function (PCF), session management function (SMF), unified data 
management (UDM), unified data repository (UDR), user plane function (UPF), appli-
cation function (AF), security edge protection proxy (SEPP) and network data analyt-
ics function (NWDAF) [10]. The 5G system architecture is defined as service-based, 

Fig. 1  Generic service-based 5G system and RAN architecture as specified in 3GPP standards

1  The ng-eNB nodes providing access in E-UTRA and the UE are not depicted in the 5G overall architecture (cf. Fig. 1).



Page 4 of 32Koudouridis et al. J Wireless Com Network         (2022) 2022:94 

and the interaction between network functions is represented in two ways: (a) a ser-
vice-based representation, where network functions (e.g. AMF) within the control 
plane enable other authorized network functions to access their services, and (b) a 
reference point representation shows the interaction exist between any two network 
functions (e.g. AMF and SMF).

5G systems and services have been targeted to meet the requirements of a highly 
mobile and fully connected society. The coexistence of human-centric and machine-
type applications in these systems will result in very diverse functional and perfor-
mance requirements that B5G networks will have to support. In order to meet these 
requirements in a cost-efficient manner, 5G systems are supposed to leverage a num-
ber of technological pillars, such as end-to-end (E2E) network slicing [24], service-
based architecture [8], software-defined networking (SDN) [25] and network function 
virtualization (NFV) [26].

Network heterogeneity in 5G involves the integration of advanced wireless systems, 
allowing the interconnection of a large variety of end devices. The wireless transport 
and access network will be based on Sub-6 and mmWave technologies, leveraging 
massive MIMO with a large number of antennas at the gNBs to improve data rates, 
reliability as well as energy efficiency [4]. These will coexist with legacy (2-3G), long-
term evolution (LTE) and Wi-Fi technologies to allow broad coverage, high availabil-
ity, higher network density and increased mobility. The use of spectrum in 5G systems 
is summarized in Table 1.

Advanced 5G use cases and services such as ultra-reliable low-latency communi-
cations (URLLC), massive machine-type communications (MMTC) and enhanced 
mobile broadband (eMBB) place heavy demands on RANs in terms of performance, 
latency, reliability and efficiency [27]. Meeting these demands may require the adjust-
ment of the RAN’s control parameters across time, frequency and space. In general, 
the potential optimization tasks could be categorized into three domains, as shown 
in Table 2. The domains are characterized based on the type of parameters involved, 

Table 1  The use of spectrum in 5G systems [8]

Band/frequency Usage

0 MHz band 28 Dynamic spectrum use

1.8 GHz (LTE-FDD) Software-defined radio (SDR)

2.4 and 5.0 GHz Wi-Fi Industrial, scientific and medical (ISM) radio band, Wi-Fi, personal 
area networks, Bluetooth, Zigbee

2.6 GHz (LTE) Various LTE frequencies incl., LTE Band 3, LTE Band 7 (FDD), LTE 
Band 20, LTE Band 38 (TDD), and LTE-A

3.5 GHz 5G NR (New Radio) in selected locations

3.5 GHz Band 42 Citizens Broadband Radio Service (CBRS)

5 GHz Wireless backhaul

Up to 6 GHz SDR

K-bands (Ku 12–18 GHz), Ka (26–40 GHz) Satellite bands

6 GHz, 40 GHz, 60 GHz mmWave In building premises, backhauling, partly SDR, transport network

C-Band, L-Band optical spectrum Optical transport

Visible light In building premises
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the type and number of network entities and the frequency at which updates typically 
take place.

3 � AI/ML techniques and solutions in B5G radio access networks
There has been significant interest in using machine learning algorithms for radio 
network optimization in recent years. The survey [28] presents the application of 
diverse ML techniques in various key areas of networking across different network 
technologies. In general, AI and ML can be used to efficiently solve unstructured 
and seemingly intractable optimization problems in 5G and future communication 
networks. Advances in the combination of AI/ML and wireless communications 
reside in different aspects of wireless network design and optimization, including 
channel measurements, modelling and estimation, physical layer optimization and 
network management and optimization [73]. In what follows, we provide a struc-
tured review of related work on AI/ML for RAN optimization, along the categoriza-
tion of AI/ML architectures provided in the previous section.

ML techniques and their applications in 5G systems have been discussed in a num-
ber of papers, e.g. see the surveys [29, 30] and the references therein. A summary is 
shown in Fig. 2, which is an extended version of the figure presented in [29]. In what 

Table 2  Three domains for RAN performance improvement [84]

Domain Parameter type Network entities Update frequency

Network design Deployment parameters Basebands, cells, RAN con-
figurations, etc.

Monthly/weekly

Network optimization Network hyper-parameters Cell clusters/individual cells Weekly/daily/ hourly

RAN algorithms L3 to L1 transmission parameters Cells and user equipment Seconds/ milliseconds

Fig. 2  Machine learning techniques for 5G systems
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follows, we give an overview of the most prominent machine learning approaches to 
network optimization including supervised, unsupervised, reinforcement, federated 
and ensemble learning.

3.1 � Machine learning approaches

3.1.1 � Supervised learning

Supervised learning is the task of learning a function that maps an input to an output 
based on example input–output pairs [31]. The family of supervised learning techniques 
relies on parameterizable models and labelled data, which allow the estimation of the 
model parameters. Traditional supervised learning algorithms include regression mod-
els, the k nearest neighbour (KNN) algorithm, support vector machines (SVM) and 
Bayesian learning, while recent interest in supervised learning focuses primarily on deep 
neural networks.

Regression analysis is based on a statistical process for estimating the relationships 
among variables. The estimation target is a function (e.g. a linear or logarithm function) 
of the independent variables. The KNN and SVM algorithms are mainly utilized for clas-
sification of points/objects. The above three ML algorithms can be used for estimating 
or predicting radio parameters that are associated with specific users. For example, in 
massive MIMO systems associated with hundreds of antennas, both detection and chan-
nel estimation lead to high-dimensional search problems, which can be addressed by 
the above-mentioned learning models. In addition, the KNN and SVM can be applied 
to finding the optimal handover solutions, which are of importance in a heterogeneous 
network constituted by diverse cells. At the application layer, these models can also be 
used for learning the mobile users’ specific usage pattern in diverse spatio-temporal and 
device contexts in [32]. The authors of [32] also show that energy demand prediction is 
possible with the aid of the centralized KNN algorithms.

The core idea of Bayesian learning is to compute the a posteriori probability distribu-
tion of the target variables conditioned on its input signals and on all of the training 
instances. Some simple examples of generative models that can be learned with Bayesian 
techniques include the Gaussian mixture model (GM), expectation–maximization (EM) 
and hidden Markov models (HMM). Bayesian learning models can be applied to spectral 
characteristic learning and estimation in 5G networks. For instance, the authors of [33] 
estimated both the channel parameters of the desired links in a target cell and those of 
the interfering links of the adjacent cells using Bayesian learning with the centralized 
architecture. Bayesian learning can be utilized in cognitive radio networks. In [34], a 
cooperative wide band spectrum sensing scheme based on the distributed EM algorithm 
was proposed, and the authors in [35] constructed a HMM relying on a two-state hidden 
Markov process. In [36], a tomography model based on the Bayesian inference frame-
work under the centralized architecture was proposed to conceive and statistically char-
acterize a range of techniques that are capable of extracting the prevalent parameters 
and traffic/interference patterns in cognitive radio networks at both the link layer and 
network layer.

The above ML algorithms are effective only when sufficient labelled data are avail-
able, and they are computationally expensive when training involves large amounts of 
data. Moreover, it is widely acknowledged that feature engineering could be costly for 
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the above ML algorithms. These drawbacks motivate the use of deep learning in com-
munication networks. Deep learning refers to multi-layer artificial neural networks, 
called deep neural networks (DNN), used for tasks such as classification or regression. 
Compared to the above ML algorithms, deep learning can automatically extract high-
level features from data and allows exploiting unlabelled data to learn useful patterns. 
The state of the art in deep learning techniques with efficient deployment and poten-
tial applications to networking was presented in [37]. However, it is worth noting that 
in general deep learning algorithms are black box models and thus suffer from limited 
interpretability and explainability. In addition, although deep learning is more capable of 
handling large amounts of data comparing to traditional ML algorithms, it can be com-
putationally demanding.

3.1.2 � Unsupervised learning

Unsupervised learning is a type of machine learning that looks for previously undetected 
patterns in a data set with no pre-existing labels and with a minimum of human super-
vision. In 5G systems, the commonly considered unsupervised learning algorithms are 
K-means clustering, principal component analysis (PCA) and independent component 
analysis (ICA). K-means clustering aims at partitioning n observations into a number k 
of clusters. Clustering is a common problem in heterogeneous scenarios associated with 
diverse cell sizes as well as Wi-Fi and D2D networks. K-means clustering can be utilized 
for cell clustering in cooperative ultra-dense small-cell networks, for access point asso-
ciation in ubiquitous Wi-Fi networks, for heterogeneous base station clustering in Het-
Nets and for load balancing in HetNets [38].

PCA is a technique for multi-variable and mega-variate analysis that can be used to 
reduce a high-dimensional data set to a lower dimension and reveal some hidden and 
simplified structure/patterns. The main goal of PCA is to obtain the most important 
characteristics from data. On the contrary, ICA is a statistical technique that aims to 
reveal hidden factors underlying random variables, measurements or signals. The goal of 
ICA is to find new components (new space) that are statistically independent. Both the 
PCA and ICA constitute powerful statistical signal processing techniques. Their major 
applications include anomaly detection, fault detection and intrusion detection prob-
lems in wireless networks with traffic monitoring. Similar problems may also be solved 
in sensor networks, mesh networks, and so on. They can also be employed for the physi-
cal layer signal dimension reduction of massive MIMO systems, or to classify the pri-
mary users’ behaviours in cognitive radio networks [39]. In addition, in [40] PCA and 
ICA are applied to a smart grid scenario to recover the simultaneous wireless transmis-
sions of smart utility meters installed in each home.

3.1.3 � Reinforcement learning

Alongside supervised learning and unsupervised learning, reinforcement learning (RL) 
is one of three basic machine learning paradigms. RL essentially concerns how soft-
ware agents ought to take actions in an environment in order to maximize the notion 
of cumulative reward. Specifically, in RL an agent learns to make decisions through trial 
and error. The considered problem is usually modelled mathematically as a Markov deci-
sion process (MDP), where at every time step the environment is in a state, and the agent 
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takes an action and then receives a reward and transitions to the next state according to 
environment dynamics. During this process, the agent attempts to learn a policy that 
maximizes its returns (expected sum of rewards). Comparing to other ML techniques, 
RL is a self-teaching system that does not need labelled input/output pairs nor explic-
itly presented sub-optimal actions. Hence, it has been efficiently used to enable the 
network entities to obtain the optimal policy including, e.g. decisions or actions, espe-
cially when the state and action spaces are small. However, in many real-life problems 
like the optimization of the 5G systems, the state and action spaces are very large and 
thus RL algorithms using the tabular method do not scale. Therefore, in recent studies 
deep reinforcement learning (DRL), which is a combination of RL with deep learning, 
has been used to overcome scalability issues. By using DNNs as function approximators, 
the learning speed and the performance of RL algorithms can be significantly improved.

In [41], the authors study DRL from fundamental concepts to advanced models and 
provide a literature review on applications of DRL in communication networks. DRL 
algorithms generally fall into two categories, those based on policy iteration and those 
based on value iteration. DRL algorithms based on value iteration, e.g. DQN, are more 
popular in the applications in 5G systems. DRL-based approaches have been proposed 
to address many emerging issues including dynamic network access, data rate con-
trol, wireless caching, data offloading, network security and connectivity preservation 
which are all important to 5G systems. Moreover, DRL can be applied to efficiently solve 
classic network optimization problems such as resource allocation, traffic routing and 
scheduling.

3.1.4 � Federated learning

Federated learning is a model training approach that enables devices to collaboratively 
learn a shared model while keeping all the training data locally [42]. As illustrated in 
Fig. 3, the general procedure is that devices first download a shared model from a central 

Fig. 3  Federated learning architecture
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server (i.e. aggregation sever), and then, each device trains the model with its locally 
available data and the changes made to the model are summarized as an update that will 
be sent back to the server. When the devices send their updated models (e.g. the weights 
and biases of a deep neural network) to the server, the updated models are averaged to 
obtain a single combined model. This global model is then sent to all devices. This pro-
cedure is repeated for several iterations until a high-quality model is obtained.

3.1.5 � Ensemble learning

Ensemble learning is a model training approach that operates on a collection or en 
ensemble of models and combines their predictions by averaging, voting or another 
combination discipline. As compared to the single modelled ML disciplines described 
above, ensemble learning approaches can be more expressive and have less bias and vari-
ance. The benefit of ensemble learning is that its cost increases only linearly with the 
number of the models in the ensemble rather than exponentially as it would be the case 
with a more general model. Assuming that the prediction or classification models are 
independent—which is a rather strong assumption—ensemble will make more accurate 
predictions and classifications. There are many ways of creating ensembles including 
bagging, boosting and random forests. In bagging, a number of models are generated 
based on an equal number of distinct training sets by sampling with replacement from 
the original data set. Bagging by means of random forests is a form of decision tree 
where the ensemble of trees is diverse. In boosting, which is the most popular ensem-
ble method, the bagging is weighted so that correctly classifying or predicting models 
receive higher weights, while the incorrectly classifying or predicting models receive 
lower weights. Further improved ensemble learning methods have been developed for 
various wireless communications problems. In [43], a multiplicity of learning methods 
including bagging and boosting is compared for the prediction of the path loss, while in 
[44] ensemble learning is used for propagation loss forecast. Ensemble learning has been 
also applied to unmanned aerial vehicles (UAVs) for UAV power modelling [45], and sus-
tainable multimodal UAV classification [46]. Further applications include the exploita-
tion of a deep ensemble-based wireless receiver architecture for mitigating adversarial 
attacks in automatic modulation classification [47], and coordinates-based resource allo-
cation based on random forests [48, 49].

3.2 � AI/ML for 5G network management and optimization

State-of-the-art work on network management and optimization using ML technolo-
gies in wireless is rather extensive. In this section, we provide a list of the most relevant 
research studies in tabular format with some remarks and a classification of the sug-
gested solutions. Observing the research work listed in Table 3, one can see that ML-
based approaches could effectively solve non-convex and complex problems in various 
network contexts, e.g. joint user association and transmission scheduling, to achieve 
various goals including throughput maximization and energy consumption minimiza-
tion. At the same time, these problems are hard to be addressed by traditional model-
based optimization techniques. Moreover, with decentralized DRL-based approaches, 
network entities can make observation and obtain the best policy locally with minimum 
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information exchange among each other. This will not only reduce communication over-
head but also improve security and robustness of the networks. In addition, DRL could 
be used as an efficient tool to solve certain problems that can be modelled as a non-
cooperative game, such as, cyber-physical attacks, interference management and data 
offloading.

3.3 � AI/ML for 5G in standards

Recently, there have been initiatives to apply AI/ML to 5G networks and beyond in 
standards organizations including the International Telecommunication Union (ITU) 
and Third Generation Partnership Project (3GPP), as well as other study groups such 
as FuTURE, Telecom infra project (TIP) and 5G PPP, as shown in Table 4.

Table 3  Network management and optimization for 5G networks using ML

Use case Objective and scenario Approach AI architecture Refs.

User association Delay minimization under energy 
consumption constraint in ultra-dense 
network with edge computing

DRL Decentralized [50]

User association Load balancing with service rate selection 
in vehicular network with heterogeneous 
base stations

DRL Centralized [51]

Cell selection Capacity maximization and number of 
handovers balancing in open access 
femtocell network

Q-learning Decentralized [52]

User association UE outages minimization by cell range 
expansion for Picocell with bias value

Q-learning Decentralized [53]

Network slicing Maximize network revenue by intelligently 
admitting network slice requests

RL Centralized [54]

Network slicing Maximize the utility of individual service 
provider by joint slicing computing and 
communication resources

DQL Decentralized [55]

Traffic prediction Short-term traffic prediction for individual 
users

Meta-learning Decentralized [57]

Resource allocation Minimize service latency in a sliced RAN 
by computing resource allocation and task 
transmission scheduling

DRL Centralized [56]

Traffic prediction Predict the maximum service-specific traf-
fic load for each slice based on real-world 
5G network data

DL Centralized [58]

Content placement Track and predict time-variant content 
requests from users

DL Centralized [59]

Content delivery Determine caching and computing 
offloading decisions to reduce operational 
cost on edge server

DRL Centralized [60]

Rate adaptation Video quality-aware rate control for real-
time video streaming

DRL Decentralized [61]

User association Coverage and capacity maximization for 
massive MIMO systems

DRL Centralized [62]

User scheduling Sum rate maximization with joint user-cell 
association and selection of number of 
beams in 5G mmWave networks

Transfer Q-learning; 
Unsupervised learn-
ing

Hybrid [63]

User scheduling Power-efficient resource allocation in 
cloud RANs

DRL Centralized [64]

User scheduling Minimizing the age of correlated informa-
tion in IoT systems

DRL Centralized [65]
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In Nov. 2017, ITU started a focus group on “Machine learning for future networks 
including 5G (FS-ML5G)” at its meeting in Geneva. The focus group is responsible 
to draft technical reports and specifications for ML for future networks, including 
interfaces, network architectures, protocols, algorithms and data formats [5]. The FS-
ML5G was active from January 2018 until July 2020. During its lifetime, FG-ML5G 
delivered ten technical specifications, covering the study of architecture, interfaces, 
use cases, protocols, algorithms, data formats, interoperability, performance, evalua-
tion and security. Among these specifications, they propose a unified logical architec-
ture for ML in 5G and future networks [66] and give an instance of realization of the 

Table 4  AI/ML for 5G networks and beyond in standards [73]

Leading 
organization

Group name Starting time Purpose Applications

3GPP NWDAF March 2018 Allow 5G operators 
to monitor the status 
of a network slice or 
third-party application 
performance

5G core network data 
analytics

5G PPP CogNet July 2015 Build an intelligent 
system of insights and 
action for 5G network 
management

Autonomic network 
management based on 
machine learning

FuTURE Wireless big data for 
smart 5G

November 2017 A white paper that 
collects a pioneering 
research works on big 
data for 5G in China

Boost spectrum efficiency 
and energy efficiency, 
improve the user experi-
ence and reduce the cost

ITU ML5G November 2017 Identify relevant gaps 
and issues in stand-
ardization activities 
related to ML for future 
networks

Interfaces, network 
architectures, protocols, 
algorithms, and data 
formats

TIP AI and applied ML November 2017 Define and share reusa-
ble approaches, proven 
practices, models and 
technical requirements 
for applying AI and ML

ML-based network 
operations, optimization 
and planning; customer 
behaviour-driven 
service optimization; and 
multi-vendor ML-AI data 
exchange formats

Fig. 4  Hosting of multi-level ML pipeline in 3GPP, MEC [5]
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logical architecture on a 3GPP system along with MEC and management systems, as 
shown in Fig. 4.

The FG-ML5G has provided more than 30 use cases and their requirements. Nota-
ble among them are RRM for network slicing, end-to-end network service design 
automation and end-to-end fault detection and recovery. To address RRM problems 
with reduced complexity and cope with the growing variety of scenarios, in [67], the 
authors propose a lean RRM architecture that consists of one or a few learner(s) that 
learn RRM policies directly from the data gathered in the network using a single gen-
eral-purpose learning framework, and a set of distributed actors, which execute RRM 
policies issued by the learner and repeatedly generate samples of experience. In [68], 
the authors adopt ML to realize cognitive network management in support of auto-
nomic networking. They have employed ML to minimize the role of humans in the 
control loop and present a use case of cognitive security manager for anomaly infer-
ence and mitigation over a software-defined infrastructure.

In 2018, the 3GPP standards group proposed the network data analytics func-
tion (NWDAF), a collection of interfaces, so as to allow the definition of analytics 
functions that can be applied to monitoring the status of a network slice or the per-
formance of a third-party application on the “Zero Touch and Carrier Automation 
Congress” [9]. The NWDAF forms a part of 3GPP’s 5G standardization efforts and 
could become a central point for analytics in the 5G core network. The NWDAF is 
still in the early stages of standardization, but could become an interesting enabler for 
innovation.

Complementary to the 3GPP standardization targets, the O-RAN initiative defined 
the O-RAN architecture which is empowered by the principle of openness and is 
expected to have a major influence on the next-generation networks. In Fig.  5, we 
show the reference O-RAN architecture, and the general framework for AI/ML func-
tions and interfaces in O-RAN [6].

The white paper [7] published on the FuTURE Forum is a collection of pioneering 
research works on big data for 5G in China, in both academia and industry. It pro-
posed the concept of “smart 5G” and argued that the 5G network needs to embrace 
new and cutting-edge technologies such as wireless big data and AI to efficiently 
boost both spectrum efficiency and energy efficiency, improve user experience and 
reduce cost.

TIP launched a project group, “AI and applied machine learning” in November 2017 
[69]. The group applies AI and ML to network planning, operations and customer 

Fig. 5  ML training host and inference locations in O-RAN [6]
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behaviour identification to optimize service experience and increase automation [70]. 
The objective is to define and share reusable, proven practices, models and techni-
cal requirements for applying AI and ML to reduce the cost of planning and operat-
ing telecommunications networks, understand and leverage customer behaviour and 
optimize service quality for an improved experience.

5GPPP has also launched its efforts on combining AI with wireless communications 
which aims to build an intelligent system of insights and action for 5G network man-
agement [71]. These developments in standards and study groups aim to use AI for 
physical layer and network management, which will greatly boost the performance of 
wireless networks.

4 � AI/ML architecture performance framework for RAN
Employing AI and ML techniques is of importance for the advancement of wireless 
communication networks. In [72], the authors investigate network design and opera-
tion using data-driven approaches, compare them to traditional model-based design 
techniques and conclude that we are rapidly reaching the point where the quality and 
heterogeneity of the services we demand of communication systems will exceed the 
capabilities and applicability of present modelling and design approaches. To this end, 
an automation of the modelling and design processes is to be spawn which imposes a 
new set of requirements on the network functions that generate and execute the models 
both in terms of their architectural approach and their performance gains. The archi-
tecture approach  deals with the deployment of the functions as supported by the AI/
ML learning and inference approach, while the performance deals with the efficiency of 
the approach to solve a particular use case at the cost associated with it. To address this 
issue, we define an AI/ML architecture performance framework for RAN, as detailed 
further in the remainder of this section.

4.1 � RAN architecture aspects

Following the common terminology and definitions in the O-RAN architecture [6], an 
ML workflow is a process consisting of data collection and preparation, model build-
ing, model training, model deployment, model execution, model validation, continuous 
model self-monitoring and self-learning/retraining related to ML-assisted solutions. We 
refer to the network function that hosts the training of the model as the ML training 
host, and to the network function that hosts the ML model during inference mode (i.e. 
model execution and model update if possible) as the ML inference host. When design-
ing ML-enabled RANs, depending on the locations of data sources, the ML training 
host, the ML inference host and the point of actuation, three types of AI architectures 
can be identified: centralized, completely decentralized and hybrid.

In Fig. 6, we show a simple illustration for the three AI architectures. The nodes in the 
RAN are categorized in three kinds:

•	 a central controller or coordination point (CP), which is equipped with a centralized 
processing unit and a data storage unit, operating above or in the CU-CP or CU and 
operating over multiple CU-UPs or DUs, respectively
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•	 an access point (AP), which is typically equipped with micro processing unit, e.g. 
BBU and a local database, operating in gNB nodes at CU-UP or DU and

•	 a terminal point (TP), which corresponds to UEs and mobile devices with limited 
processing capacity and storage units.

In a network with centralized AI architecture, the training host is located at the 
CP, where the information needed for model training is collected from all APs. The 

Fig. 6  Illustration for AI architecture alternatives. a Centralized, b decentralized and c hybrid
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centralized approach could take advantage of the computational capability and the 
data storage of a data centre, and hence, it may facilitate training complex neural net-
works and coordinate access points (AP) and UEs in the network. This training coor-
dination is achieved at the price of a large amount of data transmission and control 
signalling overhead. The data transmission is expected to be excessive depending on 
the number of parameter and parameter values to be exchanged and the complexity 
of the AI/ML model to be built. When a model is trained and built by the CP, it is 
then transferred to the AP for decision and optimization inference.

In the presence of capacity constraints on the fronthaul/backhaul links and potential 
privacy/security issues, it is expected that various network functions could be executed 
locally at APs or with minimal information exchange in transport networks. Doing so 
results in a decentralized architecture. Compared to a centralized architecture, the 
major drawback of the decentralized architecture is that locally trained models cannot 
make use of information from remote network entities and thus a decentralized archi-
tecture may lead to inferior performance in lack of global coordination. In this frame-
work, a decentralized architecture is manifested in its extreme where control decisions 
are derived locally and are supported only by local data with no data exchange or coor-
dination among the APs. Any form of coordination among the APs constitutes a form of 
hybrid architecture, as in, for example, federated learning.

Hybrid architectures may combine the best of centralized and decentralized architec-
tures. Typically, ML algorithms under the hybrid architecture are trained locally by their 
respective APs, and the central server in the CP is used as a coordinator to orchestrate 
the different steps of the algorithms and coordinate all the participating nodes during 
the learning process. In general, local data samples in APs will not be collected by the 
CP; instead, the coordination should be done by exchanging parameters (e.g. the weights 
and biases of a deep neural network) between these local APs and the CP. Apart from 
signalling parameters and depending on the learning technique, the communication 
between the AP and the CP may include the exchange of models in both directions. An 
example hybrid learning scheme is federated learning [42], as illustrated in Fig. 3.

A particular network may employ multiple AI architectures for different optimiza-
tion tasks. In [73], the authors show deep learning models that can be applied to cloud, 
fog and edge computing networks, where the cloud network is the data and comput-
ing centre, the fog network includes many nodes, and the edge network contains many 
end users and devices. Considering the available communication bandwidth, besides 
ML models executing at the cloud, decentralized learning, classification and signal pro-
cessing algorithms are needed, using lightweight learning models (i.e. ML models run-
ning with limited storage capabilities, computational power and energy resources). As 
doing so, the advantages of decentralized and centralized algorithms could be combined, 
thereby trading off complexity, latency and reliability. In [74], the authors propose a 
multi-layered control architecture for deploying and implementing various ML applica-
tions in cellular networks with edge computing. In this architecture, each RAN control-
ler (CU and DU) is associated with a cluster of gNBs and is deployed in a mobile edge 
cloud (MEC), so as to minimize the communication latency. The RAN controllers are 
responsible not only for RAN control, but also for running the data collection and ML 
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infrastructure. The proposed architecture could enable the RAN controllers to imple-
ment machine learning techniques at the edge of the network.

4.2 � RAN performance aspects

The performance of RAN can be evaluated differently depending on the evaluation 
objectives and its operation scenarios and use cases. Different use cases consider 
different scenarios, such as macro-cell deployments, ultra-dense networks and/
or multi-hop wireless HetNet consisting of micro-cells, integrated access backhaul 
(IAB) nodes, indoor and outdoor UEs [75]. In RAN, a typical algorithm runs in CU 
or DU to solve a RRM-related optimization problem, such as user association, user 
scheduling, cell handover, load balancing, interference coordination, coverage and 
capacity provision and admission control, which are some of the fundamental prob-
lems in RRM. These problems define their own objectives, and many of them are 
combinatorial optimization problems that are in general hard to solve using tradi-
tional approaches.

Therefore, the use case-related set of performance metrics are crucial to be 
employed to evaluate AI/ML-based approaches with different architectures. To quan-
titatively evaluate the proposed AI/ML solutions under different AI architectures, 
apart from the use case-related network performance metrics, a second set of metrics 
need to be considered. This second set of metrics involves the AI architecture alterna-
tives and is defined by the cost to achieve the network performance. Combining these 
two sets of metrics, a performance cost metric can be defined to comparatively evalu-
ate AI/ML architecture solutions.

4.2.1 � Network performance

The network performance refers, in general, to the effect of the learning of a context 
and, in particular, to the set of network performance aspects, e.g. capacity, reliability, 
latency, etc., and the metrics to measure them. Consequently, it is use case specific 
and the evaluation is performed based on the key performance indicator parameter 
values of the use case as formulated by its objective function. To evaluate the network 

Table 5  List of KPIs from 5G RAN functions [76]

Level RAN function KPI

UE-level Radio channel info at DU Channel quality indicator (CQI)

UE-level Radio channel info at CU-CP 
for serving/neighbouring cell

RSRP, RSRQ, SINR [13, 14]

UE-level L2 info at gNB Average/distribution DL UE throughput, packet delay and RAN part 
packet delay components, data volume (per QCI, [77]), DL PDCP occu-
pied/unused buffer size, packet loss rate per DRB/logical channel [78]

Cell-level L2 info at DU MCS distribution in PDSCH, total error number of DL/UL TBs (per layer 
at MU-MIMO case [79, 80]), average/distribution DL UE throughput 
in gNB (per QoS, 5QI or CQI level and per slice [79]), RAN part packet 
delay components [78], packet delay (per QCI [77])

Cell-level L2 info at CU-UP and DU Packet delay (per QoS, 5QI or CQI level and per slice [79])

Cell-level L2 info at CU-UP or DU Packet loss rate (per QoS/5QI/QCI level and per slice [79, 80]), DL 
packet drop rate (per QoS/5QI/QCI level and per slice [79, 80])
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performance, a natural metric is the achieved objective value, e.g. the user through-
put, the packet delay, packet loss, etc. Table 5 provides a list of primary metrics and 
key performance indicators (KPIs) that can be provided at different levels and func-
tions of the NG-RAN architecture. Besides the primary metrics that are defined in 
the 3GPP standards, further metrics such as the age of information, the fairness and 
the age evolution for each UE can be derived and compared to the classic network 
performance metrics such as throughput and delay. As the RAN systems increase in 
complexity, different network performance metrics are expected to arise for differen-
tiating the network performance.

4.2.2 � Learning performance

The second set of metrics concerns the requirements and the overhead of the learning 
system. For this discussion, a logical architecture of the components of the learning 
system is first introduced followed by a definition of the metrics.

The components of the logical architecture are as follows:

•	 Training node The entity in which data are used for training a ML model. In a central-
ized architecture, there is a single training node, while in a decentralized or hybrid 
architecture there are multiple training nodes. Multiple training nodes could be co-
located on the same physical resource. We denote by T  the set of training nodes.

•	 Inference node The entity in which data are used for make inference using a ML 
model. In a centralized architecture, there is one or multiple inference nodes, 
while in a decentralized or hybrid architecture there are multiple inference nodes. 
Multiple inference nodes could be co-located on the same physical resource. We 
denote by I  the set of inference nodes.

•	 Enforcement point The location where decisions are implemented based on output 
from the inference nodes, e.g. a baseband unit (BBU). We denote by E the set of 
enforcement nodes.

•	 Data source The locations where data required for training and/or inference origi-
nates from. For training, the data need to be delivered to the training nodes, either 
in real time or using bulk transfer, depending on the learning model. For inference, 
data need to be delivered to the inference nodes, likely in real time. We denote by 
S the set of data sources.

In Fig. 7, we illustrate the logical nodes under the three AI architectures. Note that the 
illustrations do not reflect the physical location of each node. In a network with central-
ized AI architecture, the training node collects data from data sources across the net-
work and trains the model accordingly. The inference node uses the trained model to 
make decisions and send the decisions to the corresponding enforcement nodes, which 
execute the decisions. For a decentralized architecture, the models are trained and 
executed locally or with minimal information exchange in transport networks. Hybrid 
architectures are in between of the centralized and decentralized architectures. Typi-
cally, ML algorithms under the hybrid architecture are trained locally by their respective 
training nodes, and a central server is used to orchestrate the different steps of the algo-
rithms and coordinate all the participating nodes during the learning process. In general, 
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Fig. 7  Logical architecture of learning systems under three AI architectures. a Centralized, b Decentralized 
and c Hybrid



Page 19 of 32Koudouridis et al. J Wireless Com Network         (2022) 2022:94 	

the central server will not collect data from the data sources; instead, the coordination 
is done by exchanging parameters (e.g. the weights and biases of a deep neural network) 
between the training nodes and the central server.

Based on the learning systems, we first define the following metrics for each logical 
node.

•	 At each logical node t ∈ T  , we denote by DT
t  the size of the training data set. In 

addition, we denote by Ŵt the training complexity, measured by training time or 
the number of training samples that the neural network needs for good test accu-
racy, and by Ct the algorithm convergence time (in iteration or wall clock time).

•	 At each inference node i ∈ I  , we denote by DI
i  the size of the inference data (input 

features) and by �i the inference time (wall clock time).
•	 At each data source s ∈ S , we denote by dTs  the amount of data generated for train-

ing and by dIs  the amount of data generated for inference (per time unit).

Related to these metrics, we define metrics regarding the signalling information/data 
exchange among the different logical nodes. The data volumes are measured per time 
unit.

•	 First, we denote by DT
s→t the amount of training data that need to be delivered from 

data source s to training node t, and we denote by DT =
∑

t∈T ,s∈S DT
s→t the total 

amount of data needed for training.
•	 Second, we denote by DI

s→i the amount of data delivered from data source s to infer-
ence node i and denote by DI =

∑

i∈I,s∈S DI
s→i the total data traffic for inference 

purpose.
•	 Third, we denote by DA

i→e the amount of data delivered from inference node i ∈ I  to 
enforcement point e ∈ E.

4.2.3 � AI/ML deployment and performance cost

The deployment cost of an AI architecture solution can be further analysed as consisting 
of two major cost factors: the cost for AI/ML training, Cl , and AI/ML execution costs, Ci , 
as follows

To each of the cost factors in Eq. (1), there are three main components that determine 
the cost of the achieved performance:

•	 Computing cost, C∗,c—It refers to the cost associated with the computing resources, 
i.e. the amount of CPU resources, run-time memory and dedicated hardware such 
as GPUs or graphics acceleration. The cost is defined by the number of resource 
instances used and the duration they are used.

•	 Networking cost, C∗,n—It refers to the cost associated with signalling resources 
required for the volume of data transferred between network nodes both for the 
training and execution of the data and the learned models. The bandwidth and time 

(1)Ctot = Cl + Ci
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of the transferring may differ depending on the nodes and the capacity of their con-
nection.

•	 Storing cost, C∗,s—It refers to the cost associated with the storage capacity in each 
of the network nodes. Network nodes where training will be performed benefit by 
managed storage facilities such as managed discs attached to compute instances.

The overall cost in Eq. (2) can be rewritten as

where Cl,c , Cl,n , Cl,s and Ci,c , Ci,n , Ci,s are the compute, communicate and store costs of 
the learning and the inference processes, respectively.

The logical architecture of learning systems under the three AI architectures is purely 
data-driven, and any deployment cost values can be estimated as functions of the data 
sets involved. Let cl(DT ) and ci(DI ) define the learning and inference cost functions of 
the training and inference data sets, respectively. The deployment costs values using the 
data sets of the learning system nodes, as defined above, can be given by

As Eqs.  (3) and (4) express, the volume and the transferring of the data sets directly 
determine the deployment cost for each one of AI architectures. In more specific terms, 
an analysis of the deployment cost tendencies can be summarized as follows:

•	 In a centralized AI architecture—the central deployment of the training and infer-
ence node implies, albeit affordable, high compute and store cost at the central server 
as well as a high networking cost, Cl,n , at the access points for transferring the train-
ing data set to the central server.

•	 In a decentralized AI architecture—the distributed deployment of the training and 
inference node implies no networking cost for the training and occasionally neg-
ligible cost for the inference process. The most dominant deployment cost in this 
AI architecture manifestation is related to the compute and store cost at the access 
points for both training Cl,c , Cl,s , and inference Ci,c , Ci,s purposes.

•	 In a hybrid AI architecture—the deployment cost is distributed between the com-
puting and the storing cost and the networking cost among and across the network 
nodes more equally. Consequently, the compute and store cost requirements at the 
access points are lower and the network cost higher than that of the distributed 
deployment cost for both training and inference procedures.

In this performance evaluation framework, the performance cost of an AI architec-
ture solution is defined in absolute values as the ratio of the gains over the cost. In an 
alternative relative definition, the performance cost can be defined comparatively to a 

(2)Ctot = Cl + Ci = (Cl,c + Cl,n + Cl,s) + (Ci,c + Ci,n + Ci,s),

(3)Cl = cl(D
T ) = cl

(

∑

t∈T ,s∈S

DT
s→t

)

,

(4)Ci = ci(D
I ) = ci





�

i∈I,s∈S

DI
s→i



.
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baseline solution as the difference of the achieved gained over the difference of total 
cost. Optionally, the performance cost can be also defined in absolute values as the ratio 
of the gains over the cost. The performance gain Vs of a certain set of one or multiple 
KPIs, k1, k2, . . . , kn, normalized by the cost can be given by

where os(k1, k2, . . . , kn) is an objective function of the suggested solution, and Cs is its 
total cost. Similarly, the cost of a suggested solution normalized by the performance gain 
is given by

The normalized cost can be used when comparing a new devised solution a to a 
benchmark solution r. Such a relative comparison can be represented by the ratio R of 
the new devised solution’s normalized performance V o

s  or cost V c
s  over the reference nor-

malized performance V o
r  or cost V c

r  as follows

where or(k1, k2, . . . , kn) and Cr are the achieved performance and total cost of the bench-
mark solution, respectively.

(5)V o
s =

os(k1, k2, . . . , kn)

Cs
.

(6)V c
s =

1

V o
s

=
Cs

os(k1, k2, . . . , kn)
.

(7)R(s, r) =
V o
s

V o
r

=
os(k1, k2, . . . , kn)/Cs

or(k1, k2, . . . , kn)/Cr
=

os(k1, k2, . . . , kn) · Cr

or(k1, k2, . . . , kn) · Cs
,

Fig. 8  A network with |C| = 1 macro-cell and |R| = 2 IABs
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In a more general framework, multiple objective functions may be considered and 
the performance versus deployment cost can be calculated as a combined, potentially 
weighted, function of multiple use case AI optimization architecture solutions.

5 � Use case analysis
In this section, we propose the ML-based algorithms with the centralized, completely 
decentralized and hybrid AI architectures, respectively. The three learning systems solve 
a multi-hop multi-link (MHML) network problem that is formulated on the notion of 
age-of-information (AoI).  Their evaluation  is performed by means of simulations based 
on the proposed framework in Sect.  4. The use case scenario assumes the relaying, 
multi-connectivity and multi-hop network capabilities [75, 81–83].

5.1 � System model

We consider the uplink in a HetNet scenario  as illustrated in Fig.  8. We denote by 
C = {1, 2, . . . ,C} the set of macro-cells and by R = {1, 2, . . . ,R} the set of IAB relay 
nodes, respectively. It has to be noted that the terms IABs nodes and relay nodes are 
used interchangeably in the sequel of the description. The former is used to refer to IAB 
node both as an access and relay node, while the latter refers to IAB node as a relay node. 
There is a set N = {1, 2, . . . ,N } of UEs served by the network; each UE is associated 
with one of the access nodes in M = C ∪ R . We denote by Km = {1, 2, . . . ,Km} the set 
of physical resource blocks (PRBs) per time slot at access node m. Depending on the 
equipment type and configuration, the access nodes may operate on the same or differ-
ent spectrum.

We consider that time is slotted, and we denote by tj the end of the jth time slot. We 
denote by t0 the end of the initial time slot. Each access node schedules one UE per each 
PRB at a time slot for uplink transmission, and we denote by gj the set of UEs that are 
scheduled at time slot j. Clearly, |gj| ≤ |N | . Consider that at the jth time slot UE n is 
scheduled by access node m ∈ M , then the transmission rate from this UE to the access 
node m is determined by the signal-to-interference-plus-noise ratio γ (n, gj)

where Pn is the transmit power of UE n, which is assumed to be fixed, and Gnm is the 
channel gain between UE n and access node m, incorporating the effects of path loss, 
shadowing and fading. Pl is the transmit power of UE l and Iln indicates whether or not 
UEs l and n transmit on the same PRB that uses the same frequency. Furthermore, σ 2

m is 
the noise variance at access node m.

If data are transmitted from one IAB node to another or to a macro-cell, then we 
assume that the achievable rate is sufficiently large such that all buffered packets in this 
IAB node could be delivered in one time slot. We denote by Bnmj the amount of queued 
data from UE n in access node m ∈ M at tj−1 . Then at the j th time slot, the amount of 
data from UE n delivered by a relay node r ∈ R is Bnrj , and the transmission rate from 
this relay node to its destination equals 

∑

n∈N Bnrj per time slot.

(8)γ (n, gj) =
PnGnm

∑

l∈gj ,l �=n PlGlmIln + σ 2
m

,
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Next, we introduce the notion of information value, denoted by Vnj , which refers to the 
importance of the information from UE n at the j th time slot. The value of Vnj is deter-
mined by UE n based on its application. To capture the worst case scenario, we consider 
peak ages, which are defined as the maximal points during age evolution. We define 
J = {1, 2, . . . ,T } as the schedule horizon. Based on the network topology, we define 
Ŵmr = 1 if relay node r is in the path of access node m to its final destination, otherwise 
Ŵmr = 0 . Observe that for solving the minimum weighted AoI problem one has to solve 
two coupled optimization problems:

•	 Decide the serving node for each UE;
•	 Compute the scheduling strategy for the user association.

In what follows, we refer to the first optimization problem as user association and the 
second one as uplink scheduling. Motivated by practical system constraints, it is reason-
able to assume that user association decision and task scheduling are solved on different 
time scales, and we thus propose to solve the two problems separately.

The user association problem is easily solved by assigning each UE to the serving node 
that yields the maximal signal-to-noise (SNR) ratio, as expressed in (9).

In Table 6, we summarize the key parameters of the use case scenario and in what fol-
lows we compare different AI solutions for the uplink scheduling problem.

5.2 � Solution method

Following the architecture framework, the uplink scheduling problem is solved by using 
deep reinforcement learning (DRL) under the centralized, decentralized and the hybrid 
AI architectures, as described in subsequent subsections.

5.2.1 � Centralized AI architecture

In the centralized AI architecture, the training and the inference are located and per-
formed by a central unit where the training data are transmitted from the network 
devices, i.e. UEs and access nodes, to the central unit. Let �C : SC → AC denote the 
neural network model to be trained for the centralized AI architecture, where SC and 
AC are the state space and the action set, respectively. The output of the model deter-
mines which UE per access node should be scheduled for the next available PRB. Thus, 

(9)SNR(n, gj) =
PnGnm

σ 2
m

,

Table 6  Key parameters for simulation setup

Network size 500 m × 500 m Number of UEs 21

Number of access nodes 3 Number of PRBs per node 3

Inter-cell distance 150 m to 200 m Transmit power 20 dBm

Noise power -100 dBm Rate function Shannon

Channel gain Path loss with exponent of 4, Rayleigh fading and  log-normal shadowing with 
standard deviation of 6 dB
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the output of the model has a dimension of M, and in every time slot, the model will be 
used for Km times for inference, each for one subcarrier, such that it could select Km UEs 
for access node m ∈ M . The state vector, reward function and the action set are defined 
as follows:

•	 State vector, SC —The state vector is defined based on UE and access node-related 
features. The feature vector of UE n at the j th time slot is defined as 

 where τ j−1
n  is the timestamp of the last sent packet of UE n before tj , U

j
n is the set of 

queued packets of UE n at tj , min
i∈U

j
n
τni is the time stamp of the oldest packets of UE 

n, avg
i∈U

j
n
τni is the average time stamp of the queued packets of UE n at time tj , and 

�nm is the signal strength from UE n to access node m. Next we define the vector 
consisting of features regarding access node m on subcarrier k at the j th time slot as 

 where Nmj
kϒ is the set of UEs that can be served by access node m on subcarrier k and 

with the ϒ highest weighted ages, i.e. Vnjanj , at tj . ϒ is a model parameter. The state 
vector at time slot j is finally defined as 

 .
•	 Action set, SC —For defining the action set, recall that for each access node the 

model chooses one action for a specific subcarrier in an iteration. Formally, the 
action set is AC =

∏M
m=1 N

mj
kϒ . For each access node m ∈ M , the algorithm iter-

ates Km times in each time slot and thus it chooses one UE for each subcarrier. As 
each access node only selects one UE to transmit in one iteration, the action space 
has a dimension of ϒ |M| , and thus, it is only the ϒ |M| UEs with highest weighted 
ages at tj that can be chosen to be scheduled by the model.

•	 Reward function, RC —The immediate reward at the j th time slot is defined as 

 where τ jn is the timestamp of the last sent packet from UE n at the j th time slot, and 
C is a large positive number. If any of the constraints in scheduling is violated at the 
j th time slot, then κ j = 1 ; otherwise, κ j = 0 . That is, κ jC is used to train the algo-
rithm to avoid infeasible scheduling solutions.

5.2.2 � Decentralized AI architecture

According to the decentralized approach, the training and inference units are located 
in the access nodes m ∈ M with no information exchange between each other. The 

(10)sCn (j) = [τ
j−1
n , min

i∈U
j
n

τni, avgi∈U
j
n
τni, �n1, �n2, . . . , �nM],

(11)SCmk(j) =

[

max
n∈Nm

Vnjanj , avgn∈NmVnjanj , {sCn (j) : n ∈ N
mj
kϒ }

]

,

(12)SCk (j) = [max
n∈N

Vnjanj , avgn∈NVnjanj , S
C
1k(j), S

C
2k(j), . . . , SCMk(j)].

(13)RC(j) = max
n∈N

(−Vnj(tj − τ
j
n)) − κ jC ,
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scheduling decisions are by no means coordinated rather based on local obser-
vations only. As a result, one neural network model per access node m is trained 
�D

m : SD
m → AD

m , where SD
m and AD

m denote the state space and the action space of access 
node m, respectively.

Using the notation defined in the system model and in the centralized approach, the 
state vector, reward function and the action space for access node m under the decen-
tralized approach are defined as follows:

•	 State vector, SD —The state vector at the j th time slot of the mth access node is 
defined as 

 The above definition is based on a set of feature vectors, the elements of which cor-
respond to UE n, feature vector, sDn  , which is defined as 

 where τ j−1
n  is the timestamp of the last sent packet of UE n before tj , Unj denotes the 

set of queued packets of UE n at tj and �nm is the signal strength from UE n to access 
node m. I jlm denotes the measured interference from the UE(s) scheduled by access 
node l at access node m and is computed as the average interference in the past ts 
time slots.

•	 Action set, AD —The action set is AD
m = N

mj
kϒ , as each access node m only sched-

ules one UE in each iteration.
•	 Reward function, RD —The immediate reward at the end of the j th time slot is the 

maximum weighted age after the scheduling decision has been implemented, i.e. 

 where τ jn is the timestamp of the last sent packet from UE n at the j th time slot, and 
C is a large positive number. If any of the constraints in scheduling is violated at the 
j th time slot, then κ j = 1 ; otherwise, κ j = 0.

5.2.3 � Hybrid AI architecture

In the hybrid AI architecture, the access nodes can exchange information so as to 
improve the scheduling solutions compared to the decentralized architecture. To 
reduce the size of the signalling, we exchange a latent space �m,m′ ∈ Rdm of the state 
Sm , one for each neighbouring node m′ that is created by the encoder FAE,E

m  of a 
trained autoencoder.

The encoder of the trained autoencoder is replicated to obtain a pre-trained encoder 
FE
m,m′ = FAE,E

m  for each neighbour of access node m, and the �m,m′ = FE
m,m′(Sm) com-

prises the latent space to be sent to the neighbouring node m′ as an input for sched-
uling. The dimension dm of the latent space is a meta-parameter that is fixed. The 

(14)

SD
mk(j) =

[

max
n∈Nm

Vnjanj , avgn∈NmVnjanj ,
{

sDn (j), n ∈ N
mj
kϒ

}

, I
j
1m, . . . , I

j
Mm

]

.

(15)sDn (j) =

[

τ
j−1
n , min

i∈Unj

τni, avgi∈Unj
τni, �nm

]

,

(16)RD
m(j) = max

n∈Nm
(−Vnj(tj − τ

j
n)) − κ jC ,
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neural network model for access node m with the hybrid AI architecture is denoted 
by �H

m : SH
m → AH

m , where SH
m  and AH

m correspond to the state vector and the action 
set of access node m, respectively.

•	 State vector, SH —The state vector of the hybrid AI architecture at the j th time 
slot is defined as 

 where SDm(j) is the state vector under the decentralized approach, as defined in (14), 
and {m1, m2, . . . , m′} ⊂ M is the set of neighbouring nodes of m.

•	 Action set, AH —In a similar manner as with decentralized, scheduling decisions 
are made per subcarrier iteration, implying an action set defined as AH

m = N
mj
kϒ.

•	 Reward function, RH —Equivalently to the decentralized approach, the immediate 
reward at the end of the j th time slot is similar to the maximum weighted age of 
information definition in (16), i.e. 

(17)SHm (j) =

[

SDm(j), �m1,m, �m2,m, . . . , �m′,m

]

,

(18)RH
m(j) = max

n∈Nm
(−Vnj(tj − τ

j
n)) − κ jC .

Fig. 9  Comparison of the three learning approaches based on maximum age reduction over PF systems

Table 7  Performance comparison for the three learning systems

Learning system Centralized AI Decentralized AI Hybrid AI

Average age  reduction over PF 60% 58% 59%

Maximum age reduction over PF 65% 62% 64%

Inter access node traffic for training 120 KBytes/s per UE n/a 30 KBytes/s per UE

Inter access node signal for synch 1 Kbyte/s per UE 1 Kbyte/s per UE 1 KByte/s per UE

Average/Maximum age reduction gain 
(%-e) per unit cost (1 KBps)

0.50/0.54 58/62 1.90/2.06

Average/Maximum age reduction 
cost (KBps) per percentage gain (%-e)

2.02/1.86 0.02/0.02 0.53/0.48
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5.3 � Evaluation results

Our evaluation studies show that the different AI architecture alternatives achieve dif-
ferent gains and pose different deployment costs when considering the deployment and 
selection of the AI/ML solution. The three AI architecture solutions have been evaluated 
by means of average and maximum age reduction over a proportional fair (PF) baseline 
scenario, where users are scheduled based on a PF-scheduling discipline. Figure 9 shows 
the maximum age reduction of the three AI architectures as simulated by ten different 
network instances.

Table 7 provides a comparative summary of the performance and cost of the three learn-
ing systems. We observe that DRL with all three architectures could significantly improve 
the freshness of information compared to the proportional fair algorithm. Among the three 
AI architectures, as expected, the centralized one achieves the best performance, at the 
price of notable inter-node traffic and a long training time, as well as potential privacy and 
security issues during data exchange. On the opposite, under the decentralized architecture 
the models could be trained with insignificant data exchange among access nodes, but the 
performance improvement is lower than that for the centralized architecture. The hybrid 
approach trades off performance for training data exchange, and it achieves a decent per-
formance in age reduction with only around a quarter of inter-node traffic data for training 
compared to the centralized approach.

For the centralized approach, in practice the training will be implemented on a central 
server, which could be more powerful than our hardware, yet initial training of the model 
would be computationally intensive. The same concern applies to the decentralized and the 
hybrid architectures, and the training of the scheduler takes a considerable amount of com-
puting resources. Naturally, the performance, the training time and the inference time also 
depend on the training data, the neural network structure and hyper-parameters, but the 
training time is expected to be significant in lack of specialized hardware (e.g. tensor pro-
cessing unit).

Although computation intensity could be defined as the cost of each learning approach, 
it is subject to the hardware used and the training times showed no significant differences. 
For a more hardware-agnostic scenario, we have defined the cost by means of signalling 
between the nodes. The signalling consists of two parts: the data exchanged required for the 
learning process and the inference imposed synchronization signalling between the nodes. 
While the synchronization signalling has been estimated not to exceed 1 KByte per second, 
the cost of the learning between the three different AI learning architectures differs signifi-
cantly. The centralized AI solution requires up to 120 KBytes per second between any two 
nodes, while the hybrid AI approach requires only 30 KBytes per second. Table 7 reports on 
cost normalized maximum age reduction where the percentage gains for a signalling cost 

Table 8  Comparison ratio based on the average age reduction and the associated cost of the three 
learning systems

Ratio R(sX , rY ) Centralized AI VrC Decentralized AI VrD Hybrid AI VrH

Centralized AI VsC 1.00 116.97 3.84

Decentralized AI VsD 0.01 1.00 0.03

Hybrid AI VsH 0.26 30.47 1.00
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of 1KBps for the centralized, hybrid and decentralized AI are in the order of 0.54, 2.06 and 
62%, while the cost per percentage reduction gain is 1.86, 0.48 and 0.02 KBps, respectively.

As a result, the centralized AI architecture approach demonstrates the highest cost per 
gained percent, which according to Table 8 corresponds to an 116 times higher value over 
the decentralized approach. By inspecting Table 8, it is evident that the efficiency of hybrid 
AI approach in terms of cost normalized performance tends to be higher than the central-
ized and significantly closer to that of the decentralized.

6 � Conclusions
AI/ML techniques have been seen to be promising in many applications in communi-
cation networks, and it is no doubt that AI/ML would be an inherent element in 5G 
systems and beyond. This path gives birth to the challenging topic on how to integrate 
AI into the 5G systems such that we could leverage the advantages of ML techniques to 
optimize and improve the B5G networks. In this article, we present the background and 
the challenges that the current communication systems face and reviewed the related 
work of ML and applications in communication networks. Then, we have proposed an 
AI architecture and performance evaluation framework for the deployment of the AI/
ML solution in B5G networks. The suggested framework defines three AI architectures 
alternatives, a centralized, a completely decentralized and a hybrid AI architecture. We 
have further identified the logical AI functions and their mapping to the B5G RAN archi-
tecture and analysed the associated deployment cost factors in terms of compute, com-
municate and store costs. It is shown, by means of simulation-based evaluations, that the 
different AI architecture alternatives pose different signalling costs when considering the 
deployment and selection of the AI/ML solution.

In our future work, we will develop ML algorithms under the hybrid AI architecture 
and evaluate the performance in demanding heterogeneous network scenarios.
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